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Abstract

While standard real options models assume that agents possess a constant rate of time preference,

there is substantial evidence that agents are impatient about choices in the short term but are patient

when choosing between long-term alternatives. We extend the real options framework to model the

investment-timing decisions of entrepreneurs with time-inconsistent preferences. The impact on

investment-timing depends on such factors as whether entrepreneurs are sophisticated or naive in

their expectations regarding their future time-inconsistent behavior, and whether the payoff from
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1. Introduction

Since the seminal work of Brennan and Schwartz (1985) and McDonald and Siegel
(1986), the real options approach to investment under uncertainty has become an essential
part of modern economics and finance.1 In this paper, we consider a particularly well-
suited application of the real options framework: the investment decision of an
entrepreneur. The skills, experience, and luck of the entrepreneur have endowed him
with an investment opportunity in a risky project.2 Essentially, the real options approach
posits that the opportunity to invest in a project is analogous to an American call option
on the investment project. Thus the timing of investment is economically equivalent to the
optimal exercise decision for an option.

In the standard real options framework it is assumed that agents have a constant rate of
time preference. Thus real options models typically assume that rewards are discounted
exponentially. Such preferences are time-consistent in that an entrepreneur’s preference for
rewards at an earlier date over a later date is the same no matter when he is asked.
However, virtually every experimental study on time preferences suggests that the
assumption of time-consistency is unrealistic. (For example, see Thaler, 1981; Ainslie,
1992; Loewenstein and Prelec, 1992.) When two rewards are both far away in time,
decision makers act relatively patiently (e.g., they prefer two apples in 101 days, instead of
one apple in one hundred days). But when both rewards are brought forward in time,
decision makers act more impatiently (e.g., they prefer one apple today, instead of two
apples tomorrow). Laibson (1997) models such time-varying impatience with quasi-
hyperbolic discount functions, in which the discount rate declines as the horizon increases.3

Such preferences are also termed ‘‘present-biased’’ preferences by O’Donoghue and Rabin
(1999a).

This paper merges two important strands of research: the real options approach that
emphasizes the benefits of waiting to invest in an uncertain environment, and the literature
on hyperbolic preferences in which decision makers face the difficult problem of making
optimal choices in a time-inconsistent framework.4 On the one hand, standard real options
1The application of the real options approach to investment is broad. Brennan and Schwartz (1985) use an

option pricing approach to analyze investment in natural resources. McDonald and Siegel (1986) provide the

standard continuous-time framework for analysis of a firm’s investment in a single project. Majd and Pindyck

(1987) enrich the analysis with a time-to-build feature. Dixit (1989) uses the real option approach to examine entry

and exit from a productive activity. Titman (1985) and Williams (1991) use the real options approach to analyze

real estate development. Grenadier (1996, 2002) and Lambrecht and Perraudin (2003) extend real options to a

game-theoretic environment.
2We assume that this investment option is nontradable and its payoff cannot be spanned by existing assets. The

lack of tradability is important to our model, because we wish to rule out time-inconsistent entrepreneurs selling

their investment options to time-consistent entrepreneurs. Lack of tradability could be caused by the option’s

value emanating from the special skills of the entrepreneur or to asymmetric information resulting in a lemons

problem. The fact the option is nontradable and is not spanned by existing assets implies that the entrepreneur

uses a private discount rate, reflecting his subjective valuation of cash flows. See Chapter 4 of Dixit and Pindyck

(1994) for a more complete discussion of subjective discount rates where spanning does not exist.
3Applications of quasi-hyperbolic preferences are now extensive. For some examples, see Barro (1999) for an

application to the neoclassical growth model, O’Donoghue and Rabin (1999b) for a principal agent model,

DellaVigna and Malmendier (2004) for contract design between firms and consumers, and Luttmer and Mariotti

(2003) for asset pricing in an exchange economy.
4While we are assuming that entrepreneurs apply hyperbolic discounting to cash flows, nothing substantive

would change if we instead assumed that entrepreneurs applied hyperbolic discounting to consumption, but when



ARTICLE IN PRESS
S.R. Grenadier, N. Wang / Journal of Financial Economics 84 (2007) 2–394
models imply a large option value of waiting: Typical parameterizations in the literature
show that investment should not occur until the payoff is at least double the cost. On the
other hand, time-inconsistent preferences provide an incentive to hurry investment to
avoid suboptimal decisions made in the future. Our model can show how these two
opposing forces interact.5

We find it reasonable to believe that entrepreneurs (such as an individual or a small
private partnership) are more prone to time-inconsistent behavior than firms. Consistent
with this, Brocas and Carrillo (2004) assume that entrepreneurs have hyperbolic
preferences. Similarly, DellaVigna and Malmendier (2004) assume that individuals are
time-inconsistent but that firms (with whom the individuals contract) are rational and
time-consistent. Presumably there is something about the organization of a firm and its
delegated, professional management that mitigates or removes the time-inconsistency from
the firm’s decisions. Little research has been done to identify which individuals or
institutions are more prone to time-inconsistency. The classic real option example of
commercial real estate development could be particularly apt for this entrepreneurial
setting. The development of commercial real estate is analogous to an American call
option on a building, in which the exercise price is equal to the construction cost. Williams
(2001) states that land (both improved and unimproved) is primarily held and developed
by noninstitutional investors (such as individuals and private partnerships), not by
institutional investors. Such developers are often termed ‘‘merchant builders.’’ They
construct buildings (generally standardized, conventional properties) and then sell them to
institutional investors.
As is standard in models of time-inconsistent decision making, such problems are

envisioned as the outcome of an intra-personal game in which the same individual
entrepreneur is represented by different players at future dates. That is, a current self
formulates an optimal investment timing rule taking into account the investment timing
rules chosen by future selves. Essentially, the time-inconsistent investment problem is
solved by using two interconnected functions: the current self’s value function and his
continuation value function. Unlike the value function in time-consistent optimization
problems, the current self’s continuation value function is calculated based on the current
self’s conjectured exercise decisions by future selves. To solve this intra-personal game in a
continuous-time stochastic environment, we employ the continuous-time model of quasi-
hyperbolic time preferences in Harris and Laibson (2004).
The literature on decision making under time-inconsistent preferences proposes two

alternative assumptions about the strategies chosen by future selves, both of which are
considered in this paper. First, entrepreneurs are naive in that they assume that future
selves act according to the preferences of the current self. This approach is followed by
(footnote continued)

the entrepreneur is liquidity constrained. Being liquidity constrained, the entrepreneur must wait until the option

is exercised and the cash flow is obtained before consuming. Prelec and Loewenstein (1997) provide a numerical

example of discounting cash flows in the spirit of a real options formulation. It is also worth noting that much of

the experimental evidence on time-inconsistent discounting deals with individuals discounting cash payoffs, not

consumption streams (e.g., Thaler, 1981).
5In a different setting, O’Donoghue and Rabin (1999a) also address some of the issues analyzed in this paper.

Their paper looks at the choice of an individual with present-biased preferences as to when to take an action.

However, their model is deterministic and thus does not involve any of the issues of option timing that are

endemic in the framework of investment under uncertainty.
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Akerlof (1991). The naive entrepreneur holds a belief (that proves incorrect) that his
current self can commit future selves to act in a time-consistent manner. This assumption is
in keeping with behavioral beliefs about overconfidence (in the ability to commit). Second,
entrepreneurs are sophisticated in that they correctly anticipate time-varying impatience
and thus assume that future selves choose strategies that are optimal for future selves,
despite being suboptimal from the standpoint of the current self. This rational assumption
is in the tradition of subgame perfect game-theoretic equilibrium and is the approach
followed by Laibson (1997). In our model, we analyze investment timing under both
assumptions and determine the impact of such behavioral assumptions on investment
timing strategies.

We find that when the standard real options model is extended to account for time-
inconsistent preferences, investment occurs earlier than in the standard, time-consistent
framework. Consider our previous example of real estate development. If such merchant
builders have time-inconsistent preferences, they could accept lower returns from
development to protect themselves against the suboptimal development choices of their
future selves. The earlier exercise of commercial real estate development options could be a
contributor to the tendency for developers to overbuild. In fact, some observers have
blamed merchant builders for causing overbuilding in office markets.6

The extent of this rush to invest depends on whether the time-inconsistent entrepreneur
is sophisticated or naive. Specifically, we find that the naive entrepreneur rushes his
investment less than does the sophisticated entrepreneur. Because the naive entrepreneur
(falsely) believes that his future selves invest according to his current wishes, he is less
fearful of taking advantage of the option to wait. However, the sophisticated entrepreneur
correctly anticipates that his future selves invest in a manner that deviates from his current
preferences. This puts pressure on the sophisticated entrepreneur to extinguish his option
to wait earlier, so as to mitigate some of the costs of allowing future selves to make the
investment decision. In a sense, if one views the time-consistent solution as somehow
optimal, the naive entrepreneur’s false belief in the ability to commit to an investment
strategy helps the entrepreneur get closer to optimality; self-delusion is somehow
preferable to true self-awareness. (No agreed upon metric exists for welfare analysis for
people with time-inconsistent preferences. However, O’Donoghue and Rabin, 1999a,
model welfare losses as deviations from long-run utility, in which long-run utility is the
time-consistent solution.)

The model is extended to deal with the case in which option exercise leads to a series of
cash flows instead of a lump-sum payoff. Again, we assume the right to this series of future
cash flows is nontradable, for the same reasons as discussed for the lump-sum payoff
setting. We show that the implications on investment timing for the flow payoff case are
much different from the lump-sum payoff case. For the case of flow payoff, both the naive
and sophisticated hyperbolic entrepreneurs invest later than the time-consistent
entrepreneur. Going back to our real estate development example, suppose that the
developer continues to hold the completed property and obtains cash flows from leasing
the property. Such developers are termed ‘‘portfolio developers’’ (as distinct from
merchant builders) and often build specialized properties that take advantage of their
operating skills. For example, the portfolio developer could be best able to attract and
6For example, in an April 4, 2001 article in Barron’s, merchant builders were accused of contributing to

oversupply in suburban office markets (Gose, 2001).
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retain tenants with highest willingness to pay or keep the operating costs at the lowest
level. Given the implications of the model, portfolio developers would be expected to be
more cautious than merchant builders and contribute less to bursts of overbuilding
activity.
When payoffs are given in flows, entrepreneurs with time inconsistent preferences wait

longer before exercising than entrepreneurs with time-consistent preferences. The intuition
is as follows. While the time-consistent entrepreneur simply discounts the perpetual flow
payments to obtain an equivalent lump-sum payoff value, the hyperbolic entrepreneur
discounts the payments received by future selves at a higher discount rate. Therefore,
hyperbolic discounting lowers the present value of future flow payoffs obtained from
exercise and hence increases the entrepreneur’s incentive to wait, ceteris paribus. While it
remains true that hyperbolic entrepreneurs have an incentive to exercise before their future
selves (particularly sophisticated entrepreneurs), we shall find that the previously
mentioned effect dominates.
We later move beyond the analysis of a single entrepreneur’s strategy and look at the

equilibrium properties of investment. That is, how does equilibrium investment in an
industry made up of hyperbolic entrepreneurs compare with one comprised of time-
consistent entrepreneurs? Clearly, this is empirically relevant and a problem that is
somewhat of a technical challenge. (While in a different context, Luttmer and Mariotti,
2003, model an equilibrium of a discrete-time exchange economy with hyperbolic discount
factors.) Specifically, we look at the case of a perfectly competitive industry in which
entrepreneurs choose rational expectations equilibrium investment strategies, using a
framework similar to Leahy (1993), in which price-taking entrepreneurs contemplate
investing in projects with perpetual flow payments. We show that the equilibrium
implications for economies with time-inconsistent entrepreneurs are fundamentally
different from those for economies with time-consistent entrepreneurs. It is noteworthy
that agents are playing both an interpersonal and intra-personal game: They play a game
against other entrepreneurs as well as future selves.
The remainder of the paper is organized as follows. Section 2 describes the underlying

model and provides the solution for the benchmark time-consistent case. Section 3 derives
and analyzes the optimal investment strategy of the naive entrepreneur. Section 4 derives
and analyzes the optimal investment strategy of the sophisticated entrepreneur. Section 5
extends the model to include the case of investments that yield a series of cash flows.
Section 6 considers the implications of our model in an equilibrium setting, and Section 7
concludes.

2. Model setup

In this section, we set out the framework for the basic model of entrepreneurial
investment. The investment opportunity is described, and followed by a discussion of the
nature of time-inconsistent preferences. A benchmark case of time-consistent preferences is
provided to allow for comparisons to the time-inconsistent cases that follow.

2.1. The investment opportunity

Consider the setting for a standard irreversible investment problem. (See Brennan and
Schwartz, 1985; McDonald and Siegel, 1986; Dixit and Pindyck, 1994.) The entrepreneur
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possesses an opportunity to invest in a project. The investment option is assumed to be
nontradable.7 Let X denote the payoff value process of the underlying project. Assume
that the project payoff value evolves as a geometric Brownian motion process:

dX ðtÞ ¼ aX ðtÞdtþ sX ðtÞdBt, (1)

where a is the instantaneous conditional expected percentage change in X per unit time, s
is the instantaneous conditional standard deviation per unit time, and dB is the increment
of a standard Wiener process. Investment at any time costs I . The lump-sum payoff from
investment at time t is then given by X ðtÞ � I . The entrepreneur is free to choose the
moment of exercise of his investment option.

2.2. Entrepreneur’s time preferences

We assume that the entrepreneur is risk-neutral but dispense with the standard
assumption of exponential discounting. To reflect the empirical pattern of declining
discount rates, Laibson (1997) adopts a discrete-time discount function to model quasi-
hyperbolic preferences. Time is divided into two periods: the present period and all future
periods. Payoffs in the current period are discounted exponentially with the discount rate
r. Payoffs in future periods are first discounted exponentially with the discount rate r and
then further discounted by the additional factor d 2 ð0; 1�. For example, a dollar payment
received at the end of the first period is discounted at the rate r and is thus worth e�r

today, but a payment received at the end of the nth period is worth de�rn today, for
all n41.

To see the time-inconsistency implications of such time preferences, consider the choice
between investing at time n to receive a payment of Pn and investing at time nþ 1 to
receive a payment of Pnþ1. From the perspective of an entrepreneur at time 0, this
represents a choice between de�rnPn and de�rðnþ1ÞPnþ1. Thus they would prefer receiving
Pn at time n over receiving Pnþ1 at time nþ 1 if and only if Pn4e�rPnþ1. Therefore, when
viewed over a long horizon, intertemporal trade-offs are determined by the exponential
discounting factor r. Now, consider the same entrepreneur’s decision at time n� 1. At that
point, the entrepreneur views the payoff at time n as occurring in the current period. Thus
at time n� 1 the same entrepreneur now faces a choice between e�rPn and de�2rPnþ1, and
he would prefer receiving Pn at time n over receiving Pnþ1 at time nþ 1 if and only if
Pn4de�rPnþ1. Therefore, when viewed over a short horizon, the entrepreneur is more
impatient, as intertemporal trade-offs are determined by both the exponential discounting
factor r and the additional discount factor do1. Therefore, the agent at time 0 views the
relative choice between these two future investment timing choices differently than he does
at time n� 1. While the entrepreneur at time 0 would like to commit his future selves to
adopt his preference orderings, he is unable to do so.

We follow Harris and Laibson (2004) to model hyperbolic discounting using a
continuous-time formulation. We modify the previous formulation to allow each period to
have a random period of time. Each self controls the exercise decision in the present but
7Nontradability could be justified on any of several grounds. For example, the option’s value could be

contingent upon the unique skills of the entrepreneur; The option could have little or no value in the hands of

another entrepreneur. In addition, the entrepreneur could have private information about the option that cannot

be credibly conveyed to outside purchasers and hence a lemons problem could result. We also assume that the

investment payoffs are not spanned by existing assets.
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also cares about the utility generated by the exercise decisions of future selves. As in Harris
and Laibson (2004), the present could last for a random duration of time. Let tn be the
calendar time of birth for self n. Then, Tn ¼ tnþ1 � tn is the lifespan for self n. For
simplicity, we assume that the lifespan is exponentially distributed with parameter l.
Stated in another way, the birth of future selves is modeled as a Poisson process with
intensity l. That is, we could imagine a clock ticking with probability lDt over a small time
interval Dt, into the indefinite future. Before the clock ticks, we call the entrepreneur self 0.
After the clock ticks for the first time, self 0 ends with the birth of self 1. When the clock
ticks for the nth time at time tn, self n is born.
Given this stochastic arrival process for future selves, the quasi-hyperbolic discounting

formulation easily applies. Specifically, in addition to the standard discounting at the
constant rate r, the current self values payoffs obtained after the birth of future selves by
an additional discounting factor dp1. Let Dnðt; sÞ denote self n’s intertemporal discount
function: self n’s value at time t of $1 received at the future time s. We thus have

Dnðt; sÞ ¼
e�rðs�tÞ if s 2 ½tn; tnþ1Þ

de�rðs�tÞ if s 2 ½tnþ1;1Þ;

(
(2)

for s4t and tnptotnþ1. The magnitude of the parameter d (along with the magnitude of
the intensity parameter l) determines the degree of the entrepreneur’s time-inconsistency.
After the death of self n and the birth of self ðnþ 1Þ, the entrepreneur uses the discount
function Dnþ1ðt; sÞ to evaluate his investment project.
Let t denote the (random) stopping time at which the entrepreneur exercises his

investment option. Suppose that at time t the entrepreneur is self n. The entrepreneur
chooses the investment time t to solve the optimization problem

max
tXt

Et½Dnðt; tÞðX ðtÞ � IÞ�, (3)

where Et denotes the entrepreneur’s conditional expectation at time t. The current self’s
belief about his future selves’ investment strategies matters significantly in how the current
self formulates his investment decision.

2.3. The time-consistent benchmark (the standard real options case)

As a benchmark, we briefly consider the case in which payoffs are discounted at the rate
r. That is, the hyperbolic preference parameter d is set equal to one. Alternatively, time-
consistent discounting can be obtained if there are no arrivals of future selves (by setting
the jump intensity l to 0). Let V ðX Þ denote the entrepreneur’s value function and X � be his
optimal investment threshold. Using standard arguments (i.e., Dixit and Pindyck, 1994),
V ðX Þ solves the differential equation

1

2
s2X 2V 00ðX Þ þ aXV 0ðX Þ � rV ðX Þ ¼ 0; XpX �. (4)

Eq. (4) is solved subject to appropriate boundary conditions. These boundary conditions
serve to ensure that an optimal exercise strategy is chosen:

V ðX �Þ ¼ X � � I and (5)

V 0ðX �Þ ¼ 1. (6)
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The first boundary condition is the value-matching condition. It simply states that, at the
moment the option is exercised, the payoff is X � � I . The second boundary condition is the
smooth-pasting or high-contact condition. (See Merton, 1973, for a discussion of the high-
contact condition.) This condition ensures that the exercise trigger is chosen so as to
maximize the value of the option. The third boundary condition is V ð0Þ ¼ 0, which reflects
the fact that X ¼ 0 is an absorbing barrier for the underlying project value process.8

The investment threshold X � is given by

X � ¼
b1

b1 � 1
I , (7)

where b1 is the positive root of the fundamental quadratic equation ½s2bðb� 1Þ=2þ ab�
r ¼ 0� and is given by

b1 ¼
1

s2
� a�

s2

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

s2

2

� �2

þ 2rs2

s2
4

3
541. (8)

The option value V ðX Þ before investing is then given by

V ðX Þ ¼
X

X �

� �b1
ðX � � IÞ for XoX �. (9)

After investing ðX4X �Þ, the value function is given by V ðX Þ ¼ X � I .

3. The naive entrepreneur

Consider the case of a naive entrepreneur who makes investment decisions under the
false belief that future selves act in the interest of the current self. This assumption of
naivete was first proposed by Strotz (1956) and has been analyzed in Akerlof (1991) and
O’Donoghue and Rabin (1999a, 1999b), among others. Naivete is consistent with
empirical evidence on 401(k) investment (Madrian and Shea, 2001), task completion
(Ariely and Wertenbroch, 2002), and health club attendance (DellaVigna and Malmendier,
2003).

The current self, self 0, has preferences D0ðt; sÞ, as specified in Eq. (2). Specifically, the
current self discounts payoffs during his lifetime with the discount function e�rt for tot1
and discounts payoffs received by future selves with the discount function de�rt for tXt1.
Given the time-inconsistent preferences, future self 1 has the discount function D1ðt; sÞ,
future self 2 has the discount function D2ðt; sÞ, and so on. Because the naive entrepreneur
(mistakenly) believes that all future selves act as if their discount function remains
unchanged at D0ðt; sÞ, we could effectively view the naive entrepreneur as acting as if he can
commit his future selves to behave according to his current preferences. In our model there
is no actual commitment mechanism and thus the naive entrepreneur’s optimistic beliefs
prove incorrect.

Consider the naive entrepreneur’s investment opportunity. At any time prior to the
arrival of his future self, he could exercise the option and receive the net payoff X � I .
However, if the future self arrives prior to the option being exercised, the current self
8This absorbing barrier condition applies to all of our valuation equations. To avoid repetition, we shall refrain

from listing it in future boundary conditions. Nevertheless, we ensure that it always holds.
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receives what is known as a continuation value: the present value of the payoff determined
by the decisions of future selves. Let NcðX Þ denote the continuation value function for the
naive entrepreneur. We claim that the continuation value function for the naive
entrepreneur equals dV ðX Þ, where V ðX Þ is the value function for time-consistent
entrepreneurs and is given in Eq. (9). To see the intuition behind this argument, note
that the naive entrepreneur mistakenly believes that his future selves discount all future
payoffs by the discount function de�rt. Because the multiplicative constant d simply lowers
all payoffs by the same proportion, the current self believes that future selves act as time-
consistent entrepreneurs who discount at the constant rate r. Therefore, the naive current
self falsely foresees a continuation value of dV ðX Þ and believes that all future selves
exercise at the time-consistent trigger X �.
Let NðX Þ denote the naive entrepreneur’s value function and XNaive be the optimal

investment threshold at which the current self exercises. By the standard arguments in real
options analysis, NðX Þ solves the differential equation

1

2
s2X 2N 00ðX Þ þ aXN 0ðX Þ � rNðX Þ þ l½NcðX Þ �NðX Þ� ¼ 0; XpXNaive, (10)

where NcðX Þ ¼ dV ðX Þ.9 The last term in Eq. (10) states that the naive entrepreneur’s value
function NðX Þ is equal to the continuation value function NcðX Þ, upon the arrival of the
future self, which occurs at the intensity l. Eq. (10) is solved subject to the following
standard value-matching and smooth-pasting conditions:

NðXNaiveÞ ¼ XNaive � I and (11)

N 0ðXNaiveÞ ¼ 1, (12)

respectively. We assume for the moment that XNaiveoX � and verify this conjecture.
Solving Eq. (10) subject to boundary conditions Eqs. (11) and (12) yields the following
value function and the exercise trigger:

NðX Þ ¼
b1 � 1

b2 � b1
ðX � � XNaiveÞ

X

XNaive

� �b2
þ d

X

X �

� �b1
ðX � � IÞ and (13)

XNaive ¼
1

b2 � 1
b2I þ ðb2 � b1Þd

XNaive

X �

� �b1
ðX � � IÞ

" #
, (14)

where b1 is given in Eq. (8) and b2 is given by

b2 ¼
1

s2
� a�

s2

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

s2

2

� �2

þ 2ðrþ lÞs2

s2
4

3
54b1. (15)

[b2 is the positive root of the fundamental quadratic equation: s2bðb� 1Þ=2þ ab� ðrþ
lÞ ¼ 0:� The naive entrepreneur’s exercise trigger XNaive solves a simple implicit function
Eq. (14).

Proposition 1. The naive entrepreneur exercises earlier than the time-consistent entrepreneur,
in that XNaiveoX �.
9See Dixit and Pindyck (1994, Chapter 4, Section 1.1) for a derivation of the equilibrium differential equation

for mixed processes with both Poisson and diffusion components.
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The intuition is straightforward. Beyond the standard exponential discounting, the
current self values the payoff obtained from exercise decisions by future selves less than
had he exercised himself. Therefore, this d factor provides an extra incentive for the current
self to exercise before the future selves arrive. Therefore, the current self with hyperbolic
discounting preference believes that he has a less valuable option to wait than a time-
consistent entrepreneur does and thus exercises the investment option earlier than the time-
consistent entrepreneur.

It is important to emphasize the irrational expectations of the naive entrepreneur. When
formulating his optimal exercise trigger XNaive, he truly believes that his future selves
exercise at the time-consistent trigger X �. However, once the future self arrives, the future
self becomes a current self and also mistakenly believes that its future selves exercise at X �.

4. The sophisticated entrepreneur

Unlike the naive entrepreneur, the sophisticated entrepreneur correctly foresees that his
future selves act according to their own preferences. That is, self n makes his decision based
on self n’s preferences, fully anticipating that all future selves do likewise. This leads to
time-inconsistency in the policy rule. That is, self n and self ðnþ 1Þ do not agree on the
optimal investment timing strategy.

The solution for the sophisticated entrepreneur is nontrivial. For illustrative purposes, we
begin this section with the simple case of a sophisticated entrepreneur with just three selves:
the current self lives for two more periods. We then move on to the more complicated case of
the entrepreneur with any finite number of selves N. This is analogous to the general case of
an entrepreneur with a finite lifespan. Finally, we consider the more analytically tractable
case in which the entrepreneur has an infinite number of future selves.

4.1. A model with three selves

The case of a sophisticated entrepreneur with three selves is the simplest one for
bringing out the intuition of solving the time-inconsistent investment timing problem. Self
0 is the current self. In each (small) time period Dt, self 1 is born with probability lDt.
Similarly, after the birth of self 1, self 1 is replaced in each period Dt with probability lDt

by self 2. Self 2 then lives forever after. We solve this problem by backward induction.

4.1.1. Self 2’s problem

First, consider the optimization problem from self 2’s perspective. Because there are no
more future selves, self 2 faces a simple exponential discounting case. Thus self 2 invests at
the time-consistent threshold X � and has value function V ðX Þ, as derived in Section 2.3.
Denoting self 2’s trigger value and value function by X S;2 and S2ðX Þ, respectively, where S

signifies sophisticated, results in

S2ðX Þ ¼ V ðX Þ ¼
X

X �

� �b1
ðX � � IÞ; XpX � and (16)

X S;2 ¼ X � ¼
b1

b1 � 1
I . (17)
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4.1.2. Self 1’s problem

Self 1 formulates his optimal exercise trigger X S;1, taking into account that his future self
exercises at the trigger X S;2 ¼ X �, if his future self has the opportunity to exercise the
option. However, because of self 1’s hyperbolic time preferences, he values the payoff
obtained from the exercise decision by self 2 at only d of its future value. Self 1’s problem is
thus mathematically identical to that of the naive entrepreneur, solved in Section 3.
However, while the naive entrepreneur in Section 3 has false beliefs, the self 1 of the
sophisticated entrepreneur has rational beliefs.
Using the result in Section 3, we write self 1’s option value S1ðX Þ as

S1ðX Þ ¼ NðX Þ ¼
b1 � 1

b2 � b1
ðX � � X S;1Þ

X

X S;1

� �b2
þ d

X

X �

� �b1
ðX � � IÞ, (18)

for XpX S;1 and where the optimal trigger strategy solves the implicit function given by

X S;1 ¼ XNaive ¼
1

b2 � 1
b2I þ ðb2 � b1Þd

X S;1

X �

� �b1
ðX � � IÞ

" #
. (19)

Note that X S;1oX S;2, as demonstrated in Proposition 1.
4.1.3. Self 0’s problem

Now, we turn to the optimization problem for self 0. Self 0 chooses his optimal exercise
trigger X S;0, knowing that selves 1 and 2 exercise at the triggers, X S;1 and X S;2,
respectively. As a result of self 0’s hyperbolic preferences, in addition to discounting future
cash flows at the rate r, he further discounts cash flows obtained from exercise decisions by
either selves 1 or 2 by the additional factor d.
Let Sc

1ðX Þ denote the continuation value function for self 0, self 0’s valuation of the
proceeds of exercise occurring after the arrival of self 1. The continuation value function
Sc
1ðX Þ has a recursive formulation. If self 1 is alive when his trigger X S;1 is reached, then the

option is exercised, and its payoff to self 0 is dðX S;1 � IÞ. If instead self 2 arrives before X S;1

is reached, then self 0’s continuation value evolves into self 1’s continuation value, Sc
2ðX Þ,

where Sc
2ðX Þ ¼ dV ðX Þ. Thus Sc

1ðX Þ solves the differential equation

1

2
s2X 2Sc00

1 ðX Þ þ aXSc0

1 ðX Þ � rSc
1ðX Þ þ l½dV ðX Þ � Sc

1ðX Þ� ¼ 0; XpX S;1, (20)

where the value-matching condition is given by

Sc
1ðX S;1Þ ¼ dðX S;1 � IÞ. (21)

We have only the value-matching, not the smooth-pasting condition for the continuation
value function Sc

1ðX Þ. This is intuitive because solving the continuation value function
Sc
1ðX Þ does not involve an optimality decision. The value-matching condition simply

follows from the continuity of the continuation value function. Solving Eqs. (20) and (21)
jointly gives

Sc
1ðX Þ ¼ dðX � � IÞ

X

X �

� �b1
þ d X S;1 � I �

X S;1

X �

� �b1
ðX � � IÞ

" #
X

X S;1

� �b2
, (22)

for XpX S;1.
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Self 0 maximizes his value function S0ðX Þ, by taking his continuation value function
Sc
1ðX Þ computed in Eq. (22) as given and choosing his investment threshold value X S;0.

Using the standard principle of optimality, we have the differential equation for self 0’s
value function

1

2
s2X 2S000ðX Þ þ aXS00ðX Þ � rS0ðX Þ þ l½Sc

1ðX Þ � S0ðX Þ� ¼ 0; XpX S;0. (23)

Because Sc
1ðX Þ in Eq. (22) contains the Xb2 term, the general solution to the differential

Eq. (23) is more complicated than the standard real options solution. In Appendix A, we
show that the general solution to Eq. (23) takes the form

S0ðX Þ ¼ dðX � � IÞ
X

X �

� �b1
þ G0;1Xb2 logX þ AX b2 , (24)

where

G0;1 ¼ �
l

aþ ð2b2 � 1Þs2=2
d X S;1 � I �

X S;1

X �

� �b1
ðX � � IÞ

" #
1

X S;1

� �b2
. (25)

While the general solution uniquely determines G0;1, it does not pin down the coefficient A

or the investment trigger X S;0.
The constant A and the optimal trigger X S;0 are determined by appending the following

value-matching and smooth-pasting conditions:

S0ðX S;0Þ ¼ X S;0 � I and (26)

S00ðX S;0Þ ¼ 1. (27)

Self 0’s exercise trigger X S;0 is the solution to the implicit equation

X S;0 ¼
b2

b2 � 1
I þ

b2 � b1
b2 � 1

� �
d

X S;0

X �

� �b1
ðX � � IÞ �

G0;1

b2 � 1
X

b2
S;0, (28)

and A ¼ G0;0, where G0;0 is given by

G0;0 ¼ X
�b2
S;0 X S;0 � I � dðX � � IÞ

X S;0

X �

� �b1
� G0;1X

b2
S;0 logðX S;0Þ

" #
. (29)

We will show later that each self exercises at a lower trigger than its future selves, in that
X S;0oX S;1oX S;2. The intuition is clear by using the backward induction argument. First,
self 2 lives forever, so he has time-consistent preferences and exercises at the time-
consistent trigger X �. Self 1, however, faces a different option exercise problem. He knows
that if self 2 arrives before he exercises, he ultimately receives only the fraction d of the
payoff from self 2’s exercise decision. Thus self 1 has a less valuable option to wait than self
2, because the longer he waits, the greater the chance that self 2 arrives and provides a
lowered payoff. Thus self 1 exercises earlier than self 2. Finally, the same argument holds
for self 0. If self 1 arrives before self 0 exercises, he receives only the fraction d of the payoff
value from self 1’s investment decision. Thus self 0 has a lower option value to wait than
self 1 and hence exercises at a trigger lower than does self 1.
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4.2. The sophisticated entrepreneur with any finite number of selves

In this subsection, we consider the general case of a sophisticated entrepreneur with any
finite number of selves. Self 0 is followed by self 1, who is followed by self 2, all the way
through self N. Just as in the case of three selves, one can solve the model by backward
induction. Given self ðnþ 1Þ through self N’s exercise triggers, self n can formulate his
optimal exercise strategy, discounting any future self’s exercise proceeds by the additional
factor d. Let Snþ1ðX Þ be the value function for self ðnþ 1Þ and Sc

nþ1ðX Þ denote the
continuation value function for self n, consistent with the notations used in analysis for the
three-self case.
We present only an outline of the derivation. A full derivation of the results appears in

Appendix B. We derive a recursive formula for the value function of each self along with
their optimal exercise triggers. This also paves the way for the more analytically tractable
case with an infinite number of selves.
First consider self N’s problem. Because self N is the final self, he faces the

standard time-consistent option exercise problem. Therefore, self N’s value function
SN ðX Þ is equal to the time-consistent entrepreneur’s value function V ðX Þ and self
N’s exercise trigger X S;N is also equal to the time-consistent entrepreneur’s exercise
trigger X �. The solution for the penultimate self, self ðN � 1Þ, is also easily obtained. As
discussed in the Section 4.1, the penultimate sophisticated entrepreneur faces mathema-
tically the same problem as the naive entrepreneur. Thus the value function SN�1ðX Þ for
self ðN � 1Þ, the continuation value function Sc

N ðX Þ for self ðN � 1Þ, and the exercise
trigger X S;N�1 chosen by self ðN � 1Þ are given by SN�1ðX Þ ¼ NðX Þ, Sc

N ðX Þ ¼ dV ðX Þ, and
X S;N�1 ¼ XNaive; respectively. These formulas for the naive entrepreneurs are derived in
Section 3.
For npN � 2, self n’s value function and exercise strategy could also be solved by

backward induction. Similar to the three-self case analysis, the continuation value function
Sc

nþ1ðX Þ, which is self n’s valuation of the payoffs from exercise occurring after the arrival
of self ðnþ 1Þ, satisfies the differential equation

1

2
s2X 2Sc00

nþ1ðX Þ þ aXSc0

nþ1ðX Þ � rSc
nþ1ðX Þ þ l½Sc

nþ2ðX Þ � Sc
nþ1ðX Þ� ¼ 0; XpX S;nþ1,

(30)

where the value-matching condition is given by

Sc
nþ1ðX S;nþ1Þ ¼ dðX S;nþ1 � IÞ. (31)

As in the three-self case, only the value-matching condition, not the smooth-pasting
condition, applies to the continuation value function Sc

nþ1ðX Þ. The recursive relationship
starts with the known solutions X S;N�1 ¼ XNaive and Sc

NðX Þ ¼ dV ðX Þ. The solutions for
Sc

nþ1ðX Þ for n ¼ 0; . . . ;N � 2 are presented in Appendix B. We take the trigger X S;nþ1 as
given when we calculate the continuation value function Sc

nþ1ðX Þ. We solve for X S;nþ1 as
part of the optimization problem for self ðnþ 1Þ.
The sophisticated entrepreneur’s value function Snþ1ðX Þ solves the differential equation

1

2
s2X 2S00nþ1ðX Þ þ aXS0nþ1ðX Þ � rSnþ1ðX Þ þ l½Sc

nþ2ðX Þ � Snþ1ðX Þ� ¼ 0; XpX S;nþ1,

(32)
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where the value-matching and smooth-pasting conditions are given by

Snþ1ðX S;nþ1Þ ¼ X S;nþ1 � I and (33)

S0nþ1ðX S;nþ1Þ ¼ 1. (34)

The solutions for the value functions Snþ1ðX Þ are presented in Appendix B. Most
important, however, are the optimal exercise triggers chosen by each of the selves. The
optimal exercise trigger for self n, satisfies the implicit function

X S;nþ1 ¼
b2

b2 � 1
I þ

b2 � b1
b2 � 1

� �
d

X S;nþ1

X �

� �b1
ðX � � IÞ

�
1

b2 � 1

XN�2�n

k¼1

kGnþ1;k;X
b2
S;nþ1ðlogX S;nþ1Þ

k�1, ð35Þ

for nþ 1pN � 2 and where the triggers X S;N and X S;N�1 are equal to X � and XNaive,
respectively. The constants Gnþ1;k ¼ Cnþ1;k are given in Eq. (116), for 1pkpN � 2� n.

The following proposition demonstrates that each self’s trigger value is lower than that
of its future self. That is, X S;0oX S;1o � � �oX S;N . This makes intuitive sense because the
time-inconsistency problem is greater for the earlier selves, as earlier selves have a greater
number of future selves whose decisions could detrimentally influence earlier selves’ value
functions.

Proposition 2. X S;n is increasing in n.

For the case of a finite number of selves, we can now easily prove that the sophisticated
entrepreneur exercises earlier than the naive entrepreneur, who in turn invests earlier than
the time-consistent entrepreneur. This is summarized in Proposition 3.

Proposition 3. For the sophisticated entrepreneur with a finite number of selves N,
X S;0oXNaiveoX �.

For the sophisticated entrepreneur, each additional future self introduces an extra layer
of potentially detrimental exercise behavior from the standpoint of the current self’s utility,
magnifying the problem of time-inconsistency. In an effort to avoid the detrimental effect
of future selves’ exercise decisions, the current self finds it optimal to exercise earlier than
he otherwise would, to lessen the chance of failing to exercise prior to the arrival of his
future selves. This will be discussed in greater detail in Section 4.4.

4.3. The sophisticated entrepreneur with an infinite number of selves

We have so far fixed the number of selves to a finite number. Although we deliver the
intuition on the effect of hyperbolic discounting on investment decision via the finite N-self
model, the model solution could be substantially simplified by proceeding to the case with
a countably infinite number of selves. For a fixed number of selves N, we show that self N

chooses the time-consistent investment trigger X � and the investment trigger for self n is
lower than the investment trigger for self ðnþ 1Þ. Given the monotonicity of the investment
trigger and the fact that all investment triggers are positive, we could conjecture that the
investment trigger for self 0 converges to the steady-state limiting investment trigger, when
the total number of selves N goes to infinity.
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When we have infinite number of selves, the sophisticated entrepreneur faces the same
time-invariant option exercising problem, for any self n. That is, the sophisticated
entrepreneur’s optimization problem does not depend on n. The stationary solution
involves searching for a fixed-point to the investment exercise problem.10 Specifically,
suppose that all stationary future selves exercise at the trigger X S. Then, X S represents the
(intra-personal) equilibrium investment trigger if the current self’s optimal exercise trigger,
conditional on the fact that future selves exercise at X S is also X S.
Before solving for the intra-personal equilibrium exercise trigger, we consider the current

self’s exercise strategy conditional on an assumed future self exercise trigger. Let X̂ denote
the conjectured exercise trigger by the future selves. Let FðX̂ Þ denote the entrepreneur’s
optimal exercise trigger, as a function of X̂ , the conjectured exercise trigger chosen by his
future selves.
We solve the entrepreneur’s investment trigger by working backward. Let SðX ; X̂ Þ and

ScðX ; X̂ Þ denote the entrepreneur’s value function and the continuation value function,
respectively, conditioning on the conjectured exercise trigger X̂ chosen by his future selves.
As in the previous analysis, first consider the entrepreneur’s continuation value function
ScðX ; X̂ Þ. Because all future selves are conjectured to exercise at the same trigger, X̂ , the
continuation value function is therefore given by d times the present value of receiving the
payoff value X̂ � I , when the entrepreneur exercises at the trigger X̂ . Using the standard
present value analysis with stopping time (Dixit and Pindyck, 1994), we thus have

ScðX ; X̂ Þ ¼
d

X

X̂

� �b1
ðX̂ � IÞ for XoX̂ ;

dðX � IÞ for XXX̂ :

8><
>: (36)

Having derived the continuation value function ScðX ; X̂ Þ, we now turn to the
sophisticated entrepreneur’s investment optimization problem. Using the standard
argument, we have

1

2
s2X 2 q

2SðX ; X̂ Þ

qX 2
þ aX

qSðX ; X̂ Þ

qX
� rSðX ; X̂ Þ þ l½ScðX ; X̂ Þ � SðX ; X̂ Þ� ¼ 0, (37)

for XpX̂ . The differential Eq. (37) is solved subject to the following value-matching and
smooth-pasting conditions

SðFðX̂ Þ; X̂ Þ ¼ FðX̂ Þ � I and (38)

qSðFðX̂ Þ; X̂ Þ
qX

¼ 1. (39)

We could obtain the intra-personal equilibrium sophisticated exercise trigger, X S, by
substituting the continuation value function ScðX ; X̂ Þ given in Eq. (36) into the differential
Eq. (37), applying boundary conditions Eqs. (38) and (39), and solving for the value
function SðX ; X̂ Þ and the exercise trigger FðX̂ Þ. We could then impose the intra-personal
equilibrium condition that all selves exercise at the same trigger: FðX SÞ ¼ X S. Define the
intra-personal equilibrium value function SðX ;X SÞ � SðX Þ, we thus obtain the solution of
10We here exclusively focus on the most natural Markov perfect equilibrium, in which all selves exercise at the

same trigger. However, it is conceivable that other equilibria exist.
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the stationary sophisticated entrepreneur problem:

SðX Þ ¼ d
X

X S

� �b1
þ ð1� dÞ

X

X S

� �b2
" #

ðX S � IÞ and (40)

X S ¼
b

b� 1
I , (41)

where

b ¼ b1dþ b2ð1� dÞ. (42)

The value of the sophisticated entrepreneur’s option is equal to a weighted average of
two time-consistent present value functions, ðX=X SÞ

b1 ðX S � IÞ and ðX=X SÞ
b2 ðX S � IÞ,

where the weights are d and ð1� dÞ, respectively. Both present value functions represent
the value to a time-consistent entrepreneur of receiving the exercise payoff of ðX S � IÞ

when the payoff value X reaches the trigger X S. However, the first present value uses the
discount rate r with the implied option parameter b1, and the second uses the discount rate
ðrþ lÞ with the implied option parameter b2.

The sophisticated trigger X S could be obtained by using the standard real options
analysis, if we replace the standard option parameter with b, the weighted average of b1
and b2, with d and ð1� dÞ as respective weights.11 The exercise trigger X S for the
sophisticated agent is equal to the trigger for a time consistent agent, whose subjective
discount rate r is given by r ¼ s2bðb� 1Þ=2þ ab: The entrepreneur’s investment threshold
decreases with the degree of time-inconsistency, in that qX S=qd40. Just as in the case with
finite selves, the sophisticated entrepreneur invests earlier than the naive entrepreneur.
Proposition 4 demonstrates this timing result that is the stationary case analog
toProposition 3.

Proposition 4. The sophisticated entrepreneur in the stationary case exercises earlier than the

naive entrepreneur, who in turn exercises earlier than the time-consistent entrepreneur, in that

X SoXNaiveoX �.

4.4. Discussion

In this section we discuss three interesting aspects of the model. First, we look at the
impact of time-inconsistency on the timing of investment. Second, we compare the results
of the model with results obtained from models of real options models under competition.
Finally, we consider the implications of the model on real asset markets such as real estate
development.
4.4.1. The timing of investment

Propositions 3 and 4 demonstrate that time-inconsistent entrepreneurs invest earlier
than time-consistent entrepreneurs. Moreover, the sophisticated time-inconsistent
11When l ¼ 1, we uncover the standard net present value rule (note that b2 ¼ 1 and X S ¼ I). Intuitively,

when the future self arrives in no time, then the effective discount rate for the entrepreneur becomes rþ l ¼ 1.

As a result, the option value of waiting evaporates because of the sufficiently high discounting.
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entrepreneur invests even earlier than the naive time-inconsistent entrepreneur. In this
section we discuss these results and their implications.
The first fundamental result is the precise trade-off between the benefits of waiting to

invest and the increased impatience driven by time-inconsistent discounting. In our
intertemporal stochastic setting, as is well known from real options theory, an
entrepreneur holds a valuable option to wait. This option to wait is what drives the
time-consistent entrepreneur to exercise when the option is sufficiently in the money, as
embodied by the distance between X � and I . When we introduce the time-varying
impatience driven by time-inconsistent preferences, we have a force that counteracts the
benefits of waiting for uncertainty to resolve itself. This counteracting force is caused by
the current self’s motivation to exercise before the future selves take control of the exercise
decision, because the payoff to the current self from future exercise is discounted by the
factor d in addition to the conventional exponential discounting. Therefore, the lowered
value of the option to wait induces time-inconsistent entrepreneurs to exercise earlier than
the time-consistent entrepreneur. Time-inconsistency reduces, but does not eliminate, the
option value of waiting ðIoX SoXNaiveoX �Þ.
The second fundamental result is the distinction between sophisticated and naive

entrepreneurs. Sophisticated entrepreneurs invest even earlier than naive entrepreneurs.
The intuition is relatively simple. While naive entrepreneurs are optimistic in that they
incorrectly forecast that their future selves behave according to their current preferences,
sophisticated entrepreneurs correctly forecast that their future selves invest suboptimally
relative to their current preferences. The realistic pessimism of sophisticated entrepreneurs
compels them to invest earlier than naive entrepreneurs, so as to lessen the probability that
future selves take over the investment decision and invest suboptimally. This result is
referred to by O’Donoghue and Rabin (1999a) as the ‘‘sophistication effect.’’ The fact
that sophisticated entrepreneurs are concerned about the suboptimal timing decisions of
future selves further erodes the value of their option to wait relative to that of naive
entrepreneurs.
Fig. 1 plots the option values for the time-consistent entrepreneur, the naive

entrepreneur, the sophisticated entrepreneur with an infinite number of selves, and the
sophisticated entrepreneur a finite number of selves ðN ¼ 5Þ. For each type of
entrepreneur, the option value smoothly pastes to the project’s net payoff value,
ðX � IÞ, at the entrepreneur’s exercise trigger. For each value of X prior to exercise, the
vertical distance between the option value and the payoff value measures the value of the
option to wait. At all levels of X prior to exercise, the time-consistent entrepreneur has the
most valuable option to wait, followed by the naive entrepreneur, then the sophisticated
entrepreneur with a finite number of selves, and finally the sophisticated entrepreneur with
an infinite number of selves.

4.4.2. Comparison with models of competition

Several authors expand the real options framework to include strategic competition.
(See Smets, 1993; Williams, 1993; Grenadier, 1996, 2002; Lambrecht and Perraudin, 2003.)
In such models, competitive pressure from the exercise decisions of other investors
motivates early exercise so as to avoid the costs of preemption. Thus, in terms of empirical
implications, both the competitive models and our model of time-inconsistent preferences
make similar predictions. To distinguish between these two theoretical explanations for
markets that display early exercise of investment options, one must determine whether one
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Fig. 1. The impact of time-inconsistent preferences on the option to wait. This graph plots the option values of

the time-consistent, naive, sophisticated with a finite number of selves, and sophisticated with an infinite number

of selves entrepreneurs, denoted as V ðX Þ, NðX Þ, S0ðX Þ and SðX Þ, respectively. The vertical distance between an

option value and the investment payoff value, X–I , represents the value of the option to wait. At all points prior

to exercise, the time-consistent entrepreneur has the most valuable option to wait, followed by the naive

entrepreneur, then the sophisticated entrepreneur with finite selves, and finally the sophisticated investor with an

infinite number of selves. The parameter values are r ¼ 0:05, a ¼ 0, s ¼ 0:35, d ¼ 0:90, l ¼ 5, I ¼ 1, and N ¼ 5

for the sophisticated entrepreneur with finite selves.
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finds multiple firms competing over similar investment opportunities or small numbers of
time-inconsistent entrepreneurs with unique investment opportunities.

This analogy between inter-firm competition and time-inconsistency provides an
interesting framework for interpreting this model’s results. Essentially, instead of
competing against other entrepreneurs, the time-inconsistent entrepreneur is competing
against its future selves. With interpersonal competition, agents fear the costs of being
preempted by others. With intra-personal competition, agents fear being preempted by
their future selves.

Consider the naive entrepreneur. He fears being preempted by his future selves simply
because he values the payoff realized from exercise decisions by his future selves less than
the payoff from his current self’s investment decision (even after taking into account the
standard exponential discounting). In our model, this effect stemming from fear of
preemption is analogous to the effect of competition that causes the value to be reduced by
ð1� dÞ fraction. (Trigeorgis, 1991, provides a model of competition driven by competitors
arriving randomly according to a jump process that is clearly in the spirit of this analogy.)
Now consider the sophisticated entrepreneur. In addition to fearing being preempted
because of additional impatience (reflected by do1), he faces preemption costs stemming
from the suboptimal exercise decisions of future selves. One could view this as simply a
larger cost of preemption than that of the naive entrepreneur or as facing repeated
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competition from a sequence of future entrants. Intuitively, the naive entrepreneur is
myopic and worries only about the immediate threat of preemption, whereas the
sophisticated entrepreneur is forward-looking and concerned with all future threats of
preemption.12

While in reduced form our model of time-inconsistent entrepreneurs’ investment
decisions shares some similar features with models of competition, our model is driven by a
different economic mechanism. It is only possible to provide precise predictions on his
investment threshold by specifying the entrepreneur’s beliefs and analyzing his optimiza-
tion problem. In addition, when we extend the model to allow for payoffs to be paid as
flows over time, we find that time-inconsistent entrepreneurs invest later than time-
consistent entrepreneurs. This provides opposite implications than models of competition.
4.4.3. Implications for real asset markets

In the real options literature, typical parameterizations imply that investment occurs
only when the project value is much greater than the investment cost. It is not unusual to
see such models predict that investment only occurs when the present value of the project is
double the investment cost. This has two clear empirical implications. First, there is
unlikely to be oversupply, in the sense that cautious entrepreneurs do not invest until a
large cushion exists in terms of net present value. Second, as shown in Grenadier (2002),
with such a large net present value cushion, it becomes almost impossible for there to be
any expost losses. Specifically, with typical parameterizations, the probability of the
project’s value five (or even ten) years after investment being below the investment cost is
close to zero. This makes the implications of standard real options models difficult to
reconcile with real world bankruptcies and foreclosures.
In the case of time-inconsistent entrepreneurs (and even more so for the specific case of

sophisticated entrepreneurs), investment could occur much earlier than in the time-
consistent case. For example, in Fig. 1, the time-consistent entrepreneur exercises at a
net present value of X � � I ¼ 1:88, while the sophisticated entrepreneur exercises at a net
present value of X S � I ¼ 0:747. Thus the time-consistent entrepreneur exercises at a
net present value that is just over 150% greater than that of the sophisticated entrepreneur.
With smaller net present value cushions, periods of oversupply are more likely to be seen.
Even with a moderate time-to-build factor, projects can come online once demand has
declined. Similarly, the probabilities of expost losses can increase dramatically.
Consider again the real estate overbuilding example in Section 1. Williams (2001) states

that land (both improved and unimproved) is primarily held and developed by
noninstitutional investors (such as individuals and private partnerships), not by
institutional investors (such as pension funds). These noninstitutional investors in turn
sell the developed properties to institutional investors. Such developers are termed
‘‘merchant builders.’’ If it is the case that noninstitutional investors are more likely to have
time-inconsistent preferences, then merchant builders could accept lower returns from
development to protect themselves against the suboptimal development choices of
their future selves. Such early development could be a contributor to the tendency for
12In the extreme case in which d ¼ 0, both the naive and sophisticated entrepreneurs face the risk of ruin from

preemption, analogous to the bond price process with a Poisson jump described in Merton (1971). In such a case,

both the naı̈ve and sophisticated entrepreneurs act as if they are time-consistent but with a discount rate of

ðrþ lÞ.
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developers to overbuild. In fact, merchant builders are often blamed for causing
overbuilding in US office markets.
5. An extension: the flow payoff case

While some real-world examples could fit in the lump-sum payoff setting that we have
analyzed, there are other situations under which the investment payoffs are given in flows
over time. For time-consistent entrepreneurs, the lump-sum and the flow payoff cases are
equivalent after adjusting for discounting. However, we show that this seemingly minor
alteration generates fundamentally different predictions about investment decisions and
provide new economic insights, when entrepreneurs have time-inconsistent preferences.

In the flow payoff case, after the entrepreneur irreversibly exercises his investment
option at some stopping time t, he obtains a perpetual stream of flow payments
fpðtÞ : tXtg. Here, the payoffs are assumed to be nontradable for the same reason as for
the lump-sum payoff case treated earlier. For example, the flow payoffs could be
contingent on the unique skills of the entrepreneur, or moral hazard or adverse selections
issues can undermine the selling of the cash flow stream. Assume that the flow payoff
process p follow a geometric Brownian motion process:

dpðtÞ ¼ apðtÞdtþ spðtÞdBt, (43)

where we assume aor for convergence. The entrepreneur thus evaluates the investment
project and chooses his investment time optimally based on his hyperbolic discounting
preference.

Unlike the lump-sum case in which the net payoff value upon option exercise is simply
given by ðX � IÞ, the payoff value for the flow case depends on the entrepreneur’s time
preferences. Let MðpÞ denote the present value of the future cash flows. Using the
hyperbolic discounting function given in Eq. (2), we have

MðpÞ ¼ E

Z T

0

e�rtpðtÞdtþ

Z 1
T

de�rtpðtÞdt

� �
¼ g

p

r� a
, (44)

where

g ¼
rþ dl� a
rþ l� a

p1, (45)

and where T has an exponential distribution with mean 1=l, and the expectation is taken
over the joint distribution of T and pðtÞ.13 Therefore, the net present value of the payoff
from exercise is MðpÞ � I .
13For the entrepreneur’s problem to make sense in the flow payoff setting, we must restrict the parameter region

to ensure the existence of an intra-personal equilibrium. Specifically, we need to ensure that a trigger strategy

defines the optimal stopping region. The precise condition needed is specified in Appendix B, in Chapter 4, of

Dixit and Pindyck (1994). (For the lump-sum case, this condition is always satisfied.) This translates into the

condition

ldb1
ps

r� a
� I

� �
o

rþ ld� a
r� a

ps,

where ps is the sophisticated equilibrium trigger that appears in Eq. (63). This also ensures the existence of a naive

solution, because Proposition 6 demonstrates that the naive trigger is greater than the sophisticated trigger.
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If the entrepreneur has time-consistent preferences (d ¼ 1 or l ¼ 0), then the present
value is given by MðpÞ ¼ p=ðr� aÞ, the standard result. When the entrepreneur has time-
inconsistent preferences, the present value MðpÞ of the flow payoffs is less than that for the
time-consistent entrepreneur, in that go1. A stronger degree of time-inconsistency
(manifested by a lower d or a higher l) implies a lower present value MðpÞ as seen in
Eq. (44). Unlike the lump-sum payoff case, the time-inconsistency not only lowers the
option value of waiting, but also reduces the project’s payoff value MðpÞ upon option
exercise. Because both the option value and the project payoff values are lowered by
hyperbolic discounting, a priori, the time-inconsistent entrepreneur could invest either
earlier or later than a time-consistent entrepreneur when his payoffs are given in
flow terms.

5.1. The time-consistent entrepreneur

First consider the benchmark case in which all cash flow payoffs are discounted at the
constant rate r. Let vðpÞ denote the entrepreneur’s value function and p� be his optimal
investment threshold to be determined. By standard arguments, the value function vðpÞ

solves the differential equation

1

2
s2p2v00ðpÞ þ apv0ðpÞ � rvðpÞ ¼ 0; ppp�, (46)

subject to the following value-matching and smooth-pasting conditions:

vðp�Þ ¼
p�

r� a
� I and (47)

v0ðp�Þ ¼
1

r� a
. (48)

The value function vðpÞ is given by

vðpÞ ¼

p

p�

� �b1 p�

r� a
� I

� �
; pop�;

p

r� a
� I ; pXp�;

8>>><
>>>:

(49)

and the investment exercise trigger p� is

p� ¼
b1

b1 � 1
ðr� aÞI . (50)

The investment threshold expressed in the present value term for the flow payoff case,
p�=ðr� aÞ, is equal to X �, the investment threshold for the corresponding lump sum payoff
case. This equivalence no longer holds when the entrepreneur has time-inconsistent
preferences.

5.2. The naive entrepreneur

Now consider the case in which the entrepreneur naively assumes that future
selves behave according to his current preferences. Following the same procedure as in
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the lump-sum payoff case, we first compute the continuation value function and then solve
for the value function and the investment trigger.

As in the lump-sum payoff case, the naive entrepreneur falsely believes that future selves
exercise at the time-consistent trigger p�. Using the same argument as the one for the naive
entrepreneur with lump-sum payoffs, the naive entrepreneur’s continuation value function
ncðpÞ is thus given by

ncðpÞ ¼

d
p

p�

� �b1 p�

r� a
� I

� �
if pop�;

d
p

r� a
� I

� �
if p4p�:

8>>><
>>>:

(51)

For the lump-sum payoff case, time-inconsistency only lowers the option value of
waiting, not the project payoff value upon option exercise. For the flow payoff case, we
have shown that the project payoff value MðpÞ is also lowered by time-inconsistent
preferences. It is thus conceivable that hyperbolic discounting could have a stronger effect
on the project payoff value than on the option value of waiting. If so, the net effect of
hyperbolic discounting on investment could lead to a further delayed investment compared
with the benchmark with time-inconsistent preferences. This intuition is consistent with the
results in O’Donoghue and Rabin (1999a). They show that if the benefits are more distant,
the agent could procrastinate.

Motivated by these considerations, we conjecture and then later verify that the
investment trigger for the naive entrepreneur is larger than the time-consistent investment
trigger p�. The continuation value function ncðpÞ given in Eq. (51) differs depending on
whether p is larger or smaller than p�. Because we conjecture that the naive entrepreneur’s
exercise trigger pnaive is larger than p�, we thus naturally need to divide the regions for p

into two and compute the corresponding value functions jointly.
Let nlðpÞ and nhðpÞ denote the naive entrepreneur’s value function nðpÞ for pop� and

pXp� regions, respectively. Let pnaive denote the selected exercise trigger by the naive
entrepreneur. As stated earlier, we conjecture and then verify pnaive4p�.

First consider the higher region pXp�. Following the same argument as in the lump-sum
payoff case, the value function nhðpÞ satisfies

1

2
s2p2n00hðpÞ þ apn0hðpÞ � rnhðpÞ þ l d

p

r� a
� I

� �
� nhðpÞ

� �
¼ 0; pXp�, (52)

where we have used the continuation value function given in Eq. (51) in the higher region.
The general solution for nhðpÞ is given in Eq. (96). This general solution is solved with the
following standard value-matching and smooth-pasting conditions:

nhðpnaiveÞ ¼MðpnaiveÞ ¼ g
pnaive

r� a
� I and (53)

n0hðpnaiveÞ ¼M 0ðpnaiveÞ ¼
g

r� a
. (54)

Now consider the lower region pop�. Based on our conjecture pnaive4p�, the naive
entrepreneur does not invest in the lower region. By the standard argument, the value



ARTICLE IN PRESS
S.R. Grenadier, N. Wang / Journal of Financial Economics 84 (2007) 2–3924
function nlðpÞ for the lower region satisfies

1

2
s2p2n00l ðpÞ þ apn0lðpÞ � rnlðpÞ þ l d

p

p�

� �b1 p�

r� a
� I

� �
� nlðpÞ

" #
¼ 0; pop�,

(55)

where we have used the continuation value function for the lower region given in Eq. (51).
The general solution for nlðpÞ is given in Eq. (98). Finally, we provide boundary conditions
for nlðpÞ, which connect nlðpÞ with nhðpÞ at the boundary p�. We require that the value
function nðpÞ is continuously differentiable at p� (see Dixit, 1993, Section 3.8), in that

nlðp
�Þ ¼ nhðp

�Þ and (56)

n0lðp
�Þ ¼ n0hðp

�Þ. (57)

We also prove that the naive entrepreneur invests later than the time-consistent
entrepreneur, in that p�opnaive. Therefore, we verify the presumption for our solution
methodology sketched out here.

Proposition 5. For the flow payoff case, the naive entrepreneur invests later than the time-

consistent entrepreneur, in that p�opnaive:
5.3. The sophisticated entrepreneur

Now, consider the flow payoff case for the sophisticated entrepreneur. For analytical
tractability, we analyze the case with an infinite number of selves. However, nothing
substantive would change if we instead modeled the case with a finite number of selves, as
we have done earlier for the case with lump-sum payoffs.
The intra-personal equilibrium trigger for sophisticated entrepreneurs with flow payoffs

represents the solution to a fixed-point problem. In a stationary intra-personal
equilibrium, the current self’s optimal exercise trigger, conditional on an assumed trigger
for future selves, must be the same as that of future selves. Let p̂ denote the current self’s
conjectured trigger chosen by future selves. Let sðp; p̂Þ and scðp; p̂Þ denote the value function
and the continuation value function, respectively, conditioning on the conjectured trigger p̂

of future selves.
We first calculate the continuation value function scðp; p̂Þ. Because all future selves

exercise at the same trigger p̂ in the stationary setting, using the present value argument, we
could compute the continuation value scðp; p̂Þ as follows:

scðp; p̂Þ ¼

d
p

p̂

� �b1 p̂

r� a
� I

� �
for pop̂;

d
p

r� a
� I

� �
for pXp̂:

8>>><
>>>:

(58)

Let jðp̂Þ denote the sophisticated entrepreneur’s optimal exercise trigger, expressed as a function
of the current self’s conjectured investment trigger p̂ by future selves. Using the continuation
value function scðpÞ, we can write the sophisticated entrepreneur’s value function as

1

2
s2p2 q

2sðp; p̂Þ

qp2
þ ap

qsðp; p̂Þ

qp
� rsðp; p̂Þ þ l½scðp; p̂Þ � sðp; p̂Þ� ¼ 0; ppp̂, (59)
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where the value-matching and smooth-pasting conditions are given by

sðjðp̂Þ; p̂Þ ¼Mðjðp̂ÞÞ ¼ g
jðp̂Þ
r� a

� I and (60)

qsðjðp̂Þ; p̂Þ
qp

¼M 0ðjðp̂ÞÞ ¼
g

r� a
. (61)

Let ps denote the intra-personal equilibrium sophisticated exercise trigger. The equilibrium
condition requires that all selves of the entrepreneur exercise at the same trigger, in that jðpsÞ ¼

ps. Let sðpÞ denote the intra-personal equilibrium value function, in that sðp; psÞ � sðpÞ. Solving
the differential Eq. (59) subject to the boundary conditions Eqs. (60)–(61) and imposing the
equilibrium conditions gives the following equilibrium value function sðpÞ and the equilibrium
exercise trigger ps for the sophisticated entrepreneur:

sðpÞ ¼ d
p

ps

� �b1 ps

r� a
� I

� �
þ g

ps

r� a
� I � d

ps

r� a
� I

� �� �
p

ps

� �b2
and (62)

ps ¼ ðr� aÞ
b1dþ b2ð1� dÞ

ðb2 � 1Þg� ðb2 � b1Þd
I . (63)

Having analyzed the exercise triggers for the time-consistent, naive, and sophisticated
entrepreneurs, we now can state Proposition 6.

Proposition 6. For the case with flow payoffs, the naive entrepreneur exercises later than the

sophisticated entrepreneur, who exercises later than the time-consistent entrepreneur, in that

pnaive4ps4p�.

5.4. Discussion

As demonstrated by Propositions 5 and 6, the flow payoff case provides different results
from the lump-sum payoff case. This result stems from the interaction of two conflicting
forces for the flow payoff case. First, as we know from the case with lump-sum payoffs,
hyperbolic discounting increases the desire to exercise earlier, as this allows the
entrepreneur to protect himself from the suboptimal investment decision of future selves.
Second, for the case with flow payoffs, the hyperbolic entrepreneur receives a lower present
value MðpÞ for the flow payoffs than would a time-consistent agent. This is apparent from
the g parameter that enters the payoff value MðpÞ. This lowered payoff from the current
self’s exercise motivates the hyperbolic entrepreneur to wait longer before exercising, to
justify the investment cost I . We show that the second effect dominates the first effect.14

Fig. 2 plots the option values for the time-consistent, naive, and sophisticated
entrepreneurs. Also plotted is the net present values (upon immediate exercise) for the
time-consistent entrepreneur, p=ðr� aÞ � I , and for the time-inconsistent entrepreneurs,
MðpÞ � I . For each value of p prior to exercise, the vertical distance between the option
14If instead of using an infinite horizon for the cash flows, we moved to a finite horizon T , we would then find

for a particular finite horizon the two effects would exactly offset each other. That is, there exists a T� in the flow

payment case such that for T ¼ T� the sophisticated and time-consistent entrepreneurs would exercise at the same

time. For ToT� the sophisticated entrepreneur would exercise earlier than the time-consistent entrepreneur, and

for TXT� the sophisticated entrepreneur would exercise later than the time-consistent entrepreneur.
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Fig. 2. The impact of time-inconsistent preferences on the option to wait for the case of flow payoffs. For the case

of flow payoffs, this graph plots the option values of the time-consistent, naive, and sophisticated entrepreneurs,

denoted as vðpÞ, nðpÞ, and sðpÞ, respectively. For the time-consistent entrepreneur, the investment payoff value is

p=ðr� aÞ � I , while for the naive and sophisticated entrepreneurs the investment payoff value is gp=ðr� aÞ � I .

The vertical distance between an option value and the investment payoff value represents the value of the option

to wait. The parameter values are r ¼ 0:05, a ¼ 0, s ¼ 0:40, d ¼ 0:30, l ¼ 0:33, and I ¼ 1.
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value and the payoff value measures the value of the option to wait. Because the time-
inconsistent entrepreneur values the project payoff less than the time-consistent
entrepreneur ðgo1Þ, the time-inconsistent entrepreneur naturally has weaker incentives
to exercise the investment option than the time-consistent entrepreneur. Thus, the time-
inconsistent entrepreneur invests later than the time-consistent entrepreneur, whether
naive or sophisticated.
As in the lump-sum payoff case, the sophisticated entrepreneur invests earlier than the

naive entrepreneur. The sophisticated entrepreneur has a greater desire to invest earlier
than the naive entrepreneur so as to protect himself against the behavior of future selves as
a result of his belief that his future selves do not behave in his own interest. Therefore, the
option value to wait for the sophisticated entrepreneur is lower because its future
selves exercise at suboptimal exercise triggers (from the vantage of the current self). Fig. 2
confirms our intuition. While the payoff upon option exercise is the same for both the
naive and the sophisticated entrepreneurs, the naive entrepreneur’s value function
nðpÞ is always greater than sðpÞ. Therefore, the threshold at which the option value and
the straight line are connected and smoothly pasted must be higher for the naive
entrepreneur than for the sophisticated entrepreneur. Our argument holds for
both the lump-sum and flow payoff cases. Hence, we can conclude that the sophisticated
entrepreneur always invests earlier than the naive entrepreneur does, regardless of whether
the payoffs are lump sum or flows. This result is referred to by O’Donoghue and Rabin
(1999a) as the ‘‘sophistication effect’’ and holds true under both the lump-sum and flow
payoff settings.
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6. The interaction of time-inconsistent entrepreneurs: the case of competitive industry

equilibrium

In this section we model the perfectly competitive equilibrium outcome when the
industry is made up of sophisticated hyperbolic entrepreneurs. It is an equilibrium
extension of the flow payoff case of Section 5, in which the entrepreneurs acted as
monopolists. The competitive equilibrium framework that we use is similar to that of
Leahy (1993) and Dixit and Pindyck (1994). The key contribution of this section is the
extension of the equilibrium to the case with time-inconsistent entrepreneurs.

Consider an industry made up of a large number of entrepreneurs. Each entrepreneur
has the option to irreversibly undertake a single investment by paying an up-front
investment cost of I at chosen time t. Investment is irreversible, in that exit from the
industry is not permitted. Upon investment, the project yields a stream of stochastic
(profit) flow of fpðsÞ : sXtg forever. (We assume no variable costs of production and thus
the process p represents cash flow process, as in Section 5.) The industry is perfectly
competitive, in that each unit of output is small in comparison with industry supply, QðtÞ.
Thus each entrepreneur acts as a price taker. The equilibrium price is determined by the
condition equating industry supply and demand. Each entrepreneur takes as given the
stochastic process of price p. In the rational expectations equilibrium, this conjectured
price process is the market-clearing price.

The price of a unit of output is given by the industry’s inverse demand curve

pðtÞ ¼ yðtÞ �DðQðtÞÞ, (64)

where D0ðQÞo0 and yðtÞ is a multiplicative shock and is given by the geometric Brownian
motion process:

dyðtÞ ¼ ayðtÞdtþ syðtÞdBt. (65)

Over an interval of time in which no entry takes place, Qð�Þ is fixed, and thus the price
process p evolves as

dpðtÞ ¼ apðtÞdtþ spðtÞdBt. (66)

Given the multiplicative shock specification of the demand curve in Eq. (64), entry by new
entrepreneurs causes the price process to have an upper reflecting barrier. Thus, in this
simple setting, each price-taking entrepreneur takes the process Eq. (66) with an upper
reflecting barrier as given. In the rational expectations equilibrium, the entry response by
entrepreneurs who assume such a process leads to the supply process that equates supply
and demand.15
15While we solve for the equilibrium made up of sophisticated entrepreneurs, we do not construct an

equilibrium for the case of naive entrepreneurs. This is the result of the problematic nature of defining an

equilibrium for naive entrepreneurs. While the literature on naive hyperbolic preferences provides a well-defined

notion of a current self’s expectations regarding future selves’ behavior, there is no standard assumption regarding

what naive entrepreneurs forecast for others’ current and future selves. For example, do naive entrepreneurs

believe that other entrepreneurs possess self-control, or do they believe that only they themselves possess self-

control? The implications for either assumption make for a complex equilibrium.
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6.1. Equilibrium with time-consistent entrepreneurs

As a benchmark, consider an industry made up of time-consistent entrepreneurs.
Conjecture that the equilibrium entry is at the trigger p�eq, and thus in equilibrium the price
process has an upper reflecting barrier at p�eq. Consider the value of an active entrepreneur,
one that has already paid the entry cost and is producing output. Let GðpÞ denote the value
of an active entrepreneur. By the standard argument, GðpÞ satisfies the equilibrium
differential equation

1

2
s2p2G00ðpÞ þ apG0ðpÞ � rGðpÞ þ p ¼ 0; ppp�eq. (67)

The impact of the reflecting barrier necessitates the boundary condition

G0ðp�eqÞ ¼ 0. (68)

(See Malliaris and Brock, 1982, p. 200.)
Similarly, let F ðpÞ denote the value of an inactive entrepreneur, its value prior to

investing. By the standard argument, F ðpÞ satisfies the differential equation

1

2
s2p2F 00ðpÞ þ apF 0ðpÞ � rF ðpÞ ¼ 0; ppp�eq. (69)

The inactive entrepreneur’s investment trigger is determined by value-matching and
smooth-pasting conditions. In equilibrium, the entry trigger must equal the conjectured
reflecting barrier p�eq, in that

F ðp�eqÞ ¼ Gðp�eqÞ � I and (70)

F 0ðp�eqÞ ¼ G0ðp�eqÞ. (71)

The solution to this equilibrium system is

F ðpÞ ¼ 0, (72)

GðpÞ ¼ �
I

b1 � 1

p

p�eq

 !b1

þ
p

r� a
; ppp�eq and (73)

p�eq ¼ p� ¼
b1

b1 � 1
ðr� aÞI , (74)

with a price process governed by a geometric Brownian motion process Eq. (66) with a
reflecting barrier at p�.
The equilibrium is clearly intuitive. Free entry ensures that the value of an inactive

entrepreneur is zero. The value of an active entrepreneur is equal to the present value of
future cash flows, in which the reflecting barrier ensures that the value of an active
entrepreneur at entry is equal to the cost of entry, Gðp�eqÞ ¼ I . Finally, as has been
demonstrated by Leahy (1993) and others, the exercise trigger for a perfectly competitive
industry equals the monopolist trigger p�. The intuition is that the reflecting barrier has
two opposing effects: It lowers the value of the payoff from exercise (because the future
cash flow is capped at the barrier), while it also lowers the option value of waiting.
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6.2. Equilibrium with sophisticated entrepreneurs

We now consider the equilibrium for an industry, which is made up of time-inconsistent
entrepreneurs with sophisticated beliefs. All entrepreneurs are symmetric with respect to
sharing the same values of l and d. Conjecture that the equilibrium entry occurs at the
trigger peq, and thus in equilibrium the price process has an upper reflecting barrier at peq.
Consider the value of an active entrepreneur, one that has already paid the entry cost and
is producing output. Let gðpÞ and gcðpÞ denote the value function and the continuation
value function of an active entrepreneur, respectively.

First consider the solution for the continuation value function, gcðpÞ. Following the
same argument used earlier, gcðpÞ satisfies the differential equation

1

2
s2p2g00c ðpÞ þ apg0cðpÞ � rgcðpÞ þ dp ¼ 0; pppeq, (75)

subject to the boundary condition at the upper reflecting barrier peq:

g0cðpeqÞ ¼ 0. (76)

Solving Eq. (75) subject to Eq. (76) gives the solution for the continuation value

gcðpÞ ¼ �
d

r� a
peq

b1

p

peq

 !b1

þ
dp

r� a
; pppeq. (77)

Now we turn to the solution of the value function gðpÞ for an active entrepreneur. By the
standard argument, gðpÞ satisfies the differential equation

1

2
s2p2g00ðpÞ þ apg0ðpÞ � rgðpÞ þ pþ l½gcðpÞ � gðpÞ� ¼ 0; pppeq, (78)

where gcðpÞ is the continuation value given in Eq. (77). The impact of the reflecting barrier
necessitates the boundary condition

g0ðpeqÞ ¼ 0. (79)

Just as in the case of the previously derived equilibrium with time-consistent entrepreneurs,
free-entry ensures that the value of an active entrepreneur equals the cost of investment at
the entry trigger

gðpeqÞ ¼ I . (80)

(While we could explicitly derive the value of an inactive sophisticated firm, with free-entry
this value is always equal to zero.)

The equilibrium value function gðpÞ and the investment trigger for an active
entrepreneur are thus given by

gðpÞ ¼
1

b2

peq

r� a
ðd� gÞ

p

peq

 !b2

�
d

r� a
peq

b1

p

peq

 !b1

þ g
p

r� a
; pppeq and (81)

peq ¼
b2b1

gðb2 � 1Þb1 � dðb2 � b1Þ
ðr� aÞI . (82)

In Proposition 7, we show that the competitive equilibrium trigger for sophisticated
entrepreneurs is greater than that for time-consistent entrepreneurs. That is, industries
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made up of time-consistent entrepreneurs have more rapid growth than industries made up
of sophisticated entrepreneurs with time-inconsistent preferences.

Proposition 7. In the flow payoff case, the competitive equilibrium trigger peq for

sophisticated entrepreneurs is greater than the competitive equilibrium trigger p�eq for

time-consistent entrepreneurs, in that peq4p�eq.

Given that in the flow payoff case the investment trigger for the sophisticated
entrepreneur is greater than that for the time-consistent entrepreneur, it is not surprising
that sophisticated entrepreneurs also procrastinate, compared with time-consistent
entrepreneurs in equilibrium. Sophisticated entrepreneurs must discount the flow
payments from entry received by future selves by an additional factor d, reducing the
net payoff values occurring after exercise and thus decreasing their incentives to invest.
While in the time-consistent equilibrium it is the case that the monopoly and competitive

equilibrium triggers coincide (that is, p�eq ¼ p�), this is not the case for sophisticated
entrepreneurs. In Proposition 8 we demonstrate that the sophisticated equilibrium
trigger is below the sophisticated monopoly trigger. This is an interesting model outcome,
because it demonstrates that the Leahy (1993) result on the equivalence between the
monopoly and competitive equilibrium triggers does not survive the extension to
time-inconsistent preferences. The key reason for this is that, in equilibrium, the time-
inconsistent entrepreneur competes both interpersonally (against competitors) and intra-
personally (against future selves), while the time-consistent entrepreneur competes only
interpersonally.

Proposition 8. The competitive equilibrium trigger peq for sophisticated entrepreneurs is

lower than the monopoly trigger ps for sophisticated entrepreneurs, in that peqops.

The intuition for this result is as follows. As in Leahy (1993), with time-consistent
agents, competitive equilibrium introduces two offsetting changes to the monopoly
entrepreneur problem. First, equilibrium competition places an upper bound on cash flows
(through the reflecting barrier). This effect, taken by itself, makes exercise less valuable and
pushes the equilibrium entry trigger above the monopoly trigger. Second, the free-entry
condition of equilibrium eliminates the value of the option to wait. This effect, taken by
itself, pushes the equilibrium entry trigger below the monopoly trigger. For the case of
time-consistent agents, these two effects cancel each other out, leading to an equilibrium
trigger equal to the monopoly trigger. Now, with the sophisticated time-inconsistent agent,
the second effect dominates. In the flow payment case, the value of the sophisticated
entrepreneur’s option to wait is greater than that for the time-consistent entrepreneur
because of the increased discounting of future cash flows. Therefore, the impact of
the free-entry condition’s elimination of the option to wait has a greater impact for the
sophisticated entrepreneur, leading the equilibrium trigger to be below that of the
monopoly trigger.

7. Conclusion

This paper extends the real options framework to account for time-inconsistent
preferences. Entrepreneurs need to formulate their investment decisions taking into
account their beliefs about the behavior of their future selves. This sets up a conflict
between two opposing forces: the desire to take advantage of the option to wait, and the
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desire to invest early to avoid allowing future selves to take over the investment decision.
We find that the precise trade-off between these two forces depends on such factors as
whether entrepreneurs are sophisticated or naive in their expectations regarding their
future time-inconsistent behavior, as well as whether the payoff from investment occurs all
at once or over time. We extend the model to consider equilibrium investment behavior for
an industry made up of time-inconsistent entrepreneurs. Equilibrium involves the dual
problem of agents playing dynamic games against competitors as well as against their own
future selves.

Two further extensions of the model would prove interesting. First, the model could be
extended to account for intermediate cases between the extremes of perfectly naive or
perfectly sophisticated entrepreneurs. While the naive entrepreneur is fully unaware of his
future self-control problems, the sophisticated entrepreneur is fully aware of his future self-
control problems. O’Donoghue and Rabin (2001) provide a model of partial naivete, in
which an agent is aware of his future self-control problems but underestimates its degree of
magnitude. (DellaVigna and Malmendier, 2003, 2004, provide evidence in support of
partial naivete.) Second, this paper provides results for both the monopolist and perfectly
competitive settings. This could be extended to the case of oligopolistic equilibrium in the
manner of Grenadier (2002).
Appendix A. Proofs
Proof of Proposition 1. We search for the fixed point solution for f ðxÞ ¼ x, where

f ðzÞ ¼
1

b2 � 1
b2I þ ðb2 � b1Þd

z

X �

� �b1
ðX � � IÞ

� �
. (83)

f ðzÞ is increasing and convex in z. Moreover,

f ðX �Þ ¼
1

b2 � 1
½b2I þ ðb2 � b1ÞdðX

� � IÞ�

o
1

b2 � 1
½b2I þ ðb2 � b1ÞðX

� � IÞ� ¼ X �, ð84Þ

where the last equality follows from simplification. Because f ð0Þ ¼ b2=ðb2 � 1ÞI40,
f ðX �ÞoX �, and f 0ðzÞ40, there exists a unique XNaiveoX � such that f ðXNaiveÞ ¼

XNaive. &

Derivation of the general solution to Eq. (24). We conjecture that the general solution takes
the form of

S0ðX Þ ¼ dðX � � IÞ
X

X �

� �b1
þ G0;1Xb2 logX þ AX b2 . (85)

Taking the first two derivatives of S0ðX Þ in Eq. (85) gives

S00ðX Þ ¼ b1d
X � � I

X �

� �
X

X �

� �b1�1

þ Xb2�1ðG0;1 þ b2AÞ þ G0;1b2X
b2�1 logX and

(86)
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S000ðX Þ ¼ b1ðb1 � 1ÞdðX � � IÞ
1

X �

� �b1
Xb1�2 þ ðb2 � 1ÞðG0;1 þ b2AÞXb2�2

þ G0;1b2ðb2 � 1ÞXb2�2 logX þ G0;1b2X
b2�2. ð87Þ

Substituting the conjectured value function Eq. (85) and the above implied derivatives
into the differential Eq. (23), and collecting terms gives

0 ¼ dðX � � IÞ
X

X �

� �b1 1

2
s2b1ðb1 � 1Þ þ ab1 � r

� �

þ G0;1Xb2 logX
1

2
s2b2ðb2 � 1Þ þ ab2 � ðrþ lÞ

� �

þ AX b2
1

2
s2b2ðb2 � 1Þ þ ab2 � ðrþ lÞ

� �

þ G0;1
1

2
s2ð2b2 � 1Þ þ a

� �
þ ld X S;1 � I �

X S;1

X �

� �b1
ðX � � IÞ

" #"

�
1

X S;1

� �b2
#

Xb2 . ð88Þ

Out of the four terms on the right side of the above equation, the first, second, and third
terms are all equal to zero using the fundamental quadratic equations for b1 and b2. That
the last term is equal to zero for all X gives the formula equation (25) for G0;1. &

Proof of Proposition 2. We use the method of mathematical induction. First, we verify that
X S;N�1oX S;N , Sc

N�1ðX ÞoSc
N ðX Þ, and SN�1ðX ÞoSNðX Þ; by using their analytical

expressions. Now suppose X S;noX S;nþ1, Sc
nðX ÞoSc

nþ1ðX Þ; and SnðX ÞoSnþ1ðX Þ hold for
some 1pnpN � 1. Our objective is then to show X S;n�1oX S;n, Sc

n�1ðX ÞoSc
nðX Þ; and

Sn�1ðX ÞoSnðX Þ hold for the same n. By the logic of induction, we have then completed
the proof.
Consider the differential Eq. (32) and boundary conditions Eqs. (33)–(34) for the value

function SnðX Þ. We could view SnðX Þ as the value of an asset with a dividend flow payment
of lSc

nþ1ðX Þ and a terminal payout of X � I at the first passage time to a trigger value X S;n

determined by the smooth-pasting optimality condition. This asset is thus an American
option that promises a dividend payout while unexercised. A similar characterization can
be made for the value function Sn�1ðX Þ. The only difference is that the dividend flow
payment for the asset with value Sn�1ðX Þ is lSc

nðX Þ, which is lower than the dividend flow
payment lSc

nþ1ðX Þ for the asset with value SnðX Þ following the previous conjecture.
Comparing two American options in which one has a higher dividend payment than the
other while unexercised, we know that the former one with higher dividend is exercised
later, ceteris paribus. Therefore, X S;n�1oX S;n. As a result, the option value for the one
with lower dividend payment is smaller, in that Sn�1ðX ÞoSnðX Þ.
Now, consider the continuation value function Sc

nðX Þ. From the differential Eq. (30) and
the boundary condition Eq. (31), we could view Sc

nðX Þ as the value of an asset a dividend
flow payment of lSc

nþ1ðX Þ (discounted at the rate of rþ l) and a terminal value of
dðX S;n � IÞ at the first moment the given trigger value X S;n is reached. This is similar to the
payouts for the asset with value SnðX Þ: It has the same dividend flow payments, but a
different terminal payout that is discounted by d. We can express the asset value Sc

nðX Þ as
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d times the asset SnðX Þ, plus the present value of the dividend flow ð1� dÞlSc
nþ1ðX Þ until

the time trigger X S;n is reached. Similarly, we can express the asset value Sc
n�1ðX Þ as d times

the asset value Sn�1ðX Þ, plus the present value of the dividend flow ð1� dÞlSc
nðX Þ until

the time trigger X S;n�1 is reached. From this decomposition, we can see that asset value
Sc

nðX Þ dominates asset value Sc
n�1ðX Þ as follows. First, we show in the above that

dSnðX Þ4dSn�1ðX Þ. Second, by assumption we have that Sc
nþ1ðX Þ4Sc

nðX Þ and
X S;nþ14X S;n. The present value of receiving ð1� dÞlSc

nþ1ðX Þ until the trigger X S;nþ1 is
reached is greater than the present value of receivingð1� dÞlSc

nðX Þ until the trigger X S;n is
reached. Therefore, we could conclude that Sc

nðX Þ4Sc
n�1ðX Þ. &

Proof of Proposition 3. For the sophisticated entrepreneur, X N ¼ X � and X N�1 ¼ XNaive.
From Proposition 1, XNaiveoX �. From Proposition 2, X S;n is increasing in n, and thus
X S;0oX S;N�1 ¼ XNaive. Therefore, we have X S;0oXNaiveoX �. &

Proof of Proposition 4. Because Proposition 1 has shown XNaiveoX �, it is thus sufficient to
show that X SoXNaive. Define

f ðx; aÞ ¼ �xþ
b2

b2 � 1
I þ

b2 � b1
b2 � 1

� �
d

x

a

� �b1
a� Ið Þ

� �
; xpa. (89)

By construction, X S solves f ðx;X SÞ ¼ 0, in that f ðX S;X SÞ ¼ 0, and XNaive solves
f ðx;X �Þ ¼ 0, in that f ðXNaive;X

�Þ ¼ 0. Let xðaÞ denote the solution to Eq. (89), in that
f ðxðaÞ; aÞ ¼ 0. By the implicit function theorem, we have

dxðaÞ

da
¼ �

f aðxðaÞ; aÞ

f xðxðaÞ; aÞ
. (90)

Eq. (89) implies f aðx; aÞ40 for apX � and f xxðx; aÞ40. Evaluating f xðx; aÞ at the boundary
x ¼ a gives

d

dx
f ða; aÞ ¼ � 1þ d 1�

I

a

� �
b1

b2 � b1
b2 � 1

� �

o� 1þ d 1�
b1 � 1

b1

� �
b1

b2 � b1
b2 � 1

� �

¼ �
1

ðb2 � 1Þ
ðb2 � 1Þð1� dÞ þ ðb1 � 1Þd�o0, ð91Þ

where the inequality follows from apX �. Jointly, f xxðx; aÞ40 and f xða; aÞo0 imply that
f xðx; aÞo0 for xpa. Thus we have x0ðaÞo0. Because X �4X S, we could then conclude that
X SoXNaive.

Proofs of Propositions 5 and 6. First, we show ps4p�. Re-arranging the terms in ps and p�

gives

b2
b2 � 1

ðrþ l� aÞ4
b1

b1 � 1
ðr� aÞ. (92)

Define the functional mapping from the discount rate r to the parameter b using the
following familiar fundamental quadratic

s2

2
bðrÞðbðrÞ � 1Þ þ abðrÞ � r ¼ 0. (93)
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Therefore, to prove Eq. (92) is equivalent to show

d

dr
bðrÞ

bðrÞ � 1
ðr� aÞ

� �
¼

d

dr
s2

2
bðrÞ2 þ abðrÞ

� �
¼ ðs2bðrÞ þ aÞ

dbðrÞ
dr

40, (94)

where the first equality uses Eq. (93). Because

dbðrÞ
dr
¼ a�

s2

2

� �2

þ 2s2r

" #�1=2
40, (95)

we thus have shown ps4p�.
We next show pnaive4ps. First, we state the solutions for nhðpÞ and nlðpÞ. The general

solution for the differential Eq. (52) is given by

nhðpÞ ¼ Ahpv2 þ Bhpb2 þ
ld

ðr� aÞðrþ l� aÞ
p�

ldI

rþ l
, (96)

where the coefficients Ah and Bh are to be determined, and v2 is the negative root of a
fundamental quadratic equation and is given by

v2 ¼
1

s2
� a�

s2

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

s2

2

� �2

þ 2ðrþ lÞs2

s2
4

3
5o0. (97)

[The fundamental quadratic equation is s2b b� 1ð Þ=2þ ab� rþ lð Þ ¼ 0: b2 is the positive
root of the same quadratic equation.] The general solution for the differential equation
(55) is given by

nlðpÞ ¼ d
1

p�

� �b1 p�

r� a
� I

� �
pb1 þ Blp

b2 , (98)

where Bl is a constant to be determined.
Using the four boundary conditions given in Eqs. (56), (57), (53), and (54), we could

solve the naive entrepreneur’s investment trigger pnaive, and the three undetermined
coefficients Ah, Bh, and Bl . This gives rise to the following equations:

Ahp�v2 þ Bhp�b2 þ
ld

ðr� aÞðrþ l� aÞ
p� �

ldI

rþ l
¼ d

p�

r� a
� I

� �
þ Blp

�b2 , (99)

v2Ahp�v2 þ b2Bhp�b2 þ
ld

ðr� aÞðrþ l� aÞ
p� ¼ b1d

p�

r� a
� I

� �
þ b2Blp

�b2 , (100)

Ahp
v2
naive þ Bhp

b2
naive þ

ld
ðr� aÞðrþ l� aÞ

pnaive �
ldI

rþ l
¼ g

pnaive

r� a
� I ; and (101)

v2Ahp
v2
naive þ b2Bhp

b2
naive þ

ld
ðr� aÞðrþ l� aÞ

pnaive ¼ g
pnaive

r� a
. (102)

Simplification of the equations gives

ðb2 � v2ÞAhp�v2 ¼ �
ldðb2 � 1Þ

ðr� aÞðrþ l� aÞ
p� þ

b2ldI

rþ l
þ ðb2 � b1Þd

p�

r� a
� I

� �
and

(103)
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ðb2 � v2ÞAhp
v2
naive ¼ �

ldðb2 � 1Þ

ðr� aÞðrþ l� aÞ
pnaive þ

b2ldI

rþ l
þ ðb2 � 1Þg

pnaive

r� a
� b2I .

(104)

First, we show Ah40 by demonstrating that the right side of Eq. (103) is positive. It is
sufficient to show

b1
b1 � 1

r� a
r

� �
4

rþ l� a
rþ l

� �
b2

b2 � 1
. (105)

Let

kðrÞ ¼
bðrÞ

bðrÞ � 1

r� a
r

� �
¼ 1þ

s2=2
s2ðbðrÞ � 1Þ=2þ a

, (106)

where the second equality uses the fundamental quadratic (93). Therefore, we have
k0ðrÞo0 because b0ðrÞ40. Hence, we have proved Eq. (105), and Ah40.

Define the function hðpÞ as

hðpÞ ¼ ðb2 � v2ÞAhpv2 . (107)

hðpÞ is a decreasing and convex function, with hð0Þ ¼ 1 and hð1Þ ¼ 0. The left sides of
Eqs. (103) and (104) are equal to hðp�Þ and hðpnaiveÞ, respectively. The right sides of Eqs. (103)
and (104) are, respectively, k1ðp

�Þ and k2ðpnaiveÞ, where

k1ðpÞ ¼ �
ldðb2 � 1Þ

ðr� aÞðrþ l� aÞ
pþ b2

ldI

rþ l
þ ðb2 � b1Þd

p

r� a
� I

� �
and (108)

k2ðpÞ ¼ �
ldðb2 � 1Þ

ðr� aÞðrþ l� aÞ
pþ b2

ldI

rþ l
þ ðb2 � 1Þg

p

r� a
� b2I . (109)

Moreover, ps is the unique solution for k1ðpÞ ¼ k2ðpÞ. k1ðpÞ is decreasing (k01ðpÞo0) with
k1ð0Þ40, and k2ðpÞ is increasing (k02ðpÞ40) with k2ð0Þo0.

Define wðpÞ ¼ hðpÞ � k1ðpÞ. We know that wð0Þ ¼ 1, wðp�Þ ¼ 0, wð1Þo0; and w00ðpÞ40.
Thus, p� must be a unique root of wðpÞ. This implies that the graph of hðpÞ must be tangent
to the line of k1ðpÞ at their point of intersection, p�.

Using the properties of the curve h and the lines k1 and k2, we can see graphically from
Fig. 3 that the tangency point p� must be to the left of ps, where k1 intersects k2, because
p�ops. Finally, pnaive must be greater than ps as hðpÞ will intersect k2 at a point to the right
of ps. Therefore, p�opsopnaive. &
Proof of Proposition 7. The inequality peq4 p�eq could be equivalently written as
b1b2jðlÞ40, where

jðlÞ ¼ lþ
r� a
b2
�

rþ l� a
b1

. (110)
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Fig. 3. Relative orderings of p�, ps, and pnaive. The curves k1ðpÞ and hðpÞ intersect (tangentially) at the point p�.

The curves k1ðpÞ and k2ðpÞ intersect at the point ps, where we see that ps4p�. The curves k2ðpÞ and hðpÞ intersect at

the point pnaive, where pnaive4ps. The parameter values are r ¼ 0:05, a ¼ 0, s ¼ 0:40, d ¼ 0:30, l ¼ 0:33, and
I ¼ 1.
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b2 depends on l. We now show that jðlÞ40. We have

j0ðlÞ ¼ ðb1 � 1Þ
1

b1
�

1

b2

1

2
s2b22 þ rþ l

� ��1 s2

2
b1 þ a

� �" #

4ðb1 � 1Þ
1

b1
�

1

b2

1

2
s2b1 þ rþ l

� ��1 s2

2
b1 þ a

� �" #

4ðb1 � 1Þ
1

b1
�

1

b2

� �
40, ð111Þ

using rþ l4a and b24b1. With jð0Þ ¼ 0; we thus have jðlÞ40 and peq4p�eq. &

Proof of Proposition 8. The inequality peqops can be written as

b2b1
gðb2 � 1Þb1 � dðb2 � b1Þ

ðr� aÞIo
b1dþ b2ð1� dÞ

ðb2 � 1Þg� ðb2 � b1Þd
ðr� aÞI , (112)

or equivalently as jðlÞ40; where jðlÞ defined in Eq. (110) is shown to be positive in the
proof of Proposition 7. &

Appendix B. Solution details for the sophisticated entrepreneur with any finite number of

selves

This Appendix uses backward induction to solve the sophisticated entrepreneur’s
continuation value function Sc

nþ1ðX Þ and his value function Snþ1ðX Þ for the case with any
finite number of selves, analyzed Subsection 4.2.
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Solving for the continuation value function Sc
nþ1ðX Þ. For notational convenience, let

n ¼ N � j þ 1ð Þ. We conjecture that the continuation value function for self n, Sc
nþ1ðX Þ ¼

Sc
N�jðX Þ is given by

Sc
N�jðX Þ ¼ d

1

X �

� �b1
ðX � � IÞX b1 þ

Xj�1
i¼0

CN�j;iðlogX ÞiX b2 , (113)

for j ¼ 1; 2; . . . ;N � 1, where the coefficients CN�j;i are to be determined later. We prove
the above conjecture in two steps.

First, we show that Eq. (113) gives the correct continuation value function Sc
N�1ðX Þ for

self ðN � 2Þ. Using the same analysis as in Section 4.1 for the three-self model, we show
that the continuation value function Sc

N�1 for self ðN � 2Þ satisfies the conjecture Eq. (113),
where

CN�1;0 ¼ d X S;N�1 � I �
X S;N�1

X �

� �b1
ðX � � IÞ

" #
1

X S;N�1

� �b2
,

and X S;N�1 ¼ XNaive, the naive entrepreneur’s exercise trigger given in Eq. (14).
Using the induction logic, we suppose that the continuation value function Sc

nþ2ðX Þ ¼

Sc
N�jþ1ðX Þ for self nþ 1 ¼ N � j takes the form of Eq. (113), and further conjecture that

the continuation value function Sc
nþ1ðX Þ ¼ Sc

N�jðX Þ for self n ¼ N � ðj þ 1Þ also takes the
form of Eq. (113). We substitute the conjectured forms for Sc

nþ2ðX Þ and Sc
nþ1ðX Þ and the

first two derivatives for Sc
nþ1ðX Þ into Eq. (30) and sort terms by X b2 ðlogX Þk for

k ¼ 0; 1; . . . ; j � 1. Setting the coefficients for each Xb2 ðlogX Þk term to zero gives the
following relationship:

0 ¼
s2

2
½ð2b2 � 1Þðk þ 1ÞCN�j;kþ1 þ ðk þ 2Þðk þ 1ÞCN�j;kþ2� þ aðk þ 1ÞCN�j;kþ1

þ lCN�jþ1;k; for k ¼ 0; 1; . . . ; j � 1 ð114Þ

The X b1 term satisfies the valuation Eq. (30).
Let

Z ¼ �
s2

2
ð2b2 � 1Þ þ a

� ��1
¼ �

b2
rþ lþ s2b22=2

 !
, (115)

where the second equality follows from Eq. (93). Eq. (114) thus could be
written as

CN�j;kþ1 ¼ Z
s2

2
ðk þ 2ÞCN�j;kþ2 þ

lCN�jþ1;k

k þ 1

� �
. (116)

CN�j;k ¼ 0 for kXj [by the conjecture Eq. (113) and the fact CN�1;1 ¼ 0]. Solving the
recursion gives the following formula for CN�j;k:

CN�j;k ¼
l
k

Z
Xj�k�2

n¼0

s2Z
2

� �n

CN�jþ1;kþnPn
m¼0ðk þmÞ þ ZCN�jþ1;k�1

" #
, (117)
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for k ¼ 1; 2; . . . ; j � 1: We could solve for CN�j;0 using the value-matching condition
Eq. (31) for the continuation value function Sc

nþ1ðX Þ at the trigger value X S;nþ1:

CN�j;0 ¼ d ðX S;N�j � IÞ �
X S;N�j

X �

� �b1
ðX � � IÞ

" #
X
�b2
S;N�j �

Xj�1
i¼1

CN�j;iðlogX S;N�jÞ
i,

(118)

where the trigger X S;nþ1 ¼ X S;N�j, for self nþ 1 ¼ N � j, is obtained by maximizing his
value function Snþ1ðX Þ ¼ SN�jðX Þ.

Solving for the value function Snþ1ðX Þ. We conjecture and then verify that the value
function for self ðnþ 1Þ, Snþ1ðX Þ ¼ SN�jðX Þ, is given by

SN�jðX Þ ¼ d
1

X �

� �b1
ðX � � IÞXb1 þ

Xj�1
i¼0

GN�j;iðlogX ÞiX b2 , (119)

for j ¼ 1; . . . ;N � 1;N, where the coefficients GN�j;i are to be determined.

First, Section 4.2 shows that the value function SN�1ðX Þ for self ðN � 1Þ is given by
SN�1ðX Þ ¼ NðX Þ, where NðX Þ is the naive entrepreneur’s value function given in Eq. (13).
Therefore, conjecture Eq. (119) applies to value function SN�1ðX Þ for self ðN � 1Þ, with

GN�1;0 ¼
b1 � 1

b2 � b1
ðX � � XNaiveÞ

1

XNaive

� �b2
.

To verify that the conjectured form Eq. (119) also applies to that the value function
Snþ1ðX Þ ¼ SN�jðX Þ for self nþ 1 ¼ N � j, we substitute Eq. (119), the corresponding first
two derivatives of Snþ1ðX Þ, and the continuation value function Sc

nþ2ðX Þ for self ðnþ 1Þ,
given in (113) into the differential Eq. (32), sort terms by Xb2 ðlogX Þk for k ¼ 0; 1; . . . ; j.
Setting the coefficients for each Xb2 ðlogX Þk term to zero gives the following relationship:

0 ¼
s2

2
½ð2b2 � 1Þðk þ 1ÞGN�j;kþ1 þ ðk þ 2Þðk þ 1ÞGN�j;kþ2� þ aðk þ 1ÞGN�j;kþ1

þ lCN�jþ1;k for k ¼ 0; 1; . . . ; j � 1. ð120Þ

The Xb1 term satisfies the valuation Eq. (32).
Eqs. (120) and (114) imply the following result:

GN�j;k ¼ CN�j;k; k ¼ 1; . . . ; j � 1. (121)

Finally, the boundary conditions Eqs. (33) and (34) for Snþ1ðX Þ give the investment trigger
X S;nþ1 for self ðnþ 1Þ, reported in Eq. (35), and the coefficient GN�j;0 is given by

GN�j;0 ¼ CN�j;0 þ X
�b2
S;N�jð1� dÞðX S;N�j � IÞ, (122)

where CN�j;0 is given in Eq. (118).
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