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Dynamic Agency and the q Theory of Investment

PETER M. DEMARZO, MICHAEL J. FISHMAN, ZHIGUO HE, and NENG WANG∗

ABSTRACT

We develop an analytically tractable model integrating dynamic investment the-
ory with dynamic optimal incentive contracting, thereby endogenizing financing
constraints. Incentive contracting generates a history-dependent wedge between
marginal and average q, and both vary over time as good (bad) performance relaxes
(tightens) financing constraints. Financial slack, not cash flow, is the appropriate
proxy for financing constraints. Investment decreases with idiosyncratic risk, and is
positively correlated with past profits, past investment, and managerial compensa-
tion even with time-invariant investment opportunities. Optimal contracting involves
deferred compensation, possible termination, and compensation that depends on ex-
ogenous observable persistent profitability shocks, effectively paying managers for
luck.

THE EFFICIENCY OF CORPORATE investment decisions can be compromised by fric-
tions in external financing. One important source of financial market frictions
involves agency problems. Firms do not have access to as much capital as they
might like, or at low enough cost, because outside investors are wary of man-
agers’ incentives to act in their own private interest. In this paper, we examine
the implications of agency problems for the dynamics of firms’ investment de-
cisions and firm value.

We start with a standard dynamic model of corporate investment, the q
theory of investment (see Hayashi (1982)). In the absence of fixed investment
costs and no financial market frictions, the firm optimally chooses investment to
equate the marginal value of capital with the marginal cost of capital (including
adjustment costs). With a homogeneous production technology, the marginal
value of capital, that is, marginal q, equals the average value of capital, that
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is, average q.1 This result motivates the widespread use of average q (which
is relatively easy to measure) as an empirical proxy for marginal q (which is
relatively difficult to measure). To this model, we introduce an agency problem.
Following DeMarzo and Sannikov (2006), an agent (firm management) must
be continually provided with the incentive to choose the appropriate action.
The agency model matches a standard principal-agent setting in which the
agent’s action is unobserved costly effort, and this effort affects the mean rate
of production. Alternatively, we can interpret the agency problem as one in
which the agent can divert output for his private benefit. The presence of the
agency problem will limit the firm’s investment. Our model endogenizes the
costs of external financing.

The optimal contract between investors and the agent minimizes the cost
of the agency problem and has implications for the dynamics of investment
and firm value. For instance, incentive contracting creates a wedge between
average and marginal q that varies with firm performance. Consequently, the
measurement error inherent in using average q as a proxy for marginal q will
vary both over time for a given firm and across firms. The continuous-time for-
mulation allows for a relatively simple characterization of this relation between
marginal and average q. Among the predictions of the analysis, investment is
positively correlated with profits, past investment, managerial compensation,
and financial slack even with time-invariant investment opportunities. Despite
risk-neutral managers and investors, investment decreases with firm-specific
risk. More broadly, our theory suggests that financial slack, not cash flow, is
the important predictor of investment after controlling for average q, thus
challenging the empirical validity of using cash flow as a proxy for financial
constraints as is common in the investment/cash flow sensitivity literature.2

Optimal incentive contracting involves deferred compensation; possible termi-
nation; and compensation that depends on observable persistent profitability
shocks that are beyond managerial control, effectively paying managers for
luck.

The optimal incentive contract specifies, as a function of the history of the
firm’s profits, (i) the agent’s compensation, (ii) the level of investment in the
firm, and (iii) whether the contract is terminated. Termination could involve
the replacement of the agent or the liquidation of the firm. Going forward,
we use the terms termination and liquidation interchangeably. Through the
contract, the firm’s profit history determines the agent’s current discounted

1 Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs,
though they do not explicitly link their results to marginal or average q. Abel and Eberly (1994)
extend Hayashi (1982) to a stochastic environment and a more general specification of adjustment
costs.

2 Fazzari, Hubbard, and Petersen (1988) (FHP) are the first to use the sensitivity of investment
to cash flow (controlling for q) as a measure of a firm’s financial constraints. Their logic is that the
more financially constrained is a firm, the more investment will be dictated by current cash flow. A
large literature follows the FHP approach. Kaplan and Zingales (1997) (KZ) provide an important
critique on FHP and successors from both a theoretical (using a static model) and an empirical
perspective. Much research on financial constraints has followed since the FHP–KZ debate.
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expected payoff, which we refer to as the agent’s “continuation payoff,” W ,
and current investment, which in turn determines the current capital stock,
K. These two state variables, W and K, completely summarize the contract-
relevant history of the firm. Moreover, because of the size-homogeneity of our
model, the analysis simplifies further and the agent’s continuation payoff per
unit of capital, w = W/K, becomes sufficient for the contract-relevant history
of the firm.3

Because of the agency problem, investment is below the first-best level. The
degree of underinvestment depends on the firm’s realized past profitability, or
equivalently, through the contract, the agent’s continuation payoff (per unit of
capital), w. In particular, investment is increasing in w. To understand this
linkage, note that, in a dynamic agency setting, the agent is rewarded for
high profits, and penalized for low profits, in order to provide incentives. As a
result, the agent’s continuation payoff, w, is increasing with past profitability.
In turn, a higher continuation payoff for the agent relaxes the agent’s incentive
compatibility constraints since the agent now has a greater stake in the firm
(in the extreme, if the agent owned the entire firm there would be no agency
problem). Finally, relaxing the incentive compatibility constraints raises the
value of investing in more capital.

In the analysis here, the gain from relaxing the incentive compatibility con-
straints comes by reducing the probability, within any given amount of time,
of termination. If profits are low, the agent’s continuation payoff w falls (for
incentive reasons) and if w hits a lower threshold, the contract is terminated.
We assume termination entails costs associated with hiring a new manager
or liquidating assets, and show that even if these costs appear small they can
have a large impact on the optimal contract and investment.

We also show that in an optimal contract the agent’s payoff depends on
persistent shocks to the firm’s profitability even if these shocks are observ-
able, contractible, and beyond the agent’s control. When an exogenous shock
increases the firm’s profitability, the contract gives the agent a higher continu-
ation payoff. The intuition is that the marginal cost of compensating the agent
is lower when profitability is high because relaxing the agency problem is more
valuable when profitability is high. This result may help to explain the em-
pirical importance of absolute, rather than relative, performance measures for
executive compensation. This result also implies that a profitability increase
has both a direct effect on investment, as higher profitability makes invest-
ment more profitable, and an indirect effect, since with higher profitability it
is optimal to offer the agent a higher continuation payoff that, as discussed
earlier, leads to further investment.

As in DeMarzo and Fishman (2007a,b) and DeMarzo and Sannikov (2006),
we show that the state variable, w, which represents the agent’s continuation

3 We solve for the optimal contract using a recursive dynamic programming approach. Early
contributions that developed recursive formulations of the contracting problem include Green
(1987), Spear and Srivastava (1987), Phelan and Townsend (1991), and Atkeson (1991), among
others. Ljungqvist and Sargent (2004) provide in-depth coverage of these models in discrete-time
settings.
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payoff, can also be interpreted as a measure of the firm’s financial slack. More
precisely, w is proportional to the size of the current cash flow shock that the
firm can sustain without liquidating, and so can be interpreted as a measure of
the firm’s liquid reserves and available credit. The firm accumulates reserves
when profits are high, and depletes its reserves when profits are low. Thus, our
model predicts an increasing relation between the firm’s financial slack and
the level of investment.

The agency perspective leads to important departures from standard q the-
ory. First, we demonstrate that both average q and marginal q are increasing
with the agent’s continuation payoff, w, and therefore with the firm’s financial
slack and past profitability. This effect is driven by the nature of optimal con-
tracts, as opposed to changes in the firm’s investment opportunities. Second,
we show that, despite the homogeneity of the firm’s production technology (in-
cluding agency costs), average q and marginal q are no longer equal. Marginal
q is below average q because an increase in the firm’s capital stock reduces
the firm’s financial slack (the agent’s continuation payoff) per unit of capital,
w, and thus tightens the incentive compatibility constraints and raises agency
costs. The wedge between marginal and average q is largest for firms with in-
termediate profit histories. Very profitable firms have sufficient financial slack
that agency costs are small, whereas firms with very poor profits are more
likely to be liquidated (in which case average and marginal q coincide). These
results imply that, in the presence of agency concerns, standard linear models
of investment on average q are misspecified, and variables such as managerial
compensation, financial slack, past profitability, and past investment will be
useful predictors of current investment.

Related analyses of agency, dynamic contracting, and investment include
Albuquerque and Hopenhayn (2004), Quadrini (2004), Clementi and Hopen-
hayn (2006), DeMarzo and Fishman (2007a), and Biais et al. (2010). Philippon
and Sannikov (2007) analyze the optimal exercise of a growth option in a
dynamic agency environment. Rampini and Viswanathan (2010, 2011) develop
dynamic models of investment and capital structure with collateral constraints
due to limited enforcement and explore leverage choices, the lease versus buy
decision, and risk management.4 We go beyond these analyses by providing a
closer link to the theoretical and empirical investment literature. Specifically,
we explore the dynamic relation between firm value, marginal q, average q,
investment, and financial slack.

With discrete-time models, Lorenzoni and Walentin (2007) and Schmid (2008)
also analyze the implications of agency problems for the q theory of investment.
The key methodological difference is that we use the continuous-time recursive
contracting methodology developed in DeMarzo and Sannikov (2006) to derive
the optimal contract. This allows for a relatively simple closed-form character-
ization of the investment Euler equation, optimal investment dynamics, and

4 In addition, our analysis owes much to the recent dynamic contracting literature, for example,
Gromb (1999), Biais et al. (2007), DeMarzo and Fishman (2007b), Tchistyi (2005), Sannikov (2007),
He (2009), and Piskorski and Tchistyi (2010), as well as the earlier optimal contracting literature,
for example, Diamond (1984) and Bolton and Scharfstein (1990).
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compensation policies. Another modeling difference is that, in Lorenzoni and
Walentin (2007) and Schmid (2008), the agent must be given incentives not to
default and abscond with the assets, and whether he complies is observable.
This implies that, in equilibrium, the agent is never terminated. By contrast,
in our analysis, whether the agent takes appropriate actions is unobservable
and consequently termination does occur in equilibrium.

A growing literature in finance and macroeconomics incorporates exogenous
financing frictions in the form of transaction costs of raising funds. See, for
example, Kaplan and Zingales (1997), Gilchrist and Himmelberg (1998), Gomes
(2001), Hennessy and Whited (2007), and Bolton, Chen, and Wang (2011),
among others. This literature motivates exogenously specified financing costs
with arguments based on agency problems and/or information asymmetries.
In our analysis, the financing frictions stem from agency problems and are
endogenously derived.

We proceed as follows. In Section I, we specify our continuous-time model of
investment in the presence of agency costs. In Section II, we solve for the opti-
mal contract using dynamic programming. Section III analyzes the implications
of this optimal contract for investment and firm value. Section IV provides an
implementation of the optimal contract using standard securities and explores
the link between financial slack and investment. In Section V, we consider the
impact of observable persistent profitability shocks on investment, firm value,
and the agent’s compensation. Section VI concludes. All proofs appear in the
Appendix.

I. The Model

We formulate an optimal dynamic investment problem for a firm facing an
agency problem. First, we present the firm’s production technology. Second,
we introduce the agency problem between investors and the agent. Finally, we
formulate the optimal contracting problem.

A. Firm’s Production Technology

Our model is based on a neoclassical investment setting. The firm employs
capital to produce output, whose price is normalized to one (Section V considers
stochastic profitability shocks). Let K and I denote the level of capital stock
and gross investment rate, respectively. As is standard in capital accumulation
models, the firm’s capital stock K evolves according to

dKt = (It − δKt)dt, t ≥ 0, (1)

where δ ≥ 0 is the rate of depreciation.
Investment entails adjustment costs. Following the neoclassical investment

with adjustment costs literature, we assume that the adjustment cost G(I, K)
satisfies G(0, K) = 0, is smooth and convex in investment I, and is homoge-
neous of degree one in I and the capital stock K. Given the homogeneity of the
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adjustment costs, we can write

I + G(I, K) ≡ c(i)K, (2)

where the convex function c represents the total cost per unit of capital required
for the firm to grow at rate i = I/K (before depreciation).

We assume that the incremental gross output over time interval dt is pro-
portional to the capital stock, and so can be represented as KtdAt, where A is
the cumulative productivity process.5 We model the instantaneous productiv-
ity dAt in the next subsection, where we introduce the agency problem. Given
the firm’s linear production technology, after accounting for investment and
adjustment costs we can write the dynamics of the firm’s cumulative (gross of
agent compensation) cash flow process Yt for t ≥ 0 as follows:

dYt = Kt(dAt − c(it) dt), (3)

where KtdAt is the incremental gross output and Ktc(it)dt is the total cost of
investment.

The contract with the agent can be terminated at any time, in which case
investors recover a value lKt, where l ≥ 0 is a constant. We assume that ter-
mination is inefficient and generates deadweight losses. We can interpret ter-
mination as the liquidation of the firm; alternatively, in Section II, we show
how l can be endogenously determined to correspond to the value that share-
holders can obtain by replacing the incumbent management (see DeMarzo and
Fishman (2007b) for additional interpretations). Since the firm could always
liquidate by disinvesting, it is natural to specify l ≥ c′(−∞).

B. The Agency Problem

We now introduce an agency conflict induced by the separation of owner-
ship and control. The firm’s investors hire an agent to operate the firm. In
contrast to the neoclassical model in which the productivity process A is exoge-
nously specified, the productivity process in our model is affected by the agent’s
unobservable action. Specifically, the agent’s action at ∈ [0,1] determines the
expected rate of output per unit of capital, so that

dAt = atμdt + σdZt, t ≥ 0, (4)

where Z = {Zt,Ft; 0 ≤ t < ∞} is a standard Brownian motion on a complete
probability space, and σ > 0 is the constant volatility of the cumulative

5 We can interpret this linear production function as a reduced form for a setting with con-
stant returns to scale involving other factors of production. For instance, suppose the firm has
a Cobb–Douglas production function with capital and labor and both productivity zt and labor
wage ωt shocks are i.i.d. random variables. For a given amount of capital, and with fully and
instantaneously adjustable labor N, it is optimal for the firm to solve the following static problem:
maxN E(zt Kα

t N1−α − ωt N). This yields optimal labor demand N∗ proportional to capital. Using the
optimal N∗, we obtain the realized revenue net of labor cost Kt f (zt, ωt). The productivity shock dAt
corresponds to f (zt, ωt).
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productivity process A. The agent controls the drift, but not the volatility of
the process A. Note that the firm can incur operating losses. While these losses
can accrue at an unbounded rate given the Brownian motion, we will show
that the optimal contract with agency bounds cumulative losses of the firm by
optimally invoking termination.

When the agent takes the action at, he enjoys private benefits at the rate
λ(1 − at)μdt per unit of the capital stock, where 0 ≤ λ ≤ 1. The action can be
interpreted as an effort choice; due to the linearity of private benefits, our
framework is also equivalent to the binary effort setup in which the agent can
shirk, a = 0, or work, a = 1. Alternatively, we can interpret 1 − at as the fraction
of cash flow that the agent diverts for his private benefit, with λ equal to the
agent’s net consumption per dollar diverted. In either case, λ represents the
severity of the agency problem and, as we show later, captures the minimum
level of incentives required to motivate the agent.

Investors have unlimited wealth and are risk-neutral with discount rate
r > 0. The agent is also risk-neutral, but with a higher discount rate γ > r.
That is, we make the common assumption that the agent is impatient relative
to investors. This impatience could be preference based or could arise indirectly
because the agent has other attractive investment opportunities. The impa-
tience assumption avoids the scenario in which investors indefinitely postpone
payments to the agent. The agent has no initial wealth and has limited liability,
so investors cannot pay negative wages to the agent. If the contract is termi-
nated, the agent’s reservation value, which is associated with his next-best
employment opportunity, is normalized to zero.

C. Formulating the Optimal Contracting Problem

We assume that the firm’s capital stock, Kt, and its (cumulative) cash flow,
Yt, are observable and contractible. Therefore, investment It and productivity
At are also contractible.6 To maximize firm value, investors offer a contract that
specifies the firm’s investment policy It, the agent’s cumulative compensation
Ut, and a termination time τ , all of which depend on the history of the agent’s
performance, which is given by the productivity process At.7 The agent’s limited
liability requires the compensation process Ut to be nondecreasing. We let
	 = (I,U , τ ) represent the contract and leave further regularity conditions on
	 to Appendix A.

6 Based on the growth of the firm’s capital stock, the firm’s investment process can be deduced
from (1), and hence the firm’s productivity process At can be deduced from (3) using It and Yt.

7 As we will discuss further in Section V, the firm’s access to capital is implicitly determined
given the investment, compensation, and liquidation policies. Note also that, given A and the
investment policy, the variables K and Y are redundant and so we do not need to contract on them
directly. In principle, the contract could also allow for randomized payoffs as well as investment
and termination decisions. But, as we will verify later, the optimal contract with commitment
does not entail randomization. The optimal contract without commitment (that is, the optimal
renegotiation-proof contract) may rely on randomization; see Appendix C.
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Given the contract 	, the agent chooses an action process {at ∈ [0,1] :
0 ≤ t < τ } to solve

W(	) = max
{at∈[0,1]:0≤t<τ }

E
a
[∫ τ

0
e−γ t(dUt + λ(1 − at)μKtdt)

]
, (5)

where E
a(·) is the expectation operator under the probability measure that

is induced by the action process. The agent’s objective function includes the
present discounted value of compensation (the first term in (5)) and the poten-
tial private benefits from taking action at < 1 (the second term in (5)).

We focus on the case in which it is optimal for investors to implement the
efficient action at = 1 all the time and provide a sufficient condition for the opti-
mality of implementing this action in Appendix A. Henceforth, the expectation
operator E( · ) is under the measure induced by {at = 1 : 0 ≤ t < τ }, unless oth-
erwise stated. We call a contract 	 incentive compatible if it implements the
efficient action.

At the time the contract is initiated, the firm has K0 in capital. Given an
initial payoff of W0 for the agent, the investors’ optimization problem is

P(K0,W0) = max
	

E

[∫ τ

0
e−rtdYt + e−rτ lKτ −

∫ τ

0
e−rtdUt

]
s.t. 	 is incentive compatible and W(	) = W0. (6)

The investors’ objective is to maximize the expected present value of the firm’s
gross cash flow plus termination value less the agent’s compensation. The
agent’s expected payoff, W0, will be determined by the relative bargaining
power of the agent and investors when the contract is initiated. For example,
if investors have all the bargaining power, then W0 = arg maxW≥0 P(K0,W),
whereas if the agent has all the bargaining power, then W0 = max{W :
P(K0,W) ≥ 0}. More generally, by varying W0 we can determine the entire
feasible contract curve.

II. Model Solution

We begin by determining optimal investment in the standard neoclassical
setting without an agency problem. We then characterize the optimal contract
with agency concerns.

A. A Neoclassical Benchmark

With no agency conflicts—corresponding to λ = 0, in which case there is no
benefit from shirking, and/or σ = 0, in which case there is no noise to hide
the agent’s action—our model specializes to the neoclassical setting of Hayashi
(1982), a widely used benchmark in the investment literature. Given the sta-
tionarity of the economic environment and the homogeneity of the production
technology, there is an optimal investment-capital ratio that maximizes the
present value of the firm’s cash flows. Because of the homogeneity assumption,
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we can equivalently maximize the present value of the cash flows per unit of
capital. In other words, we have the Hayashi (1982) result that the marginal
value of capital (marginal q) equals the average value of capital (average or
Tobin’s q), both of which are given by

qFB = max
i

μ− c(i)
r + δ − i

. (7)

That is, a unit of capital is worth the perpetuity value of its expected free cash
flow (expected output less investment and adjustment costs) given the firm’s
net growth rate i − δ. To ensure that the first-best value of the firm is well
defined, we impose the parameter restriction

μ < c(r + δ). (8)

Inequality (8) implies that the firm cannot profitably grow faster than the
discount rate. We also assume throughout the paper that the firm is sufficiently
productive that termination/liquidation is not efficient, that is, qFB > l.

From the first-order condition for (7), first-best investment is characterized
by

c′(iFB) = qFB = μ− c(iFB)
r + δ − iFB . (9)

Because adjustment costs are convex, (9) implies that first-best investment
is increasing with q. Adjustment costs create a wedge between the value of
installed capital and newly purchased capital, in that qFB 
= 1 in general. In-
tuitively, when the firm is sufficiently productive that investment has positive
net present value (NPV), that is μ > (r + δ) c′(0), investment is positive and
qFB > 1. In the special case of quadratic adjustment costs,

c(i) = i + 1
2θi2, (10)

we have the explicit solution

qFB = 1 + θiFB and iFB = r + δ −
√

(r + δ)2 − 2
μ− (r + δ)

θ
.

Note that qFB represents the value of the firm’s cash flows (per unit of capital)
prior to compensating the agent. If investors promise the agent a payoff W in
present value, then absent an agency problem the agent’s relative impatience
(γ > r) implies that it is optimal to pay the agent W in cash immediately. Thus,
the investors’ payoff is given by

PFB(K,W) = qFBK − W .

Equivalently, we can express the agent’s and investors’ payoff on a per unit of
capital basis, as w = W/K and

pFB(w) = PFB(K,W)/K = qFB − w.
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In the neoclassical setting, the time-invariance of the firm’s technology im-
plies that the first-best investment is constant over time, and independent of
the firm’s history or the volatility of its cash flows. As we will explore next,
agency concerns significantly alter these conclusions.

B. The Optimal Contract with Agency

We now solve for the optimal contract when there is an agency problem, that
is, when λσ > 0. Recall that the contract specifies the firm’s investment policy I,
payments to the agent U , and a termination date τ all as functions of the firm’s
profit history. The contract must be incentive compatible (that is, induce the
agent to choose at = 1 for all t) and maximize investors’ value function P(K,W).
Here, we outline the intuition for the derivation of the optimal contract, leaving
formal details to Appendix A.

Given an incentive-compatible contract 	 and the history up to time t, the
discounted expected value of the agent’s future compensation is given by

Wt(	) ≡ Et

[∫ τ

t
e−γ (s−t)dUs

]
. (11)

We call Wt the agent’s continuation payoff as of date t.
The agent’s incremental compensation at date t is composed of a cash pay-

ment dUt and a change in the value of his promised future payments, captured
by dWt. To compensate for the agent’s time preference, this incremental com-
pensation must equal γWtdt on average. Thus,

Et(dWt + dUt) = γWtdt. (12)

While (12) reflects the agent’s average compensation, to maintain incentive
compatibility his compensation must be sufficiently sensitive to the firm’s in-
cremental output KtdAt. Adjusting output by its mean and using the martingale
representation theorem (details are provided in Appendix A), we can express
this sensitivity for any incentive-compatible contract as follows:8

dWt + dUt = γWtdt + βt Kt(dAt − μdt) = γWtdt + βt KtσdZt. (13)

To understand the determinants of the incentive coefficient βt, suppose the
agent deviates and chooses at < 1. The instantaneous cost to the agent is the
expected reduction of his compensation, given by βt(1 − at)μKtdt, and the in-
stantaneous private benefit is λ(1 − at)μKtdt. Thus, to induce the agent to
choose at = 1, incentive compatibility is equivalent to

βt ≥ λ for all t.

Intuitively, incentive compatibility requires that the agent have sufficient ex-
posure to the firm’s realized output, as otherwise it would be profitable for the

8 Intuitively, the linear form of the contract’s sensitivity can be understood in terms of a binomial
tree, where any function admits a state-by-state linear representation.



Dynamic Agency and the q Theory of Investment 2305

agent to reduce output and consume private benefits. We will further show that
this incentive compatibility constraint binds. That is, the agent will face the
minimum exposure that provides the incentive to choose the appropriate action
(at = 1). This result follows because there is a cost to having the agent bear risk.
Unlucky realizations of the productivity shocks dZt can reduce the agent’s con-
tinuation payoff to zero and, given the agent’s limited liability (Wt ≥ 0), require
termination of the contract, which is costly to investors. An optimal contract
will therefore set the agent’s sensitivity to βt = λ to reduce the cost of liquida-
tion while maintaining incentive compatibility. Intuitively, incentive provision
is necessary, but costly due to the reliance on the threat of ex post inefficient
liquidation. Hence, the optimal contract requires the minimal necessary level
of incentive provision.

Whatever the history of the firm up to date t, the only relevant state vari-
ables going forward are the firm’s capital stock Kt and the agent’s continuation
payoff Wt. Therefore, the payoff to investors in an optimal contract after such
a history is given by the value function P(Kt,Wt), which we can solve for
using dynamic programming techniques. As in the earlier analysis of the
first-best setting, we use the scale invariance of the firm’s technology to write
P(K,W) = p(w)K and reduce the problem to one with a single state variable
w = W/K.

We begin with a number of key properties of the value function p(w). Clearly,
the value function cannot exceed the first-best, so p(w) ≤ pFB(w). Also, as noted
earlier, to deliver a payoff to the agent equal to his outside opportunity (nor-
malized to zero), we must terminate the contract immediately as otherwise the
agent could consume private benefits. Therefore,

p(0) = l. (14)

Next, because investors can always compensate the agent with cash, it will
cost investors at most $1 to increase w by $1. Therefore, p′(w) ≥ −1, which
implies that the total value of the firm, p(w) + w, is weakly increasing with w.
In fact, when w is low, firm value will strictly increase with w. Intuitively, a
higher w—which amounts to a higher level of deferred compensation for the
agent—reduces the probability of termination (within any given amount of
time). This benefit declines as w increases and the probability of termination
becomes small, suggesting that p(w) is concave, a property we will assume for
now and verify shortly.

Because there is a benefit of deferring the agent’s compensation, the optimal
contract will set cash compensation dut = dUt/Kt to zero when wt is small, so
that (from (13)) wt will rise as quickly as possible. However, because the agent
has a higher discount rate than investors, γ > r, there is a cost of deferring
the agent’s compensation. This trade-off implies that there is a compensation
level w such that it is optimal to pay the agent with cash if wt > w and to defer
compensation otherwise. Thus, we can set

dut = max{wt − w,0}, (15)
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which implies that for wt > w, p(wt) = p(w) − (wt − w), and the compensation
level w is the smallest agent continuation payoff with

p′(w) = −1. (16)

When wt ∈ [0, w], the agent’s compensation is deferred (dut = 0). The evolu-
tion of w = W/K follows directly from the evolutions of W (see (13)) and K (see
(1)), noting that dUt = 0 and βt = λ,

dwt = (γ − (it − δ))wtdt + λ(dAt − μdt) = (γ − (it − δ))wtdt + λσdZt. (17)

Equation (17) implies the following dynamics for the optimal contract. Based
on the agent’s and investors’ relative bargaining power, the contract is initiated
with some promised payoff per unit of capital, w0, for the agent. This promise
grows on average at rate γ less the net growth rate (it − δ) of the firm. When the
firm experiences a positive productivity shock, the promised payoff increases
until it reaches the level w, at which point the agent receives cash compen-
sation. When the firm has a negative productivity shock, the promised payoff
declines, and the contract is terminated when wt falls to zero.

Having determined the dynamics of the agent’s payoff, we can now use the
Hamilton–Jacobi–Bellman (HJB) equation to characterize p(w) for w ∈ [0, w]

rp(w) = supi(μ− c(i)) + (i − δ)p(w) + (γ − (i − δ))wp′(w) + 1
2λ

2σ 2 p′′(w). (18)

Intuitively, the right side is given by the sum of instantaneous expected cash
flows (the first term in brackets), plus the expected change in the value of the
firm due to capital accumulation (the second term), and the expected change
in the value of the firm due to the drift and volatility (using Ito’s lemma) of the
agent’s continuation payoff w (the remaining terms). Investment i is chosen to
maximize investors’ total expected cash flow plus “capital gains,” which, given
risk neutrality, must equal the expected return rp(w).

Using the HJB equation (18), we have that the optimal investment-capital
ratio i(w) satisfies the following Euler equation:

c′(i(w)) = p(w) − wp′(w). (19)

The above equation states that the marginal cost of investing equals the
marginal value of investing from the investors’ perspective. The marginal value
of investing equals the current per unit value of the firm to investors, p(w), plus
the marginal effect of decreasing the agent’s per unit payoffw as the firm grows.

Equations (18) and (19) jointly determine a second-order ordinary differential
equation (ODE) for p(w) in the region wt ∈ [0, w]. We also have the condition
(14) for the liquidation boundary as well as the “smooth pasting” condition (16)
for the endogenous payout boundary w. To complete our characterization, we
need a third condition to determine the optimal level of w. The condition for
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optimality is given by the “super contact” condition9

p′′(w) = 0. (20)

We can provide some economic intuition for the super contact condition (20)
by noting that, using (18) and (16), (20) is equivalent to

p(w) + w = max
i

μ− c(i) − (γ − r)w
r + δ − i

. (21)

Equation (21) can be interpreted as a “steady-state” valuation constraint. The
left side is total firm value at w whereas the right side is the perpetuity value
of the firm’s cash flows given the cost of maintaining the agent’s continuation
payoff at w (since γ > r, there is a cost to deferring the agent’s compensa-
tion). Because w is a reflecting boundary, the value attained at this point
should match this steady-state level as though we remained at w forever.
If the value were below this level, it would be optimal to defer the agent’s
cash compensation and allow his continuation payoff to increase, that is, it
would be optimal to increase w until (21) is satisfied; at that point the benefit
of deferring compensation further is balanced by the cost due to the agent’s
impatience.

We now summarize our main results on the optimal contract in the following
proposition.10

PROPOSITION 1: The investors’ value function P(K,W) is proportional to capital
stock K, in that P(K,W) = p(w)K, where p(w) is the investors’ scaled value
function. For wt ∈ [0, w], p(w) is strictly concave and uniquely solves the ODE
(18) with boundary conditions (14), (16), and (20). For w > w , p(w) = p(w) −
(w − w). The agent’s scaled continuation payoff w evolves according to (17), for
wt ∈ [0, w]. Cash payments dut = dUt/Kt reflect wt back to w, and the contract
is terminated at the first time τ such that wτ = 0. Optimal investment is given
by It = i(wt)Kt, where i(w) is defined in (19).

The termination value l could be exogenous, for example, the capital’s salvage
value in liquidation. Alternatively, l could be endogenous. For example, suppose
termination involves firing and replacing the agent with a new (identical) agent.
Then the investors’ termination payoff equals the value obtained from hiring a
new agent at an optimal initial continuation payoff w0. That is,

l = max
w0

(1 − κ)p(w0), (22)

where κ ∈ [0,1) reflects a cost of lost productivity if the agent is replaced.

9 The super contact condition essentially requires that the second derivatives match at the
boundary (see Dixit (1993)).

10 We provide necessary technical conditions and present a formal verification argument for the
optimal policy in Appendix A.
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Figure 1. Investors’ scaled value function p(w) as a function of the agent’s scaled con-
tinuation payoff w. We illustrate scenarios in which the liquidation value is high (l1) and low
(l0).

III. Model Implications and Analysis

Having characterized the solution of the optimal contract, we first study
some additional properties of p(w) and then analyze the model’s predictions for
average q, marginal q, and investment.

A. Investors’ Scaled Value Function

Using the optimal contract in Section II, we plot investors’ scaled value
function p(w) in Figure 1 for two different termination values. The gap between
p(w) and the first-best value function reflects the loss due to agency conflicts.
From Figure 1, we see that this loss is higher when the agent’s payoffw is lower
or when the termination value l is lower. Also, when the termination value is
lower, the cash compensation boundary w is higher as it is optimal to defer
compensation longer in order to reduce the probability of costly termination.

The concavity of p(w) reveals investors’ induced aversion to fluctuations in
the agent’s payoff. Intuitively, a mean-preserving spread in w is costly because
it increases the risk of termination. Thus, although investors are risk-neutral,
they behave in a risk-averse manner toward idiosyncratic risk due to the agency
friction. This property fundamentally differentiates our agency model from the
neoclassical Hayashi (1982) result where volatility has no effect on investment
and firm value. The dependence of investment and firm value on idiosyncratic
volatility in our model arises from investors’ inability to distinguish the agent’s
actions from noise.

While p(w) is concave, it need not be monotonic in w, as shown in Figure 1.
The intuition is as follows. Two effects drive the shape of p(w). First, as in the
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first-best neoclassical benchmark of Section II.A, the higher the agent’s claim
w, the lower the investors’ value p(w), holding the total surplus fixed. This is
just a wealth transfer effect. Second, increasing w allows the contract to pro-
vide incentives to the agent with a lower risk of termination. This “incentive
alignment effect” creates wealth, raising the total surplus available for distri-
bution to the agent and investors. As can be seen from the figure, the wealth
transfer effect dominates when w is large, but the incentive alignment effect
can dominate when w is low and termination is sufficiently costly.

If the liquidation value is sufficiently low that the value function p is non-
monotonic, then, while termination is used to provide incentives ex ante, it
is inefficient ex post. Inefficient termination provides room for renegotiation,
since both parties will have incentives to renegotiate to a Pareto-improving
allocation. Thus, the optimal contract depicted in Figure 1 is not renegotiation-
proof with liquidation value l0, whereas the contract is renegotiation-proof
with liquidation value l1. In Appendix C, we show that the main qualitative
implications of our model are unchanged when contracts are constrained to be
renegotiation-proof. Intuitively, renegotiation weakens incentives and has the
same effect as increasing the value of the agent’s outside option (which reduces
investors’ payoff).

Alternatively, if the agent can be fired and costlessly replaced, so that the
liquidation value is endogenously determined as in (22) with κ = 0, then p′(0) =
0 and the optimal contract will be renegotiation-proof. We can also interpret
the case with l1 in Figure 1 in this way.

B. Average and Marginal q

Now we use the properties of p(w) to derive implications for q. Total firm
value, including the claim held by the agent, is P(K,W) + W . Therefore, aver-
age q, defined as the ratio between firm value and capital stock, is denoted by
qa and given by

qa(w) = P(K,W) + W
K

= p(w) + w. (23)

This definition of average q is consistent with the definition of q in the first-best
benchmark (Hayashi (1982)). Marginal q measures the incremental impact of
a unit of capital on firm value. We denote marginal q as qm and calculate it as

qm(w) = ∂(P(K,W) + W)
∂K

= PK(K,W) = p(w) − wp′(w). (24)

While average q is often used in empirical studies due to the simplicity of its
measurement, marginal q determines the firm’s investment via the standard
Euler equations (see (19)).

One of the most important and well-known results in Hayashi (1982) is
that marginal q equals average q when the firm’s production and investment
technologies exhibit homogeneity as shown in our neoclassical benchmark case.
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Graphical Illustration of qa and qm Average qa versus marginal qm 
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Figure 2. Average qa and marginal qm. The left panel shows a geometrical illustration of the
determination of qa and qm. The right panel plots qa and qm with the first-best qFB.

This result motivates the use of average q (which is relatively easy to measure)
as a proxy for marginal q (which is harder to measure) in empirical investment
studies. While our model also features these homogeneity properties, agency
costs cause the marginal value of capital, qm, to differ from the average value
of the capital stock, qa. In particular, comparing (7), (23), and (24) and using
the fact that p′(w) ≥ −1, we have the following inequality:

qFB > qa(w) ≥ qm(w). (25)

The first inequality follows by comparing (21) and the calculation of qFB in (7).
Average q is above marginal q because, for a given level of W , an increase in
capital stock K lowers the agent’s scaled continuation payoff w, which lowers
the agent’s effective claim on the firm and hence induces a more severe agency
problem. The wedge between average and marginal q is nonmonotone in w. See
Figure 2. Average and marginal q are equal when w = 0 and the contract is
terminated. Then qa > qm for w > 0 until the cash payment region is reached,
w = w. At that point, the incentive benefits of w are outweighed by the agent’s
impatience, so that p′(w) = −1 and again qa = qm. The implication for empirical
investment studies is that the measurement error inherent in using average q
as a proxy for marginal q varies over time for a given firm and varies across
firms depending on firms’ performance (which drives w). For our agency model,
the relation between average and marginal q is given by equations (23) and
(24).

Both average q and marginal q are functions of the agent’s scaled contin-
uation payoff w. Because p′(w) ≥ −1, average q is increasing in w (reflecting
the incentive alignment effect noted earlier). In addition, the concavity of p(w)
implies that marginal q is also increasing in w. In Figure 2, we plot qa (the
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vertical intercept of the line originating at p(w) that has slope −1), qm (the
vertical intercept of the line tangent at p(w)), and the first-best average (also
marginal) qFB.

It is well understood that marginal and average q are forward-looking mea-
sures that capture future investment opportunities. In the presence of agency
costs, it is also the case that both marginal and average q are positively related
to the firm’s profit history. Recall that the value of the agent’s claim w evolves
according to (17), and so is increasing with the past profits of the firm, and that
both marginal and average q increase with w for incentive reasons. Unlike
the neoclassical setting in which q is independent of the firm’s history, in our
setting both marginal and average q are history-dependent.

C. Investment and q

We now turn to the model’s predictions for investment. First, note that the
investment-capital ratio i(w) in our agency model depends on w. Specifically,
the first-order condition for optimal investment (19) can be written in terms of
marginal q,

c′(i(w)) = qm(w) = p(w) − wp′(w). (26)

The convexity of the investment cost function c and the monotonicity of qm
imply that investment increases with w,

i′(w) = q′
m(w)

c′′(i(w))
= −wp′′(w)

c′′(i(w))
≥ 0, (27)

where the inequality is strict except at termination (w = 0) and the cash payout
boundary (p′′(w) = 0).

Intuitively, whenw is low, inefficient termination becomes more likely. Hence,
investors optimally invest less. In the limiting case in which termination is
immediate (w = 0), the marginal benefit of investing is just the liquidation
value l per unit of capital. Thus, the lower bound on the firm’s investment is
given by c′(i(0)) = l. Assuming c′(0) > l, the firm will disinvest near termination.

Now consider the other limiting case in which w reaches the cash payout
boundary w. Because qm(w) < qFB from (25), we have i(w) < iFB. Thus, even at
this upper boundary, there is underinvestment—the strict relative impatience
of the agent, that is, γ > r, creates a wedge between our solution and first-best
investment. In the limit, when γ is sufficiently close to r, the difference between
i(w) and iFB disappears. That is, the degree of underinvestment at the payout
boundary depends on the agent’s relative impatience.

To summarize, in addition to costly termination as a form of underinvest-
ment, the investment-capital ratio is lower than the first-best level, that is,
i(w) < iFB always. Thus, our model features underinvestment at all times. Fig-
ure 3 shows investors’ value function and the investment-capital ratio for two
different volatility levels. The positive relation between investment and the
agent’s continuation payoff w implies that investment is positively related to
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Figure 3. The effect of volatility, σ , and the severity of the agency problem, λ, on
investors’ scaled value function p(w), and the investment-to-capital ratio i(w).

past performance. Moreover, given the persistence of w, investment is posi-
tively serially correlated. By contrast, in the first-best scenario, investment is
insensitive to past performance.

Figure 3 also shows that the value of the firm and the rate of investment are
lower with a higher level of idiosyncratic volatility, σ . With higher volatility,
firm profits are less informative regarding the agent’s effort, and incentive
provision becomes more costly. This effect reduces the value of the firm and the
return on investment.11 The same comparative statics would result from an
increase in the rate λ at which the agent accrues private benefits (exacerbating
the agency problem). In fact, from Proposition 1, firm value and the level of
investment depend only on the product of λ and σ—the extent of the agency
problem is determined by both firm volatility and the agent’s required exposure
to it.

Note also that the cash payout boundary w increases with the severity of the
agency problem. As λσ increases, so does the volatility of the agent’s contin-
uation payoff w. To reduce the risk of inefficient termination, it is optimal to
allow for a higher level of deferred compensation.

D. A Numerical Example

We now provide some suggestive analysis on the quantitative importance
of agency. For guidance for our numerical example, we rely on the findings of
Eberly, Rebelo, and Vincent (2009), who provide empirical evidence in support

11 Panousi and Papanikolaou (2012) present evidence that investment is lower for firms with
higher idiosyncratic risk.
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Table I
The Impact of Agency Friction

The parameters are r = 4.6%, σ = 26%, μ = 20%, γ = 5%, δ = 12.5%, and θ = 2. Baseline case (III):
λ = 0.2 and l = 0.97.

I II III IV V VI

Parameters
Agency parameter, λ 0.05 0.1 0.2 0.4 0.6 0.2
Liquidation value, l 0.97 0.97 0.97 0.97 0.97 1.16
Model Outputs
Agent payout boundary, w 0.18 0.25 0.43 0.74 1.00 0.39
Average q (= marginal q) at payout boundary, p(w) + w 1.28 1.27 1.25 1.23 1.21 1.26
Maximum investor continuation payoff, p(w0) 1.19 1.16 1.07 1.00 0.97 1.16
Initial agent continuation payoff, w0 0.07 0.08 0.11 0.09 0 0

Model Predictions (%)
Reduction in investment, iFB − i(w) 3.02 4.05 6.18 8.41 10.0 6.17
Volatility of investment, λσ i′(w) 1.09 1.22 1.49 1.63 1.65 1.45
Reduction in value, 1 − qa(w)/qFB 3.39 4.26 6.37 9.02 11.9 6.36
Agent’s share of value, w/qa(w) 8.96 12.3 21.9 35.7 46.2 17.4

of Hayashi (1982). Following their work, we set the annual interest rate to
r = 4.6%, expected productivity to μ = 20%, and the agent’s discount rate to
γ = 5%. For the full sample of large firms in Compustat from 1981 to 2003,
Eberly, Rebelo, and Vincent (2009) document that the average q is 1.3 and the
investment-capital ratio is 15%. Equating the first-best market-to-book ratio
qFB and the first-best investment-capital ratio iFB to these sample averages,
we set δ = 12.5% and use quadratic adjustment costs with θ = 2 and for our
model (in line with estimates in Eberly, Rebelo, and Vincent (2009)).12 We set
volatility to σ = 26%. Finally, we set the agency parameter to λ = 0.2 and the
liquidation value to be l = 0.97 for the baseline case.

Given these baseline parameters, we have the following outputs from our
model (see Table I). The maximal level of deferred compensation for the agent
equalsw = 0.43. If the present value of the agent’s future compensation exceeds
this level, then it is optimal to pay the agent the difference in cash immedi-
ately. The corresponding maximal value for the firm is qa(w) = 1.25. This value
is below the first-best, qFB = 1.3, owing to the agent’s relative impatience. The
maximal value attainable by investors is even lower, p(w0) = 1.07, due to the
need to compensate the agent to provide incentives. The agent’s expected com-
pensation that maximizes the investor’s value is w0 = 0.11.

We simulate our model monthly, generating a sample path that lasts 20 years
or until liquidation. Each simulation starts with w0 = arg max p(w), with the
interpretation that investors own the firm and hire an agent using a contract
that maximizes investors’ value. We repeat the simulation 5,000 times. In
Table I, we report the average data for the sample paths.

12 We are not attempting a full calibration exercise. Rather, we use the first-best benchmark as
a proxy to calculate our parameter values and obtain suggestive results regarding the potential
impact of agency.
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Figure 4. Investment volatility and termination probability conditional on firm age
from simulation. Baseline parameters are r = 4.6%,μ = 20%, γ = 5%, δ = 12.5%, θ = 2, σ = 26%,
λ = 0.2, and l = 0.97.

As Table I shows, for our baseline parameters, agency costs reduce the av-
erage investment rate 6.18% below the first-best level, iFB = 15%. Also, unlike
the first-best in which the investment rate is constant, with agency costs, in-
vestment volatility is 1.49%. As Figure 4 shows, investment volatility decreases
with firm age. The intuition is that older firms have survived to be old because
of good performance, and good performance relaxes the agency problem (by
raising w) and so investment is closer to first-best and less volatile. Figure 4
also shows the annual probability of termination conditional on firm age. The
termination likelihood is increasing in age for the younger firms but decreas-
ing in age for older firms. The intuition regarding the younger firms is that
the agent begins with some surplus and it will take time for bad performance
to erode this surplus and cause a termination. For the older firms, the figure
shows a survivorship bias. The longer the firm has survived, the higher the like-
lihood that performance has been good over the firm’s life, and consequently
the lower the likelihood of termination. As shown in Table I, the effect of these
investment distortions and the possibility of termination lead to an average
reduction in firm value of 6.37%. Finally, we report the agent’s average share
of total firm value to be 21.9%.

Cases I to V of Table I also illustrate comparative statics as we change the
magnitude of the agency problem, given by λ. As the agency problem becomes
more severe, the agent becomes exposed to greater risk to provide incentives.
This greater risk exposure increases the risk of termination; as a result, the
payout boundary w increases to allow for a larger potential buffer of deferred
compensation. Not surprisingly, the total value of the firm and the maximum
value to investors also decline with the severity of the agency problem. The
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agent’s initial surplus, however, changes nonmonotonically with λ—there is a
value to providing the agent with higher surplus to avoid early termination,
but the total value-added of operating the firm is also declining. Indeed, for
Case V with λ = 0.6, the maximal value of the operating firm to its investors
is equal to its liquidation value, and so the agent is given no initial surplus
(if λ were any higher it would be optimal for investors to shut down the firm
immediately). The final rows in the table demonstrate that with a more severe
agency problem, investment volatility and the average deviation from first-best
increase, as does the agent’s share of firm value.

Case VI considers an increase in the liquidation value relative to Case III,
the base case. Naturally, with a higher liquidation value, firm value rises but
the payout boundary and initial agent surplus fall as less buffer against termi-
nation is needed. Deviations from the first-best are reduced due to the decline
in the cost of incentive provision via termination and the deferral of compen-
sation. The agent’s average share also falls, which is not surprising given the
decline in the initial and maximal continuation values.

Cases V and VI also have an alternative interpretation. If the manager can
be fired and costlessly replaced, then the value of the firm to investors upon
termination, l = p(0), should equal the maximal value attainable with a new
manager, p(w0). Thus, Cases V and VI show the effect of agency when there is
no “direct” cost of terminating the manager. The effect on investment and firm
value is still significant because of the possible deferral of compensation and
the fact that future managers capture rents if the initial manager is fired.13

IV. Implementing the Optimal Contract

In Section III, we characterized the optimal contract in terms of an optimal
mechanism. In this section, we consider implications of the optimal mechanism
for the firm’s financial slack, and explore the link between financial slack and
investment.

Recall that the dynamics of the optimal contract are determined by the evo-
lution of the agent’s continuation payoff wt. Because termination occurs when
wt = 0, we can interpret wt as a measure of the firm’s “distance” to termina-
tion. Indeed, from (17), the largest short-run shock dAt to the firm’s cash flows
that can occur without termination is given by wt/λ. This suggests that we can
interpret mt = wt/λ as the firm’s available financial slack, that is, the largest
short-run loss the firm can sustain before the agent is terminated and a change
of control occurs.

We can formalize this idea in a variety of ways. Financial slack may cor-
respond to the firm’s cash reserves (as in Biais et al. (2007)), a line of credit

13 Because future managers start with an initial surplus of zero, the rent each one captures is
infinitesimal. But, because replacing the manager is costless, there will be a replacement “frenzy”
whenever the termination boundary is hit, with an infinite number of replacements over a very
short period. This case captures a limiting case of a more realistic scenario in which there is some
small cost of replacing the manager.
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(as in DeMarzo and Sannikov (2006) and DeMarzo and Fishman (2007b)), or a
combination of the firm’s cash and available credit. Payments to investors may
correspond to payouts on debt, equity, or other securities. Rather than attempt
to describe all possibilities, we’ll describe one simple way to implement the
optimal contract, and then discuss which of its features are robust.

Specifically, suppose the firm meets its short-term financing needs by main-
taining a cash reserve. (Recall that the firm will potentially generate operating
losses, and so needs access to cash or credit to operate.) Let Mt denote the level
of cash reserves at date t. These reserves earn interest rate r, and once they
are exhausted, the firm cannot operate and the contract is terminated.

The firm is financed with equity. Equity holders require a minimum payout
rate of14

dDt = [Kt(μ− c(it)) − (γ − r)Mt]dt.

The first component of the dividend, Kt(μ− c(it)), corresponds to the firm’s ex-
pected free cash flow. The second component, (γ − r)Mt, adjusts for the relative
impatience of the agent, and is negligible when γ ≈ r. If the agent fails to
meet this minimal payout rate, the contract is terminated. Other than this
constraint, the agent has discretion to choose an effort level at, the firm’s
investment-capital ratio it, as well as additional payout Xt in excess of the
minimum payout rate described earlier. The agent is compensated by receiving
a fraction λ of any “special” dividends Xt.

Under this implementation, the firm’s cash reserves will grow according to

dMt = rMtdt + dYt − dDt − dXt. (28)

The value of the firm’s equity is given by

St = Et

[∫ τ

t
e−r(s−t)(dDt + (1 − λ) dXt) + e−r(τ−t)lKt

]
, (29)

where τ is the first stochastic (hitting) time such that Mt = 0. The expected
payoff to the agent is given by

Wt = Et

[∫ τ

t
e−γ (s−t)λdXt

]
. (30)

The following proposition establishes that the above specification implements
the optimal contract.

PROPOSITION 2: Suppose the firm has initial cash reserves M0 and can operate
as long as Mt ≥ 0 and it maintains the minimum payout rate dDt. Then it is
optimal for the agent to choose effort at = 1 and to choose the investment-capital
ratio it given in Proposition 1. The agent accumulates cash reserves Mt until mt ≡
Mt/Kt = w/λ, and pays out all cash in excess of this amount. Given this policy,

14 If dDt < 0, we interpret this as the maximum rate that the firm can raise new capital, for
example, by issuing equity. We can show, however, that if λ = 1, then dDt > 0.
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the agent’s payoff is Wt = λMt, which coincides with the continuation payoff of
Proposition 1. Finally, the firm’s stock price satisfies St = (p(λmt) + mt)Kt.

In this implementation, regular dividends are relatively “smooth” and ap-
proximately correspond to the firm’s expected rate of free cash flow. The cash
flow fluctuations induced by the firm’s productivity shocks are absorbed by
the firm’s cash reserves until the maximal level of reserves is achieved or
the firm runs out of cash. Also, because the above financial policy imple-
ments the optimal contract, there is no ex ante change to the policy (such
as issuance of alternative securities) that will make shareholders better
off.15

The above implementation is not unique. For example, the minimum divi-
dend payouts could be equivalently implemented as required coupon payments
on long-term debt or preferred stock. (Such an implementation may be more
natural if termination is interpreted as liquidating the firm, as opposed to
firing the manager.) Also, rather than solely use cash reserves, the firm may
maintain its financial slack Mt through a combination of cash and available
credit, and the contract will terminate once these are exhausted.16 Again, fi-
nancial slack Mt will be proportional to the agent’s continuation payoff Wt in
the optimal contract. In fact, because Wt is a measure of the firm’s “distance to
termination” in the optimal contract, its relation to the firm’s financial slack is
a robust feature of any implementation.

In our implementation, financial slack per unit of capital is given by m = w/λ.
Intuitively, firms with less severe agency problems, that is, lower λ, have more
financial slack to avoid liquidation. We can also reinterpret some of our earlier
results in terms of this measure of financial slack:

• Financial slack is positively related to past performance.
• Average q (corresponding to enterprise value plus agent rents) and

marginal q increase with financial slack.17

• Investment increases with financial slack.
• Expected agent cash compensation (over any time interval) increases with

financial slack.

15 If the optimal contract is not renegotiation-proof, then, not surprisingly, there may be ex post
improvements available to shareholders. See Appendix C for further discussion.

16 The implementation developed here using cash reserves is similar to that in Biais et al. (2007).
However, we could also follow DeMarzo and Fishman (2007b) and DeMarzo and Sannikov (2006)
by providing the firm financial slack with a credit line, which is also common in practice. With
a credit line, the implementation involves a lower minimum dividend payout rate; it would be
reduced by the interest due on the credit line and the risk-free interest rate on the firm’s unused
credit. This reduction reflects that (i) the firm would now be paying interest on the drawn balance,
and (ii) the firm would not be earning interest on the cash balance.

17 Commonly used empirical measures of q do not include all future managerial compensation.
And while under our definition q increases with financial slack, as Figure 2 shows, the value
to investors p(w) need not be monotone and is eventually decreasing. Thus, common empirical
measures of q, for example, p(w), might show a (false) negative correlation between q and financial
slack.
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• The maximal level of financial slack is higher for firms with more volatile
cash flows and firms with lower liquidation values.18

The investment literature often focuses on the positive relation between
firms’ cash flow and investment; see, for example, Fazzari, Hubbard, and
Peterson (1988), Hubbard (1998), and Stein (2003). Although our results are
concistent with this effect, our analysis suggests that financial slack (a stock,
rather than flow, measure) has a more direct effect on investment. It is also
worth noting that our dynamic agency model does not yield a sharp prediction
on the sensitivity of di/dm with respect to financial slack. That is, as shown
by Kaplan and Zingales (1997) (in a model with exogenous financing costs), it
is difficult to sign d2i/dm2 without imposing strong restrictions on the cost of
investment. Their result can be understood in the context of our model from
(27), where it is clear that i′(w), and therefore di/dm, depends on the convexity
of the investment cost function c′′. Thus, d2i/dm2 will depend on the third-order
derivatives of the cost function.

V. Persistent Profitability Shocks

The only shocks in our model thus far are the firm’s idiosyncratic temporary
productivity shocks. Although these shocks have no effect in the neoclassical
setting, they obscure the agent’s actions to create an agency problem. The opti-
mal incentive contract then implies that these temporary idiosyncratic shocks
have a persistent impact on the firm’s investment, growth, and value.

In this section, we extend the model to allow for persistent observable shocks
to the firm’s profitability. These shocks differ in two important ways from the
firm’s temporary productivity shocks. First, these profitability shocks are ob-
servable and can be contracted on. Second, because these profitability shocks
are persistent, they will affect the firm’s optimal rate of investment even in the
neoclassical setting.

Our goal is to explore the interaction of public persistent shocks with the
agency problem, as well as the consequences for investment, financial slack,
and managerial compensation. As a benchmark, if the profitability shocks were
purely transitory, they would have no effect on the firm’s investment or the
agent’s compensation, with or without an agency problem. Investors would
simply absorb the shocks, insulating the firm and the agent. As we will show,
however, if the profitability shocks are persistent they will affect both the
optimal level of investment and the agent’s compensation, with the latter effect
having an additional feedback on the firm’s investment.

We extend our model in Section V.A. Next, we analyze the interaction ef-
fects in Section V.B. Finally, in Section V.C we examine the relation between
investment and financial slack controlling for average q.

18 Note, however, that, while the optimal contract (in terms of payoffs and net cash flows) only
depends on λσ , in this implementation the maximal level of financial slack is given by m = w/λ.
So, although w increases with λ, the maximal level of financial slack m tends to decrease with the
level of private benefits (λ).
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A. The Model and Solution Method

We extend the basic model by introducing a stochastic profitability variable,
πt. To keep the analysis simple, we model πt as a two-state Markov regime-
switching process.19 Specifically, πt ∈ {πL, πH} with 0 < πL < πH . Let ξn be the
transition intensity out of state n = Lor H to the other state. Thus, for example,
given a current state L at date t, the state changes to H with probability ξ Ldt
over the time interval (t, t + dt). The state πt is observable to investors and the
agent and is contractible. The firm’s operating profit is given by the following
modification of (3):

dYt = Kt(πtdAt − c(it)dt) . (31)

One interpretation of π is the output price, but more generally, it can correspond
to any observable factor affecting the firm’s profitability.

Let P(K,W, π ) denote investors’ value function when capital stock is K, the
agent’s continuation payoff is W , and the state is π . Again, using the scale
invariance of the firm’s technology, we conjecture that for n = L or H and
w = W/K, we can write the value function as

P(K,W, πn) = Kpn(w), (32)

where pn(w) represents investors’ scaled value per unit of capital in state n.
To determine the dynamics of the agent’s scaled continuation payoff w, we

must first consider how the agent’s payoff is affected if the state changes.
Suppose the state changes from πL to πH . How should the agent’s scaled con-
tinuation payoff w respond to this exogenous shock? In designing the optimal
contract, investors optimally adjust the agent’s continuation payoff to mini-
mize agency costs. When the state πt switches from πL to πH , the firm becomes
more profitable. In Figure 5, this is captured by the expansion of investors’
value function, that is, pH(w) ≥ pL(w) for any w. Because firm value is higher,
the benefit of avoiding termination/liquidation is also higher, and we will show
that this decreases the marginal cost of increasing the agent’s payoff, that is,
p′

H(w) ≥ p′
L(w) for any w. This observation suggests that it is optimal to in-

crease the agent’s continuation payoff w, and thus the firm’s financial slack,
when profitability improves in order to reduce agency costs.

To formalize this effect, let ψnm(w) denote the endogenous adjustment of
w conditional on a jump from state πn to the alternative state πm, so that
the agent’s scaled continuation payoff changes from w just prior to the jump
to w + ψnm(w) immediately after. The optimal adjustment should equate the
marginal cost of compensating the agent before and after the jump. Given that
investors have to deliver an additional dollar of compensation to the agent,
what is their marginal cost of doing so in each state? The marginal cost is

19 Piskorski and Tchistyi (2010) consider a model of mortgage design in which they use a Markov
switching process to describe interest rates. They were the first to incorporate such a process in a
continuous-time contracting model, and our analysis follows their approach.
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Figure 5. Determination of the agent’s continuation payoff (compensation) adjust-
ment ψHL(w) or ψLH (w) given exogenous profitability changes. As shown, the optimal com-
pensation policy implies that in the interior region, p′

L(wL) = p′
H (wL + ψLH (wL)) = p′

H (wH ) =
p′

L(wH + ψHL(wH )).

captured by the marginal impact of w on investors’ value function, that is,
p′

n(w). Therefore, the compensation adjustment ψnm is given by

p′
n(w) = p′

m(w + ψnm(w)), (33)

which is feasible as long as p′
n(w) ≤ p′

m(0). If p′
n(w) > p′

m(0), the agent’s payoff
jumps to zero (ψnm(w) = −w) and the contract terminates in order to minimize
the difference in the marginal cost of compensation. See Figure 5; there, if the
state is high and w < wc, where wc is determined by

p′
H(wc) = p′

L(0),

a jump to the low state triggers termination.
The above discussion leads to the following dynamics for the agent’s contin-

uation value w. As before, cash compensation is deferred up to a threshold wn,

but now the threshold depends on the state. Letting Nt denote the cumulative
number of regime changes up to time t, the dynamics for the agent’s scaled
continuation payoff with state πn and wt ∈ [0, wn] are given by

dwt = (γ − (it − δ))wtdt + λ(dAt − μdt) + ψnm(wt)(dNt − ξ ndt). (34)

Also as before, the diffusion martingale term λ(dAt − μdt) describes the agent’s
binding incentive constraint, implied by the concavity of investors’ scaled value
functions in both regimes (see Appendix D).20 The jump martingale term
ψnm(wt)(dNt − ξ ndt) has a zero drift, and this guarantees that the agent’s con-
tinuation payoff W grows at γ on average, taking into account the net capital

20 The incentive provision λKt(dAt − μdt) does not scale with the profitability variable πt. This
is consistent with the interpretation of the agent’s action as effort. In contrast, the incentive pro-
vision would scale with πt under the interpretation that the agent’s action involves cash diversion.
Otherwise, the qualitative conclusions of the model would remain unchanged.
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accumulation rate, it − δ, along the equilibrium path. In Appendix D, we pro-
vide a formal characterization of the optimal contract, and derive the following
key properties:

PROPOSITION 3: With state πn, the agent’s continuation payoff evolves according
to (34) untilwt = 0 and the contract is terminated or untilwt = wn and the agent
receives cash. The investors’ value functions pL, pH are concave, with pL < pH
for w > 0 and p′

L < p′
H for w ≤ wH . Thus, the compensation adjustment ψLH is

positive and ψHL is negative. Moreover, if the state is πH and wt is low enough
such that p′

H(wt) ≥ p′
L(0), then ψHL(wt) = −wt and the contract is immediately

terminated if the state jumps to πL.

B. Model Implications

Here, we discuss a number of implications of our model for the impact of
profitability shocks on the agent’s compensation, the firm’s financial slack, and
the optimal level of investment.

B.1. Agent Compensation

An important implication of our results is that the agent’s compensation
will be affected by persistent shocks to the firm’s profitability, even when
these shocks are publicly observable and unrelated to the agency problem.
Specifically, the agent is rewarded when the state improves, ψLH > 0, and is
penalized—and possibly immediately terminated—when the state worsens,
ψHL < 0. This result is in contrast with conventional wisdom that optimal con-
tracts should insulate managers from exogenous shocks and compensate them
based solely on relative performance measures. Rather, managerial compensa-
tion will optimally be sensitive to the absolute performance of the firm.21

The intuition for this result is that an increase in the firm’s profitability
makes it efficient to reduce the likelihood of termination by increasing the
level of the agent’s compensation. Thus, the optimal contract shifts the agent’s
compensation from low states to high states. More generally, in a dynamic
agency context, the optimal contract smoothes the marginal cost of compen-
sation, increasing the agent’s rents (and thus aligning incentives) in states in
which the incentive problem is more costly.22

21 Bertrand and Mullainathan (2001) present evidence that CEO compensation depends on
exogenous shocks and Jenter and Kanaan (2010) present evidence that the firing of CEOs depends
on exogenous shocks.

22 Although dynamic models more naturally allow for changes in profitability and changes in
the agent’s compensation, a similar result can be derived in a static model as a comparative static
result. For instance, consider a static model in which higher agent compensation relaxes the agency
problem. And suppose the agent and investors sign a contract before the realization of a profitability
shock. Then the optimal contract will raise the agent’s compensation in high-profitability states
and lower the agent’s compensation in low-profitability states. Of course, a static model cannot
generate changes in compensation that result from changes in profitability as only one profitability
level and one compensation level will be observed.
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We assumed here that the liquidation/termination value of the firm is inde-
pendent of the current state, thus making termination relatively more costly
in the high state. If termination corresponds to firing and replacing the agent,
then, although lH > lL (firm value upon replacement is higher when the state
is high), the qualitative results discussed earlier remain unchanged. Indeed,
as long as it is costly to replace the agent (κ > 0 in (22)), then wc > 0 and the
agent may be fired and replaced if the state worsens.

However, if lH and lL are specified in some alternative manner, it is possi-
ble that termination would be sufficiently less costly when the state was high
so that it would be optimal to reduce the agent’s compensation (and thereby
increase the risk of termination) when the state improved. But while these
specific results could change depending on such assumptions, the more impor-
tant qualitative result, namely, that the agent’s compensation is affected by
persistent observable shocks, would remain.

B.2. Hedging and Financial Slack

We can also interpret these results in the context of the firm’s financial slack.
Because ψLH > 0, it is optimal to increase the firm’s available slack when the
state improves and decrease slack when the state worsens. This sensitivity
could be implemented, for example, by having the firm hold a financial deriva-
tive that pays off when the state improves. A similar adjustment to financial
slack might be implemented with convertible debt—when the state improves
and firm value increases, bondholders convert their securities and financial
slack increases. Whatever the specific implementation, it is optimal for the
firm to increase the sensitivity of its cash position to the state. Notably, it is not
optimal for the firm to hedge a change in the state. Rather, the firm’s hedging
policy should smooth the changes in the marginal value of financial slack.23

B.3. Profitability, Financial Slack, and Investment

Investment depends on the firm’s profitability. See Figure 6; in the left panel,
the solid line depicts the change in the investment-capital ratio when prof-
itability improves, iH(w + ψLH(w)) − iL(w). We can decompose this change into
two components. There is a direct effect that investment is more profitable
in the high state, and so iH(w) − iL(w) > 0. The dashed line depicts this di-
rect effect. There is also an indirect effect, iH(w + ψLH(w)) − iH(w) > 0, aris-
ing from the optimal discrete adjustment of financial slack when profitability
changes. Because the agent’s continuation payoff w, and thus the firm’s finan-
cial slack, will optimally increase with an increase in profitability, (ψLH(w) > 0),
the agency problem is reduced and this also makes investment more prof-
itable. So the direct effect understates the impact of a profitability shock on the

23 This motive for hedging is related to that of Froot, Scharfstein, and Stein (1993), who suggest
that firms should hedge to fund their investment needs when external capital is costly. Here, firms
smooth the agency costs that underlie their cost of capital.
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Change in Investment-to-Capital Ratio 
When State Changes from L to H 

Change in Investment-to-Capital Ratio 
When State Changes from H to L 

Agent’s Scaled Continuation Payoff  w Agent’s Scaled Continuation Payoff  w 

First-best iH – iL  

iH(w) – iL(w) 

iH(w+ LH(w)) – iL(w) 

0 

First-best iH – iL  

iL(w) – iH(w) 

iL(w+ HL(w)) – iH(w) 

0 

Figure 6. Profitability shocks and investment.

investment-capital ratio. The difference between the solid and dashed lines
measures this indirect effect. As illustrated in Figure 6, the indirect effect
vanishes when financial slack is high.

These results have implications for investment regressions (motivated either
implicitly or explicitly by investment functions). With stochastic profitability
shocks, it is important to jointly analyze the firm’s investment and financial
slack decisions. Treating financial slack (e.g., cash plus available credit) as
predetermined in an investment regression misses the indirect effect. This
would lead one to underpredict the investment response to a profitability shock
by ignoring the optimal contemporaneous adjustment of financial slack.

Also note that the investment response to a profitability shock, depicted
by the solid line in Figure 6, is smaller than the investment response in the
first-best case, depicted by the horizontal line. Although agency costs induce
underinvestment in both regimes, they also dampen the impact of profitability
shocks on investment.

C. Investment, Financial Slack, and Average q

In Section IV, we noted the positive relation between investment and finan-
cial slack that results from the dynamics of the agency problem. More interest-
ing empirically, however, is the relation between investment and financial slack
that survives after controlling for average (or Tobin’s) q. We could investigate
this effect in our basic model by considering heterogeneity across firms in other
model parameters, such as the firm’s average profitability. With the stochastic
profitability model developed here, however, we can make an even stronger
point by considering the relation between investment, financial slack, and
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Agent’s Scaled Continuation Payoff  w 

Investors’ Scaled Value Function p: 

Figure 7. Comparison of marginal q, holding average q fixed.

average q for a single firm. Specifically, for a given firm, and a given aver-
age q, we will show that investment is increasing with financial slack.

Figure 7 depicts the investor value functions pL and pH for each state. Con-
sider two situations that lead to the same average q: the high state with low
financial slack w1, and the low state with high financial slack w2. These points
can be seen to have the same average q = p(w) + w, as they lie along a line
with slope −1. Thus, the figure shows that financial slack and profitability are
substitutes in the determination of average q.

The figure also shows that, despite average q being equal, marginal q differs
for these two points. Marginal q = p(w) − wp′(w) can be determined as the
intercept with the vertical p-axis of the line tangent to the value function from
each point. As shown in the Figure 7, the situation with the higher w2 (and low
state) has a higher marginal q2. Because investment is increasing in marginal
q, even after controlling for average q, higher financial slack leads to a higher
investment rate.

In Figure 8, we illustrate the sensitivity of investment to financial slack for
the whole range of average q in our example. For each level of average q, we
compute the difference in financial slack (�w) and investment (�i) across the
two states, and plot the ratio �i/�w. The figure shows that this sensitivity
is positive, that is, more financial slack is associated with higher investment,
holding average q fixed. The figure also shows that the relation between invest-
ment and slack is nonmonotone so that the sensitivity of investment to financial
slack is not necessarily higher for more financially constrained firms.

VI. Concluding Remarks

By synthesizing an agency-based model of financial frictions and neoclas-
sical investment theory, our model generates a number of predictions about
financing and investment dynamics. Optimal contracting implies that agency
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Figure 8. The ratio of the investment difference to the financial slack difference, hold-
ing average q fixed.

costs introduce a history-dependent wedge between marginal q and average q.
Consequently, the measurement error inherent in using average q as a proxy
for marginal q will vary over time with the firm’s performance. Because the
agent is rewarded for past success by holding a larger future stake in the firm
(that is, a higher continuation payoff), agency costs fall and thus the return to
investment rises when the firm performs well. Hence, investment is positively
correlated with past profitability, past investment, managerial compensation,
and financial slack even with time-invariant investment opportunities. Also,
even with risk-neutrality, investment decreases with firm-specific risk because
such risk hides the agent’s performance and exacerbates the agency problem.

To illustrate the effect of profitability shocks on firm value and investment
dynamics in the presence of agency conflicts, we extend our model to allow
the firm’s profitability to vary stochastically over time. Here, we show that
investment increases with financial slack after controlling for average q. More
broadly, our theory suggests that financial slack, not cash flow, is the impor-
tant predictor of investment after controlling for average q, thus challeng-
ing the empirical validity of using cash flow as a proxy for financial con-
straints as is common in the investment/cash flow sensitivity literature. We also
show that the agent’s compensation will depend not only on the firm’s hidden
transitory shocks, but also on observable persistent profitability shocks even
though these shocks are beyond the agent’s control. This result may help to
explain the empirical relevance of absolute performance evaluation (“pay-
ing for luck”). In ongoing research, we continue to explore the sensitivity of
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managerial compensation to external shocks in a range of dynamic agency
contexts.

The analysis of profitability shocks illustrates the importance of treating fi-
nancial slack as endogenous and subject to change in the event of a profitability
shock. In the setting we consider, it is optimal for financial slack to increase
(decrease) in response to a positive (negative) profitability shock. Hence, in
estimating the investment response to such a shock, treating financial slack as
predetermined would miss the response of investment to the optimal adjust-
ment of financial slack.

Our analysis also highlights the importance of including the present value of
future managerial compensation when estimating q. Commonly used empirical
measures of q do not explicitly adjust for managerial compensation, but instead
are based on the market value of the firm’s assets, estimated from the market
value of equity and the book value of debt and other liabilities. To the extent
that managers’ future compensation is already reflected on the balance sheet
(such as, for example, equity resulting from prior stock or option grants, or
cash held in reserve to pay the manager), this approach is consistent with the
theory. However, if a large part of managerial compensation arises from future
salary and bonuses, option grants, etc., then typical empirical measures of q
may be somewhat misspecified, and likely lie between p(w), the value of the
firm to its investors, and p(w) + w, the value to both investors and managers.

Because our model is based on a constant returns to scale investment tech-
nology (as in Hayashi (1982)), it is not well suited to address questions relating
firm size and growth. Indeed, if we control for past performance or financial
slack, size does not matter in our framework. If we fail to control for past per-
formance/slack, then larger firms—because they are more likely to have had
good recent performance in order to become large—will tend to grow faster
than worse performing firms that are thus smaller. That is, as noted earlier,
investment is positively serially correlated. If we were to incorporate decreas-
ing returns to scale into our setting, we would find the highest growth for small
firms with good recent performance (and high recent growth), and the slowest
growth for large firms with poor recent performance (and low recent growth).
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Appendix A: Proof of Proposition 1

We impose the usual regularity condition on the payment policy

E

(∫ τ

0
e−γ sdUs

)2

< ∞. (A1)

We further require that

E

[∫ T

0
(e−rt Kt)2dt

]
< ∞ for all T > 0 , (A2)
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and

lim
T →∞

E(e−rT KT ) = 0. (A3)

Both regularity conditions place certain restrictions on the investment policies.
Since the project is terminated at τ , throughout we take the convention that
HT 1{T>τ } = Hτ for any stochastic process H.

Throughout the proof, we follow the adjustment cost c(i) as the commonly
used quadratic form.

LEMMA 1: For any contract 	 = {U , τ }, there exists a progressively measur-
able process {βt : 0 ≤ t < τ } such that the agent’s continuation value Wt evolves
according to

dWt = γWtdt − dUt + βt Kt(dAt − μdt) (A4)

under at = 1 all the time. The contract 	 is incentive compatible ifand only if
βt ≥ λ for t ∈ (0, τ ).

In the optimal contract, βt = λ, so the above dynamics in (A4) are the dynam-
ics in (13). The proof is similar to DeMarzo and Sannikov (2006); we omit the
proof here.

Now we verify that the contract and the associated investment policy derived
from the HJB equation are indeed optimal. The evolution of w = W

K follows
easily from the evolutions of W and K. The key ODE (18), under the quadratic
adjustment cost and the associated optimal investment policy, is

(r + δ)p(w) = μ+ (p(w) − wp′(w) − 1)2

2θ
+ p′(w)(γ + δ)w + λ2σ 2

2
p′′(w). (A5)

LEMMA 2: The scaled investors’ value function p(w) is concave on (0, w).

Proof : By differentiating (A5), we obtain

(r + δ)p′ = − (p − wp′ − 1)wp′′

θ
+ (γ + δ)wp′′ + (γ + δ)p′ + λ2σ 2

2
p′′′. (A6)

Evaluating (A6) at the upper boundary w, and using p′(w) = −1 and p′′(w) = 0,
we find

λ2σ 2

2
p′′′(w) = γ − r > 0.

Therefore, p′′(w − ε) < 0. Now let q(w) = p(w) − wp′(w). We have

(r + δ)q(w) = μ+ (q(w) − 1)2

2θ
+ (γ − r)wp′(w) + λ2σ 2

2
p′′(w).
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Suppose that there exists some w̃ < w such that p′′(w̃) = 0. Choose the largest
w̃ such that p′′(w + ε) < 0. Evaluating the above equation at w̃, we have

(r + δ)q(w̃) = μ+ (q(w̃) − 1)2

2θ
+ (γ − r)w̃p′(w̃).

Since q(w̃) < qFB, and (r + δ)qFB = μ+ (qFB−1)2

2θ , we have p′(w̃) < 0. Therefore,
evaluating (A6) at point w̃, we obtain

(r + δ)p′(w̃) = p′(w̃)(γ + δ) + λ2σ 2

2
p′′′(w̃),

which implies that p′′′(w̃) = 2(r−γ )
λ2σ 2 p′(w̃) > 0. This is inconsistent with the choice

of w̃ where p′′(w̃) = 0 but p′′(w̃ + ε) < 0. Therefore, p(·) is strictly concave over
the whole domain (0, w). Q.E.D.

Take any incentive-compatible contract 	 = (I,U , τ ). For any t ≤ τ , define
its auxiliary gain process {G} as

Gt(	) =
∫ t

0
e−rs(dYs − dUs) + e−rt P(Kt,Wt)

=
∫ t

0
e−rs

(
KsdAs − Isds − θ I2

s

2Ks
− dUs

)
+ e−rt P(Kt,Wt), (A7)

where the agent’s continuation payoff Wt evolves according to (13). Under
the optimal contract 	∗, the associated optimal continuation payoff W∗

t has
a volatility λσKt, and {U ∗} reflects W∗

t at W
∗
t = wKt.

Recall that wt = Wt/Kt and P(Kt,Wt) = Kt p(wt). Ito’s lemma implies that, for
t < τ ,

ertdGt = Kt

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎣ −rp(wt) + μ− It/Kt − θ

2
(It/Kt)2 + (It/Kt − δ)(p(wt) − wt p′(wt))

+ γwt p′(wt) + β2
t σ

2

2
p′′(wt)

⎤⎥⎥⎦ dt

+[−1 − p′(wt)]dUt/Kt + σ [1 + βt p′(wt)]dZt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Under the optimal investment policy I∗

t /Kt and optimal incentive policy βt = λ,
the first piece in the bracket—which is just our (18)—stays at zero always,
whereas other investment and incentive policies will make this term nonposi-
tive (here we use the concavity of p). The second piece captures the optimality
of the cash payment policy. It is nonpositive since p′(wt) ≥ −1, but equals zero
under the optimal contract.

Therefore, for the auxiliary gain process we have

dGt(	) = μG(t)dt + e−rt Ktσ [1 + βt p′(wt)]dZt,

where μG(t) ≤ 0. Let ϕt ≡ e−rt Ktσ [1 + βt p′(wt)]. Conditions (A1) and (A2) imply
that E[

∫ T
0 ϕtdZt] = 0 for ∀T > 0 (note that p′ is bounded). Furthermore, under
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	 investors’ expected payoff is

G̃(	) ≡ E

[∫ τ

0
e−rsdYs −

∫ τ

0
e−rsdUs + e−rτ lKτ

]
.

Then, given any t < ∞,

G̃(	) = E[Gτ (	)]

= E

[
Gt∧τ (	̃) + 1t≤τ

[∫ τ

t
e−rsdYs − e−rsdUs

]
+ e−rτ lKτ − e−rt P(Kt,Wt)

]
= E[Gt∧τ (	̃)] + e−rt

E

{[∫ τ

t
e−r(s−t)(dYs − dUs) + e−r(τ−t)lKτ

− P(Kt,Wt)
]

1t≤τ

}
≤ G0 + (qFB − l)E[e−rt Kt].

The first term of the inequality follows from the negative drift of dGt(	) and
the martingale property of

∫ t∧τ
0 ϕsdZs. The second term in the inequality follows

from

Et

[∫ τ

t
e−r(s−t)(dYs − dUs) + e−r(τ−t)lKτ

]
≤ qFBKt − wt Kt,

which is the first-best result, and

qFBKt − wt Kt − P(Kt,Wt) < (qFB − l)Kt,

as w + p(w) is increasing (p′ ≥ −1). But due to (A3), we have G̃ ≤ G0 for all
incentive-compatible contracts. On the other hand, under the optimal contract
	∗, investors’ payoff G̃(	∗) achieves G0 because the above weak inequality holds
in equality when t → ∞.

Finally, we require that the agent’s shirking benefit, φ ≡ λμ, be sufficiently
small to ensure the optimality of a = 1 all the time. Similar to DeMarzo and
Sannikov (2006) and He (2009), there is a sufficient condition for the optimality
of a = {μ} against at = 0 for some t. Let ŵ = argw max p(w). We require that

(p(w) − wp′(w) − 1)2

2θ
≤ (r + δ)p(w) − p′(w)[(γ + δ)w − φ] for all w.

Since the left side is increasing in w, and the right side dominates p( φ

γ+δ ) −
γ−r
r+δ (p(ŵ) − p( φ

γ+δ )) (see the proof in DeMarzo and Sannikov (2006)), a sufficient
condition is

(p(w) + w − 1)2

2θ
≤ p

(
φ

γ + δ

)
− γ − r

r + δ

(
p(ŵ) − p

(
φ

γ + δ

))
.
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Appendix B: Proof for Proposition 2

We need to verify that under the proposed scheme, the agent’s value function
given the relevant state (M, K) is V (M, K) = λM, and his optimal policy is the
one we obtained in Proposition 1. We take the “guess and verify” approach.
Under the proposed implementation, the evolution of the cash reserve M is

dMt = rMtdt + dYt − dDt − dXt

= rMtdt + KtdAt − Ktc(it)dt − [Ktμdt − Ktc(it)dt − (γ − r)Mtdt] − dXt

= γMtdt + Kt(dAt − μdt) − dXt,

and dKt = Itdt − δKtdt. Given the agent’s value function V (M, K) = λM, we
have his HJB equation as

γ λMdt = sup
at∈[0,1],dXt≥0

λ(γMtdt + Kt(atμdt − μdt) − dXt) + λKt(1 − at)μdt + λdXt,

where the first term is Et[VM(M, K)dM] under the policy at and dXt, the second
term is the agent’s private benefit by exerting at, and the third term is his
portion of special dividend. Then

γ λMdt = sup
at∈[0,1],dXt

λ(γMdt + K(atμdt − μdt) − dX) + λK(1 − at)μdt + λdX

= γ λMdt,

where the action choice at drops out because of the binding incentive compat-
ibility constraint. This proves that the agent’s value function and his optimal
policy under the proposed implementation coincide with those in Proposition
1. In particular, as the agent is indifferent between investment policies, he will
follow the optimal investment policy we derived in Proposition 1.

Now we verify that the firm’s equity value satisfies St = (p(λmt) + mt)Kt.
Since

St = Et

[∫ τ

t
e−r(s−t)(dDs + (1 − λ)dXs) + e−r(τ−s)lKs

]
= Et

[∫ τ

t
e−r(s−t)(dDs + dXs − λdXs) + e−r(τ−s)lKs

]
and dDs + dXs = rMsdt + dYs − dMs, we have

St = Et

[∫ τ

t
e−r(s−t)(dYs − λdXs) + e−r(τ−t)lKτ + e−r(s−t)[rMsdt − dMs]

]
. (B1)

Now, because λdXs = dUs, according to the definition of P(Wt, Kt) we know that

St = P(Wt, Kt) + Et

[∫ τ

t
e−r(s−t)[rMsds − dMs]

]
.

Using integration by parts,∫ τ

t
e−r(s−t)dMs = e−r(τ−t)Mτ − Mt +

∫ τ

t
e−r(s−t)rMsds.
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Since Mτ = 0, the second part in (B1) is Mt, and therefore St = P(Wt, Kt) + Mt =
(p(λmt) + mt)Kt. Q.E.D.

Appendix C: Renegotiation-Proof Contract

As we have indicated in Section III.A, our contract may not be renegotiation-
proof. Intuitively, whenever p′(w) > 0 (or, PW (W, K) > 0), both parties may
achieve an ex post Pareto-improving allocation by renegotiating the contract.
Therefore, the value function p(w) that is renegotiation-proof must be weakly
decreasing in the agent’s scaled continuation payoff w. Moreover, pRP(w) has
an (endogenous) renegotiation boundarywRP , where the scaled investors’ value
function pRP(w) has the following boundary conditions:

pRP(wRP) = l, (C1)

pRP′(wRP) = 0. (C2)

Specifically, wRP (rather than w = 0 in the baseline model) becomes the lower
bound for the agent’s scaled continuation payoff w during the equilibrium em-
ployment path. The scaled investors’ value function pRP(w) solves the ODE
(18) for w ∈ [wRP, wRP], with two sets of free-boundary conditions: the bound-
ary conditions (16) and (20) at the payout boundary wRP , and the boundary
conditions (C1) and (C2) at the renegotiation boundary wRP .

The dynamics of the scaled agent’s payoff w takes the following form:

dwt = (γ + δ − i(wt))wtdt + λσdZt − dut + (dυt − wRPdMt), (C3)

where the first (drift) term implies that the expected rate of change for the
agent’s scaled continuation payoff w is (γ + δ − i(w)), the second (diffusion)
term captures incentive provisions in the continuation-payoff region (away
from the boundaries), and the third term, the nondecreasing process u, captures
the reflection of the process w at the upper payment boundary wRP . Unlike the
dynamics (17) for the agent’s scaled payoff process w without renegotiation,
the last term dυt − wRPdMt in the dynamics (C3) captures the effect at the
renegotiation boundary. The nondecreasing process υ reflects w at the renego-
tiation boundarywRP . The intensity of the counting process dQ is dυt/w

RP ; once
dQ = 1, w becomes zero, and the firm is liquidated.24 Note that the additional
term dυt − wRPdQt is a compensated Poisson process and hence a martingale
increment.

We illustrate the contracting behavior at the renegotiation boundary through
the following intuitive way. When the agent’s poor performance drives w down
to wRP , the two parties run a lottery. With a probability of dυt/w

RP , the firm
is liquidated. If the firm is not liquidated, the agent stays at the renegotiation

24 Technically speaking, the counting process has a survival probability Pr(Qt = 0) =
exp(−υt/w

RP ).
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First-best 

Optimal p with commitment 

Optimal pRP with renegotiation 

First-best 

Optimal i with commitment 

Optimal iRP with renegotiation 

Investment-to-Capital Ratio Investors’ Scaled Value Function 

Agent’s Scaled Continuation Payoff  w Agent’s Scaled Continuation Payoff  w 

Figure C1. Renegotiation proofness. The original scaled value function p(w) is not
renegotiation-proof because p′(0) > 0. For the renegotiation-proof contract, wRP is the lower bound
for the agent’s scaled continuation payoff w, with the following properties: p(wRP ) = p(0) = l and
p′(wRP ) = 0. The value function pRP (w) solves the ODE (18) subject to the boundary conditions
(16) and (20) and the above-stated conditions at wRP .

boundary wRP . Here, the stochastic termination is to achieve the “promise-
keeping” constraint so that w is indeed the scaled continuation payoff with
expected growth rate γ + δ − i(w) as specified in Proposition 1. To see this,
by running this lottery, the agent could potentially lose (dυt/w

RP) · wRP = dvt,
which just compensates the reflection gain dυt if the firm is not liquidated.

Since renegotiation further worsens the agency conflict, we expect not only
a greater value reduction for investors, but also a stronger underinvestment
distortion. Figure C1 shows this result.

Appendix D: Technical Details for Section V

D.1. Characterization of Optimal Contracting with Stochastic Profitability

Fix regime L as the current regime (similar results hold for regime H upon
necessary relabelling.) Based on (31) and (34) in Section V, the following Bell-
man equation holds for P(K,W, πL):

rP(K,W, πL) = sup
I, �

(μπLK − I − G(I, K)) + (I − δK)PK

+ (γW −�LH(K,W)ξ L)PW + λ2σ 2K2

2
PWW

+ ξ L
(
P(K,W +�LH(K,W), πH) − P(K,W, πL)

)
, (D1)

where investment I and the compensation adjustment �LH(K,W) (both un-
scaled) are state-dependent controls.
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The investment policy I(K,W,n), by taking a first-order condition (FOC), is
similar to the baseline case. The FOC for optimal �LH(K,W), given that the
solution takes an interior solution, yields that

PW (K,W, πL) = PW (K,W +�LH(K,W), πH). (D2)

As discussed in the main text, the optimal contract equates the marginal cost
of delivering compensation, that is, −PW , across different Markov states at any
time. However, in general, the solution of �nm(K,W) might be binding (corner
solution), as the agent’s continuation payoff after the regime change has to be
positive. Therefore, along the equilibrium path the optimal �nm(K,W) might
bind, that is, �nm(K,W) + W ≥ 0 holds with equality.

The scale invariance remains: with w = W/K, we let pn(w) = P(K,W, πn)/K,
in(w) = I(K,W , πn)/K,ψnm(w) = �nm(K,W,n)/K, and upper payment boundary
wn = W (K, πn)/K. Similar to equation (19),

in(w) = PK(K,W,n) − 1
θ

= pn(w) − wp′
n(w) − 1

θ
. (D3)

Combining this result with the above analysis regarding ψnm(w)’s (notice that
PW (K,W , πn) = p′

n(w)), the following proposition characterizes the ODE system
{pn} when profitability is stochastic.

PROPOSITION 4: For 0 ≤ w ≤ wn (the continuation-payoff region for regime n),
the scaled investor’s value function pn(w) and the optimal payment threshold
wn solve the following coupled ODEs:

(r + δ)pL(w) = μπL + (pL(w) − wp′
L(w) − 1)2

2θ

+ p′
L(w)[(γ + δ)w − ξ LψLH(w)] + λ2σ 2

2
p′′

L(w)

+ ξ L(pH(w + ψLH(w)) − pL(w)), 0 ≤ w ≤ wL,

(r + δ)pH(w) = μπH + (pH(w) − wp′
H(w) − 1)2

2θ

+ p′
H(w)[(γ + δ)w − ξHψHL(w)] + λ2σ 2

2
p′′

H(w)

+ ξH
(
pL(w + ψHL(w)) − pH(w)

)
, 0 ≤ w ≤ wH

(D4)

subject to the boundary conditions at the upper boundary wn,

p′
n(wn) = −1, (D5)

p′′
n(wn) = 0, (D6)

and the left boundary conditions at liquidation,

pn(0) = ln, n = 1,2.
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The scaled endogenous compensation adjustment functions ψnm(w) satisfy

p′
n(w) = p′

m(w + ψnm(w))

if w + ψnm(w) > 0 (interior solution); otherwise, ψnm(w) = −w. For w > wn (cash
payment regions), pn(w) = pn(wn) − (w − wn).

Proof : See Appendix D2.

In solving the coupled ODEs in Proposition 4 with the optimal payment
threshold wn and the endogenous compensation adjustment functions ψnm(w),
we take the following numerical iteration steps:

(1) Solve for p(0)
L and p(0)

H without profitability changes (that is, setting ξ ’s to
zero.) This essentially amounts to solving a nonlinear ODE with a free-
boundary condition about w(0)

n .
(2) Given p(0)

L and p(0)
H , obtain the compensation adjustment function ψ

(0)
HL(w)

based on Proposition 4.
(3) Given ψ

(0)
HL(w) and p(0)

L , calculate p(1)
H by solving the high-state one-

dimensional nonlinear ODE (that is, the second equation) in equation (D4).
The resulting solution is p(1)

H with the free boundary w(1)
H .

(4) Obtain ψ (0)
LH(w) based on p(1)

H and p(0)
L , and then calculate p(1)

L by solving the
low-state one-dimensional nonlinear ODE (that is, the first equation) in
(D4). The resulting solution is p(1)

L with the free boundary w(1)
L .

(5) Given p(1)
L and p(1)

H , update ψ (1)
HL(w).

(6) Repeat the procedures after Step 3 until convergence obtains. The conver-
gence criterion is

max
[

sup
w

(
p( j+1)

L − p( j)
L

)
, sup

w

(
p( j+1)

H − p( j)
H

)]
< 10−5.

D.2. Proof for Proposition 3

LEMMA 3: Both pn’s are strictly concave for 0 ≤ w < wn.

Proof : Denote two states as n,m. By differentiating (D4), we obtain

(r + δ)p′
n = − (pn − wp′

n − 1)wp′′
n

θ
+ p′′

n · [
(γ + δ)w − ξnψnm(w)

]
+ p′

n(γ + δ − ξnψ ′
nm(w)) + λ2σ 2

2
p′′′

n

+ ξn(p′
m(w + ψnm(w))(1 + ψ ′

nm(w)) − p′
n).
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Notice that, when ψnm(w) takes an interior solution, p′
m(w + ψnm(w)) = p′

n(w);
otherwise, ψ ′

nm(w) = −1. Either condition implies that

(r + δ)p′
n = − (pn − wp′

n − 1)wp′′
n

θ
+ p′′

n · [(γ + δ)w − ξnψnm(w)]

+ p′
n(γ + δ) + λ2σ 2

2
p′′′

n ,

(D7)

which takes a similar form as in (A6). Similar to the argument in the proof of
Proposition 2, we can show that p′′

n(wn − ε) < 0 and p′′
m(wm − ε) < 0.

Denote μn = μπn. Let qn(w) = pn(w) − wp′
n(w), that is, the marginal q that

captures the investment benefit. We have

(r + δ + ξn)qn(w) = μn + (qn(w) − 1)2

2θ
+ ξmqm(w + ψnm(w))

+ (γ − r)wp′
n(w) + λ2σ 2

2
p′′

n

(r + δ + ξm)qm(w + ψnm(w)) = μm + (qm(w + ψnm(w)) − 1)2

2θ
+ ξnqn(w)

+ (γ − r)(w + ψnm(w))p′
m(w + ψnm(w))

+ λ2σ 2

2
p′′

m(w + ψnm(w)).

(D8)

Recall that the first-best pair (qFB
n ,qFB

m ) solves the system

(r + δ + ξn)qFB
n = μn +

(
qFB

n − 1
)2

2θ
+ ξnqFB

m

(r + δ + ξm)qFB
m = μm +

(
qFB

m − 1
)2

2θ
+ ξmqFB

n

It is understood throughout the proof that, as in the Hayashi (1982) model
with quadratic adjustment cost, (qn,qm) in equation (D8) and (qFB

n ,qFB
m ) take

the smaller root in solving the quadratic equations.
Suppose that there exist some points so that pn is convex. Pick the largest w̃

such that p′′
n(w̃) = 0 but p′′

n(w̃ + ε) < 0, and p′′
n(w) ≤ 0 for w ∈ (w̃, wn). If ψnm(w̃)

is interior, then let

k = p′
n(w̃) = p′

m(w̃ + ψnm(w̃)), p′′
n(w̃) = p′′

m(w̃ + ψnm(w̃))(1 + ψ ′
nm(w̃)) = 0.
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Clearly, if p′′
m(w̃ + ψnm(w̃)) = 0, then

(r + δ + ξn)qn(w̃) = μn + (qn(w̃) − 1)2

2θ
+ ξmqm(w̃ + ψnm(w̃))

+ (γ − r)w̃k

(r + δ + ξm)qm(w̃ + ψnm(w̃)) = μm + (qm(w̃ + ψnm(w̃)) − 1)2

2θ
+ ξnqn(w̃) + (γ − r)(w̃ + ψnm(w̃))k.

Since a positive k in the above system will imply that qn > qFB
n and qm > qFB

m ,
we must have k< 0. Thus, evaluating (A6) at the point w̃, we obtain

λ2σ 2

2
p′′′

n (w̃) = (r − γ )p′
n(w̃) = (r − γ )k> 0.

This is inconsistent with the choice of w̃ where p′′
n(w̃) = 0 but p′′

n(w̃ + ε) < 0.
Notice that the above argument applies to the case p′′

m(w̃ + ψnm(w̃)) > 0.
The case of 1 + ψ ′

nm(w̃) = 0 but p′′
m(w + ψnm(w)) < 0 is ruled out easily: with

ψnm(·) ∈ C1, ψnm(w̃) = −ψmn(w̃ + ψnm(w̃)) implies that −1 = ψ ′
nm(w̃) = −ψ ′

mn(w̃ +
ψnm(w̃))(1 + ψ ′

nm(w̃)) = 0, a contradiction.
Finally, consider the case where ψnm(w̃) is binding at −w. Take the same

approach; notice that in this case the points after regime switching are exactly
zero. Therefore, the same argument applies, and pn(·) is strictly concave over
the whole domain (0, wn). Q.E.D.

Once the concavity of pn’s is established, the verification argument is similar
to the baseline case in Appendix A.

Now we show the properties of the compensation adjustment functions. For
simplicity, take ξn = ξm = ξ . We focus on ψHL(w). Once ψHL(w) < 0 is shown, it
immediately follows that ψLH(w) > 0.

Because pH(w) > pL(w) while pL(0) = pH(0) = l, we know p′
H(0) > p′

L(0), and
ψHL(w) = −w when w is small. The claim that ψHL(w) = −w for w lower than
a threshold wc such that p′

H(wc) = p′
L(0) follows from the concavity of both p’s.

We focus on the area where the jump functions take interior solutions.
Consider �q(w) = qH(w) − qL(w + ψHL(w)), which is the difference between

marginal q’s across the two points before and after a jump. This difference
starts at zero (both q = l), and must be positive in the payment boundary, as
eventually qL = pL(w) + w < pH(w) + w = qH . Notice that

�q′(w) = −wp′′
H(w) + (w + ψHL(w))(1 + ψ ′

HL(w))p′′
L(w + ψHL(w)),

and the slope becomes zero on the upper boundary wH . Focus on w’s that
are below the payment region. When ψ takes interior solutions, p′

H(w) =
p′

L(w + ψHL(w)) and p′′
H(w) = p′′

L(w + ψHL(w))(1 + ψ ′
HL(w)). Therefore, �q′(w) =

p′′
H(w)ψHL(w) and ψHL(w) = 0 if and only if �q′(w) = 0. Moreover, �q(w) is

decreasing if and only if ψHL(w) is positive.
The following lemma shows that ψHL(wH) = wL − wH ≤ 0 on the upper pay-

ment boundary; later on we show ψHL(wH) < 0 strictly.
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LEMMA 4: The upper payment boundary wH ≥ wL so that ψHL(wH) = wL −
wH ≤ 0.

Proof : We prove by contradiction. Suppose that ψHL(wH) = wL − wH > 0. Ac-
cording to (D8), at the upper boundary we have (r + δ + ξ )qn = μn + (qn−1)2

2θ +
ξqm − (γ − r)wn. Therefore,

(r + δ + 2ξ )(qH − qL) = μH − μL + (qH − qL)(qH + qL + 2)
2θ

+ (γ − r)(wL − wH).
(D9)

Moreover, ψHL(wH) > 0 implies that �q(w) is decreasing for w < wH around
its vicinity. Take ŵ, which is the largest w such that ψHL(ŵ) = 0 and
�q′(ŵ) = 0. (The existence of such ŵ follows from the fact ψHL(0+) < 0.)
This implies that �q(ŵ) reaches its local maximum and �q(ŵ) > qH − qL,
and ψ ′

HL(ŵ) ≥ 0. However, denoting qL(ŵ) = q̂L and qH(ŵ) = q̂H , (D8) implies
that (r + δ + ξ )̂qn = μn + (̂qn−1)2

2θ + ξ q̂m + (γ − r)ŵp′
n(ŵ) + λ2σ 2

2 p′′
n(ŵ), which says

that

(r + δ + 2ξ )�q(ŵ) = μH − μL + �q(ŵ)(̂qL + q̂H + 2)
2θ

+ λ2σ 2

2
[p′′

H(ŵ) − p′′
L(ŵ)]. (D10)

Comparing to (D9), since q̂L + q̂H < qL + qH as q is increasing with w, in or-
der for �q(ŵ) > qH − qL the last term in (D10) must be strictly positive, or
p′′

H(ŵ) > p′′
L(ŵ). But recall that p′′

H(ŵ) = p′′
L(ŵ)(1 + ψ ′

HL(ŵ)); concavity of pn’s
and ψ ′

HL(ŵ) ≥ 0 yields a contradiction. Q.E.D.
Now we proceed to show that ψHL(w) ≤ 0 always. Since ψHL(wH) ≤ 0 and

ψHL(0+) < 0, for anyw such thatψHL(w) > 0, we can always find two points ŵ <
w̃ closest to w such that ψHL(ŵ) = ψHL(w̃) = 0, �q′(ŵ) = �q′(w̃) = 0, �q(ŵ) >
�q(w̃), ψ ′

HL(ŵ) > 0, and ψ ′
HL(w̃) < 0. We have

(r + δ + 2ξ )�q(ŵ) = μH − μL + �q(ŵ)(̂qL + q̂H + 2)
2θ

+ λ2σ 2

2
p′′

L(ŵ)ψ ′
HL(ŵ)

< μH − μL + �q(ŵ)(̂qL + q̂H + 2)
2θ

and (r + δ + 2ξ )�q(w̃) = μH − μL + �q(w̃)(̃qL+q̃H+2)
2θ + λ2σ 2

2 p′′
L(w̃)ψ ′

HL(w̃) > μH −
μL + �q(w̃)(̃qL+q̃H+2)

2θ . Finally, because q̂L + q̂H < q̃L + q̃H , �q(ŵ) < �q(w̃), a
contradiction.

A similar argument rules out the case that there ∃ŵ, such that ψHL(ŵ) =
ψ ′

HL(ŵ) = 0, while ψHL(w) ≤ 0 for all w. Suppose not. Then �q′(ŵ) = 0 and

(r + δ + 2ξ )�q(ŵ) = μH − μL + �q(ŵ)(̂qL + q̂H + 2)
2θ

.
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For w = ŵ + ε, after neglecting some terms with an order higher than ε2 (note
that ψHL(ŵ + ε) is in the order of ε2)

(r + δ + 2ξ )�q(ŵ + ε) = μH − μL + �q(ŵ + ε)(qL(ŵ + ε) + q̂H(ŵ + ε) + 2)
2θ

+(γ − r)ψHL(ŵ + ε)p′
H(ŵ + ε)

+λ
2σ 2

2
p′′

L(ŵ + ε)ψ ′
HL(ŵ + ε).

The first term in the second line is in a lower order than ε, as ψHL(ŵ) =
ψ ′

HL(ŵ) = 0. The second term is positive. Because qL(ŵ + ε) + q̂H(ŵ + ε) − (̂qL +
q̂H) is in the order of ε, this contradicts �q′(ŵ) = 0.

Finally, we rule out the case of wH = wL so ψHL(w) = 0. At w, we have
ψ ′

HL(w) = 0, because p′′′
H(w) = p′′′

L (w)(1 + ψ ′
HL(w)) and p′′′

L (w) = p′′′
H(w) = 2(γ−r)

λ2σ 2 .
Now consider the point w − ε:

(r + δ + 2ξ )�q(w − ε) = μH − μL + �q(w − ε)(qL(w − ε) + qH(w − ε) + 2)
2θ

+ (γ − r)ψHL(w − ε)p′
H(w − ε)

+ λ2σ 2

2
p′′

L(w − ε)ψ ′
HL(w − ε).

One can show that, compared to the value at w, qL(w − ε) + qH(w − ε) is ε2

order smaller. Again, the first term in the second line is in a lower order, and
the second term is negative. Therefore, �q(w − ε) should be ε2 order smaller.
However,

�q′′(w) = p′′′
H(w)ψHL(w) + p′′

H(w)ψ ′
HL(w) = 0,

a contradiction. Q.E.D.
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