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Abstract

Entrepreneurs often face undiversifiable idiosyncratic risks from their business investments. We

extend the standard real options approach to an incomplete markets environment and analyze the

joint decisions of business investments, consumption/savings, and portfolio selection. For a lump-

sum investment payoff and an agent with a sufficiently strong precautionary savings motive, an

increase in volatility can accelerate investment, contrary to the standard real options analysis. When

the agent can trade the market portfolio to partially hedge against investment risk, the systematic

volatility is compensated via the standard CAPM argument, and the idiosyncratic volatility generates

a private equity premium. Finally, when the investment payoff is a series of flows, the agent’s
- see front matter r 2007 Published by Elsevier B.V.

.jfineco.2006.10.003

k Andy Abel, Dave Backus, Jonathan Berk, Patrick Bolton, Ricardo Caballero, Darrell Duffie, Jan

zo Garlappi, Robert Geske, Simon Gilchrist, Steve Grenadier, John Heaton, Vicky Henderson, Bob

ng Liu, Debbie Lucas, Michael Manove, Chris Mayer, Robert McDonald, Mitchell Petersen (WFA

Tim Riddiough, Tom Sargent, Eduardo Schwartz, Bill Schwert, Suresh Sundaresan, Sheridan

ando Zapatero (FEA discussant), and seminar participants at Beijing University, Berkeley (Haas),

ge, Boston University, Columbia, FEA, GSU, HKU, HKUST, Kellogg School, NYU Stern, UCLA

hool, UCSD economics department and Rady School, UIC, UIUC Business School, University of

SC (Marshall School), Vail conference (2006), Washington University in St. Louis, University of

Madison, and WFA for helpful discussions. We are particularly grateful for the anonymous referee’s

ents. First version: July 2004

nding author. Tel.: +1 212 854 3869.

dresses: miaoj@bu.edu (J. Miao), neng.wang@columbia.edu (N. Wang).

www.elsevier.com/locate/jfec
dx.doi.org/10.1016/j.jfineco.2006.10.003
mailto:miaoj@bu.edu
mailto:neng.wang@columbia.edu


ARTICLE IN PRESS
J. Miao, N. Wang / Journal of Financial Economics 86 (2007) 608–642 609
idiosyncratic risk exposure alters both the implied option value and the implied project value, causing

a reversal of the results in the lump-sum payoff case.

r 2007 Published by Elsevier B.V.
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1. Introduction

Real investment activities play a fundamental role in the economy. A real investment
typically has three important characteristics. First, it is often partially or completely
irreversible. Second, its future rewards are uncertain. Finally, the investment time is to
some extent flexible. In the last three decades, a voluminous literature has developed that
aims to study the implications of these three characteristics for the real investment
decision.1 A key insight of this literature is to view an investment decision as an American-
style call option, where ‘‘American style’’ refers to the flexibility of choosing the time of
option exercise. Based on this analogy and the seminal contributions to option pricing by
Black and Scholes (1973) and Merton (1973), we can apply financial option theory to the
irreversible investment decision. This real options approach to investment has become a
workhorse in modern economics and finance.

The real options approach relies on one of the following assumptions: (i) the real
investment opportunity is tradable; (ii) its payoff can be spanned by existing traded assets;
or (iii) the agent is risk neutral. However, these assumptions are violated in many
applications. For example, consider entrepreneurial activities. Entrepreneurs combine their
skills with their business investment opportunities and ideas to generate economic profits.
While entrepreneurs might have valuable projects, these projects might not be freely traded
or their payoffs might not be spanned by existing assets because of liquidity restrictions or
the lack of liquid markets. These capital market imperfections could be due to moral
hazard, adverse selection, transactions costs, or contractual restrictions. Thus, investment
opportunities can have substantial undiversifiable idiosyncratic risks. Entrepreneurs’ well-
being depends heavily on the outcome of their investments. Moreover, entrepreneurs’
attitudes towards risk should play an important role in determining their interdependent
consumption, savings, portfolio selection, and investment decisions.2

While entrepreneurial activities have other important dimensions such as how much to
invest and how to finance the investment project, we focus on the investment timing aspect
of entrepreneurial activities. We extend the standard real options approach to analyze
the implications of uninsurable idiosyncratic risk for this decision, using entrepreneurship
1Arrow (1968) and Bernanke (1983) are among the early contributions on irreversible investment. For early

stochastic continuous-time models, see Brennan and Schwartz (1985), McDonald and Siegel (1986), Pindyck

(1988),and Bertola and Caballero (1994). Abel and Eberly (1994) provide a unified model of (incremental)

investment under uncertainty. Dixit and Pindyck (1994) provide a textbook treatment of important contributions

to this literature.
2There is a fast-growing literature on empirical evidence for entrepreneurship. See Gentry and Hubbard (2004),

Heaton and Lucas (2000), and Moskowitz and Vissing-Jorgensen (2002), among others.
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as a motivating example. We use a utility maximization framework in which an agent
chooses his consumption and portfolio allocations, and also undertakes an irreversible
investment.
To facilitate the discussions of our model and results, consider real estate development

as an example. The value of vacant land can be viewed as the option value of developing
the real estate (Titman, 1985; Williams, 1991; Grenadier, 1996, provide more recent
analysis on the real options approach to real estate development.). Suppose that a land
owner also knows the best use of his land. For example, the owner has superior knowledge
about local market conditions and knows the most profitable property to construct.
However, the owner cannot sell this yet-to-be-developed property without incurring a
significant value discount due to moral hazard, adverse selection, or his inalienable human
capital. Therefore, it might be of interest for the owner to keep the land (option) and to be
the developer even though owning the land exposes himself to uninsurable idiosyncratic
risks of the underlying asset. That is, the option to obtain the highest value of development
(via the ‘‘best’’ use of land) are not tradable due to frictions such as moral hazard or the
inalienability of human capital. It is worth noting that land is primarily held by
noninstitutional investors such as individuals and private partnerships (Williams, 2001). In
addition, individuals and private partnerships are subject to more undiversifiable
idiosyncratic risks than are institutional investors like pension fund firms and life
insurance companies.
While a real estate entrepreneur owns the land and will choose when to build the

property, he can either sell the property or continue to manage the property after
developing it. Of course, choosing to sell or manage the property is another decision. We
assume that this decision is exogenous in order to focus on the effect of idiosyncratic risks
on the development decision.3 When the entrepreneur pays the construction cost and sells
the property upon the completion of development, he receives a lump-sum sale price. We
call this situation the lump-sum payoff case. Alternatively, the real estate entrepreneur can
be not only the developer but also the manager. The entrepreneur might be the most
qualified manager if he can locate the tenants with the highest willingness to pay and
maintain the property at the lowest operating costs. Therefore, it could still make
economic sense for the developer to manage the property after construction is complete,
even though he will face additional undiversifiable idiosyncratic property risks after
development. In this setting, the developer receives a perpetual stream of uninsurable
rental payments (in excess of operating expenses) from managing the property after
development. We call this scenario the flow payoff case.
Standard real options analysis (under complete markets) assumes that an agent can fully

diversify the idiosyncratic property risks. One can then take the risk-adjusted present value
of future cash flows as the market sale value, and thus there is no distinction between the
lump-sum and flow payoff scenarios. However, when the investment opportunity is not
tradable and not spanned by existing traded assets, the standard replicating and no-
arbitrage argument does not apply. We thus follow the certainty-equivalent approach in
3We can extend our model to endogenize the sale/no sale decision. Essentially, in the sale situation the bidder

with the highest valuation of the property is someone else with a comparative advantage in management. This fits

reasonably well into the description of merchant builders. The no-sale scenario corresponds to the case where the

developer is also the best manager in that he can find the tenants with the highest willingness to pay and manage

the property with the lowest operating expenses.
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the literature on the pricing of nontraded assets to value cash flows by analyzing the
entrepreneur’s utility maximization problem.4

We show that the lump-sum and flow payoff cases deliver different economic
predictions due to the effect of uninsurable idiosyncratic shocks. Hence, the equivalence
between these two cases (under complete markets) no longer holds. Moreover, when
the entrepreneur can partially hedge against project risk by trading a risky financial
asset such as the market portfolio, the total volatility can be decomposed into idiosyncratic
and systematic volatility. The ability to hedge reduces the entrepreneur’s precautionary
savings demand because idiosyncratic volatility is lowered, which naturally has impli-
cations for the investment timing decision. For the convenience of illustrating the effects
of incomplete markets on investment timing in an intuitive way, we proceed with
our analysis and develop insights in a pedagogical way by working out four models,
which are sorted by both the timing of the payoffs and the menus of financial assets as
follows:
4See Carpenter (1998), Detempl

Longstaff (2003), among others, on

further discussions.
e and Sundaresan (1999), Hall an

nontraded asset valuation such as
Risk-free asset only
 Risk-free & risky financial assets
Lump-sum payoff
 Model I
 Model II

Flow payoff
 Model III
 Model IV
We start with Model I, the lump-sum payoff case. We first analyze the effect of risk
attitude. We show that a stronger precautionary savings motive lowers the certainty-
equivalent wealth associated with the investment opportunity, which is also the implied
option value. Thus, risk aversion speeds up investment.

We next turn to the effect of risk. An important prediction of our model is that the
idiosyncratic project volatility has two opposing effects on the implied option value and
hence on the investment timing decision. On one hand, the standard real options model
states that volatility increases the option value due to its asymmetric convex payoff. On the
other hand, idiosyncratic volatility lowers the certainty-equivalent wealth and consump-
tion because of the entrepreneur’s precautionary savings motive and the interdependence
of consumption and investment under incomplete markets. Hence, the net effect of
volatility on the option value is ambiguous. When the entrepreneur has a sufficiently
strong precautionary savings motive or the idiosyncratic volatility is sufficiently large, the
precautionary savings effect can dominate the standard option effect. If volatility does not
directly affect the investment payoff as in the lump-sum payoff case (for example, via sale
to diversified buyers such as real estate investment trust investors in our real estate
example), then idiosyncratic volatility under incomplete markets encourages the
entrepreneur to invest earlier, contrary to the standard real options analysis. Going back
to our real estate development example, our model predicts that the entrepreneur will
exercise his development option early when he is exposed to uninsurable idiosyncratic
shocks to his investment opportunity, particularly if he plans to sell his property upon the
completion of construction. The entrepreneur’s urge to avoid the certainty-equivalent
d Murphy (2000), and Kahl, Liu, and

employee stock options; see Section 2 for
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wealth discount due to idiosyncratic shocks encourages him to invest earlier, ceteris
paribus.
We now turn to Model II in order to understand the effect of hedging for the lump-sum

payoff case. When the entrepreneur can partially hedge against project risk by trading a
risky asset such as the market portfolio, total volatility can be decomposed into
idiosyncratic and systematic volatility. As a result, the entrepreneur’s precautionary
savings demand (due to idiosyncratic volatility) is mitigated, which in turn makes the
investment option more valuable, ceteris paribus. With the lump-sum payoff case, the
payoff (after investment) can be independent of idiosyncratic volatility (for example, via
sale to diversified buyers), and the model then predicts that the entrepreneur invests sooner
under incomplete markets than under complete markets, because the option value is lower
in the presence of idiosyncratic shocks. Intuitively, exercising the investment option allows
the agent to exit from incomplete markets.
We finally turn to Models III and IV to analyze investment payoffs given in flow terms.

In our previous real estate development example, these two cases correspond to developer
also managing the real estate after its completion. Because the developer still faces
undiversifiable idiosyncratic risk from the payoff stream after exercising the investment
option, this payoff stream has a lower certainty equivalent wealth lower than it would if
the payoff stream were marketable. Intuitively, unlike the lump-sum payoff case, exercising
the investment option does not allow the entrepreneur to exit the incomplete markets
setting when the payoffs are given in flow terms. Thus, the previously discussed
precautionary savings effect influences not only the certainty-equivalent option value but
also the certainty-equivalent value of the project payoffs after exercising the investment
option. Because of this additional effect on investment payoffs, many results obtained in
the lump-sum payoff case are reversed.
Building on the insights behind the Black-Merton-Scholes analysis, we show that

hedging demand under incomplete markets also increases with the investment option delta
(Delta is defined as the change in the investment option value for a unit increase in the
underlying project payoff value). Since the option delta increases in the underlying project
payoff value, our model predicts that the developer’s hedging demand increases when his
development option gets closer to being ‘‘in the money.’’ With regard to the consumption
savings literature, we extend the standard incomplete markets analysis to allow the agent
to endogenously determine the timing of his income process. We show that volatility not
only has a negative effect on consumption (via the precautionary savings motive under
incomplete markets), but also a positive option-value-induced wealth effect due to the
endogeneity of the income timing choice. Hence, consumption might respond positively to
an increase in volatility of the investment project if the option value induced wealth effect
is stronger, ceteris paribus.
Three recent papers—Henderson (2005) and Hugonnier and Morellec (2005, 2007)—are

related to ours. Henderson (2005) assumes that the agent maximizes expected wealth at the
time of investment. Hugonnier and Morellec (2007) assume that the manager trades off his
incentives to exercise an option under incomplete markets prematurely in order to reduce
the idiosyncratic risk exposure against the cost of increasing the likelihood of a control
challenge. Hugonnier and Morellec (2005) apply a concave utility function to both the
payoff and the interest cost of investment, and show that risk aversion further delays
investment compared with the standard real options prediction. While these papers study
real options models under incomplete markets, they do not study the consumption/savings
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decision and its interaction with investment and portfolio decisions. As in our lump-sum
payoff case, the first two papers show that market incompleteness encourages an agent to
exercise the investment option sooner. Unlike these two papers, we show that investment
can be delayed due to market incompleteness when investment payoffs are delivered over
time rather than in one lump sum.

The remainder of the paper proceeds as follows. Section 2 analyzes Model I, which is a
self-insurance model when the payoff from real investment is given in a lump sum. Section
3 presents the solution of Model II, which generalizes Model I to allow for hedging.
Section 4 studies Models III and IV, where the real investment payoffs are given in flows.
Section 5 analyzes the robustness of the results. Section 6 concludes. Technical details are
relegated to appendices.

2. A self-insurance model with a lump-sum payoff (Model I)

This section provides a model that allows us to develop intuition for how the agent’s
attitude towards risk affects his investment decisions when he cannot fully insure himself
against the idiosyncratic shocks from investment. In order to achieve this objective in the
simplest possible setting, we integrate a canonical consumption/savings model with a
standard real-options-based irreversible investment model.5

2.1. Model setup

Time is continuous and the horizon is infinite. There is a single perishable consumption
good (the numeraire). The agent derives utility from a consumption process C according to

E

Z 1
0

e�btUðCtÞdt

� �
, (1)

where U is an increasing and concave function and b40 is his discount rate. For
expositional convenience, we assume that b is equal to r, the risk-free interest rate. It is
straightforward to extend our analysis to allow for differences between the agent’s
subjective discount rate and the interest rate, but no additional insight will be gained for
the issue that we are after.

The agent owns the rights to an investment project and can undertake this project
irreversibly at some endogenously chosen time t. Note that the investment time t is
stochastic from today’s perspective. The investment costs I40. The agent pays this cost
only at the investment time t. This cost is financed from the agent’s own wealth. If there is
a shortage of funds, the agent can borrow at the risk-free rate r. In order to focus on the
effect of market incompleteness in the simplest possible setting, we do not consider
borrowing constraints or costly external financing. Instead, we impose the conventional
transversality condition for the agent to rule out Ponzi games. After the agent exercises the
investment option at time t, the project generates a lump-sum payoff X t. We also assume
that the payoff process X is governed by an arithmetic Brownian motion process,

dX t ¼ ax dtþ sx dZt; X 0 given, (2)
5See Leland (1968) for early studies on precautionary savings. See Zeldes (1989), Caballero (1991b), and Deaton

(1991) for dynamic incomplete markets consumption models. See Brennan and Schwartz (1985), McDonald and

Siegel (1986), and Dixit and Pindyck (1994) for standard real options models.



ARTICLE IN PRESS
J. Miao, N. Wang / Journal of Financial Economics 86 (2007) 608–642614
where ax and sx are positive constants and Z is a standard Brownian motion.6 This process
implies that payoffs can take negative values. We interpret negative values as losses. We
choose the arithmetic Brownian motion process purely for analytical convenience and in
line with further analysis in Section 4 when the payoffs are given in flow terms over time.
We obtain essentially the same insights with a geometric Brownian motion payoff process
(Section 5).
As discussed earlier, investing in the project is analogous to exercising a perpetual

American call option, in the sense that the agent has the right but not the obligation to
invest at some future time of his choosing. Importantly, unlike financial options, the
underlying asset for the real option cannot be traded in the market. For example, the
building (the underlying asset in the real estate development example) before it is erected is
not traded in the market. If we further assume that existing financial assets do not
completely span the payoffs for the underlying asset (the building), then we cannot apply
the dynamic replication argument in standard option pricing theory such as the Black-
Merton-Scholes model. In this section, the only financial asset available for the agent to
trade and to smooth his consumption is the risk-free asset. Hence, the agent inevitably
bears project risk, which is undiversifiable.
Let fW t : tX0g denote a wealth process. Then the wealth dynamics are given by

dW t ¼ ðrW t � CtÞdt; W 0 given. (3)

That is, the agent accumulates wealth at the rate of ðrW t � CtÞ, the difference between the
interest income rW t and consumption rate Ct. At investment time t, the agent pays the
investment cost I and obtains the lump-sum payoff X t, and hence his wealth is raised by
the amount ðX t � IÞ; W t ¼W t� þ X t � I , where W t� and W t denote the agent’s wealth
just before and immediately after the agent exercises the investment option, respectively.
The agent’s optimization problem is to choose both his investment timing strategy t and
consumption process C to maximize his utility given in (1) subject to (3) and a
transversality condition specified later.

2.2. Optimality conditions

We solve the agent’s decision problem by working backwards using dynamic
programming. We consider first the problem after the agent exercises the investment
option. In this case, the agent’s optimization problem is a standard deterministic
consumption savings problem without income. Let V 0ðwÞ be the corresponding value
function. By a standard argument, V 0ðwÞ satisfies the following Hamilton-Jacobi-Bellman
(HJB) equation:

rV 0ðwÞ ¼ max
c2R

UðcÞ þ ðrw� cÞV0
wðwÞ, (4)

subject to the transversality condition limT!1 e�rT jV0ðW T Þj ¼ 0. Under the deterministic
setting, the agent’s consumption is constant over time and is equal to the annuity value rw

of his wealth, and therefore, his wealth remains constant at w at all times. This is the
familiar consumption-smoothing result. This result follows from two steps: (i) the equality
6Unlike the often adopted geometric Brownian motion process, the specification in (2) proves more convenient

within our setup. Wang (2006) derives a closed-form consumption-saving rule using affine processes and

exponential utility.
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between the agent’s discount rate and the interest rate implies that the marginal utility is
constant at all times ðU 0ðCtÞ ¼ U 0ðCsÞÞ; and (ii) the strict concavity of the utility function
further implies that Ct ¼ Cs. It is immediate to conclude that the value function is thus
given by V 0ðwÞ ¼ UðrwÞ=r.

We next consider the case before the option is exercised. It is worth noting that the
agent’s value function depends on both his wealth w and the current value x of his
investment opportunity. Let V ðw;xÞ denote the corresponding value function. The
standard dynamic programming argument implies that V ðw; xÞ satisfies the following HJB
equation:

rV ðw; xÞ ¼ max
c2R

UðcÞ þ ðrw� cÞV wðw;xÞ þ axVxðw;xÞ þ
s2x
2

V xxðw;xÞ. (5)

The above HJB equation is similar to an asset pricing equation. It states that the agent
chooses his consumption optimally by setting the return rV ðw;xÞ of his value function to
equal the sum of his instantaneous utility UðcÞ and the total expected changes of his value
function (due to the change in wealth and also in the investment opportunity).

We now specify boundary conditions. First, the no-bubble condition limx!�1V ðw;xÞ ¼
V 0ðwÞ must be satisfied. This condition states that when the investment payoff goes to
negative infinity, the agent will never exercise the investment option and his value function
is equal to that without the investment option. Next, as is standard in the optimal stopping
problems, at the instant of investment, the following value-matching condition must hold:

V ðw; xÞ ¼ V0ðwþ x� IÞ. (6)

This equation implicitly defines an investment boundary x ¼ xðwÞ. In general, this
boundary xðwÞ depends on the agent’s wealth level w. Finally, because this boundary is
chosen optimally, the following smooth-pasting condition is satisfied7:

qV ðw;xÞ

qx
x¼xðwÞ ¼

qV0ðwþ x� IÞ

qx

���� ����
x¼xðwÞ

, ð7Þ

qV ðw;xÞ

qw
x¼xðwÞ ¼

qV0ðwþ x� IÞ

qw

���� ����
x¼xðwÞ

. ð8Þ

The first smooth-pasting (7) states that the marginal change in the investment opportunity
has the same marginal effect on the agent’s value functions just before and immediately
after exercising the option. Similarly, the second smooth-pasting (8) states that the
marginal effect of wealth must be the same on the agent’s value functions just before and
immediately after exercising the option. Unlike the conventional irreversible investment
models (Dixit and Pindyck, 1994), here the agent’s wealth enters as an additional state
variable, which gives rise to the second smooth-pasting (8).

2.3. Model solution for CARA utility

We have now formulated the agent’s optimization problem as a combined control
(consumption) and stopping (investment) problem, which is generally difficult to solve.
Our objective is to understand the economic effects of uninsurable idiosyncratic risk and
7See, for example, Krylov (1980), Dumas (1991) and Dixit and Pindyck (1994).
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the attitude towards risk on the investment and consumption decisions. In order to achieve
this objective in the simplest possible way, we assume that the agent has the utility function
UðcÞ ¼ �e�gc=g, where the parameter g40 is the coefficient of absolute risk aversion
(CARA). It is also equal to the coefficient of absolute prudence �U 000ðcÞ=U 00ðcÞ, which
captures the precautionary savings motive (Kimball, 1990). By adopting the utility
specification, we derive intuitive semi-closed-form solutions that greatly simplify our
analysis. While CARA utility does not capture the wealth effect, we emphasize that the
main results and insights of this paper (the effect of uninsurable idiosyncratic shocks on
investment timing) do not rely on the particular choice of this utility function. As we
will see below, the driving force of the paper is the precautionary savings effect, which
can be captured by utility functions with convex marginal utility such as CARA. While
power utility is more commonly used in economics, this utility will complicate our
analysis substantially since it will lead to a much harder two dimensional free-boundary
problem.
First, we note that complete consumption smoothing after investment and CARA utility

jointly imply that the value function after investment is given by

V 0ðwÞ ¼ �
1

gr
expð�grwÞ. (9)

Next, we conjecture that the value function before the option exercise takes the following
form:

V ðw;xÞ ¼ �
1

gr
exp½�gr wþ GðxÞð Þ�, (10)

where GðxÞ is a function to be determined. One can interpret GðxÞ as the certainty-
equivalent wealth derived from the agent’s investment opportunity. Specifically, we follow
the consumption literature to define certainty-equivalent wealth as the value wce satisfying
the equation V 0ðwþ wceÞ ¼ V ðw; xÞ; that is, the agent is indifferent between receiving
stochastic income in the future and a total current wealth level of ðwþ wceÞ. Using the
explicit functional forms of V 0ðwÞ and V ðw;xÞ, we have wce ¼ GðxÞ.
The boundary conditions (6)–(8) and the additive separability of wealth w and certainty-

equivalent wealth GðxÞ in the exponent of the value function V ðw;xÞ indicate that the
investment boundary is flat, in that xðwÞ is independent of wealth w. This property
substantially simplifies our analysis. The following proposition summarizes the solution to
the agent’s combined consumption and investment problem.

Proposition 1. The agent exercises the investment option the first time the process X hits the

threshold x̄ from below. After exercising the option, the agent’s value function and

consumption rule are given by (9) and cðwÞ ¼ rw, respectively. Before exercising the option,
his value function and consumption rule are, respectively, given by (10) and

cðw;xÞ ¼ rðwþ GðxÞÞ, (11)

where ðGðxÞ; x̄Þ is the solution to the following free-boundary problem:

rGðxÞ ¼ axG0ðxÞ þ
s2x
2

G00ðxÞ �
grs2x
2

G0ðxÞ2, (12)
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subject to the no-bubble condition limx!�1GðxÞ ¼ 0, and the boundary conditions

Gðx̄Þ ¼ x̄� I , ð13Þ

G0ðx̄Þ ¼ 1. ð14Þ

Moreover, G is increasing.

We now analyze the intuition behind this proposition and discuss its implications.

2.4. Interdependence of investment and consumption

As in the standard real options approach, the agent trades off between holding the
investment option to obtain an implied option value of waiting and exercising this option
to obtain investment payoffs. The key to our analysis is to derive the implied option value.
We show below that, unlike the standard real options approach, risk aversion and
consumption play an important role in the determination of the option value under
incomplete markets.

Implied option value. Proposition 1 demonstrates that the certainty-equivalent wealth
GðxÞ solves a free-boundary problem (12)–(14). These equations are similar to, but
different from, the valuation equations and boundary conditions in the standard real
option models of McDonald and Siegel (1986) and Dixit and Pindyck (1994). Based on this
similarity, we interpret x as the project value and the certainty-equivalent wealth GðxÞ as
the implied option value of investing in the underlying project. More formally, we follow
the literature on the pricing of nontraded assets by defining the implied option value Q of
the project as the solution to the equation V ðw�Q;xÞ ¼ V0ðwÞ; that is, the agent is
indifferent between having no investment opportunity and paying the price Q to obtain the
investment opportunity. Given the functional form of V 0 and V in (9) and (10), we see that
Q ¼ GðxÞ.

The two interpretations of GðxÞ—the certainty-equivalent wealth and the implied option
value—are the same in our setup. This is due to the absence of the wealth effect under
CARA utility. We will thus use certainty-equivalent wealth (from the consumption
literature perspective) and implied option value (from the investment literature
perspective) interchangeably throughout the remainder of the paper.

Proposition 1 nests the standard (risk neutral) real options problem as a special case.
Setting g ¼ 0 in Eq. (12) enables us to derive the following explicit solutions for the option
value GðxÞ and the investment threshold x̄:

GðxÞ ¼
1

l0
el0ðx�x̄Þ; for xpx̄ and x̄ ¼ I þ

1

l0
, (15)

where l0 ¼ �s�2x ax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�4x a2x þ 2rs�2x

p
for sx40, and l0 ¼ r=a for sx ¼ 0. It is

straightforward to verify that both the option value GðxÞ and the investment threshold
x̄ increase in the volatility sx of the payoff. These are the main results of the real options
literature. The agent can capture the upside gains by investing and limit the downside
losses by simply waiting until the option is sufficiently ‘‘in the money.’’ This asymmetric
convex payoff generates the positive effect of volatility on the option value and investment
threshold.

The main difference between our model and the standard (risk neutral) real options
model is that option value GðxÞ depends not only on the parameters describing the risk-free
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rate r, drift ax, and volatility sx but also on the agent’s precautionary savings motive. The
latter dependence captures the notion that the agent’s risk attitude matters not only for
consumption decisions but also for investment decisions when markets are incomplete. The
last nonlinear term on the right side of (12) captures the agent’s precautionary savings
motive. It confirms the intuition that the implied option value GðxÞ is lower when the
precautionary motive is stronger, ceteris paribus. Since the project payoff value x does not
depend on the agent’s risk attitude, the net effect of an increase in g is to encourage earlier
investment. Fig. 1 plots the implied option value GðxÞ versus the value of the underlying
investment opportunity x for two values of g. Note that the payoff line ðx� IÞ is
independent of risk aversion g. The figure clearly illustrates that the investment threshold
decreases with the agent’s precautionary savings motive or risk aversion g.

Investment threshold. To gain further intuition, we use the asymptotic approximation
method to compute approximate solutions for the implied option value GðxÞ and the
investment threshold x̄.8 We expand the option value GðxÞ and the investment threshold x̄

to the first order of s2x, in that GðxÞ � G0ðxÞ þ G1ðxÞs2x and x̄ � x̄0 þ d1s2x � x̄1. Plugging
8See Judd (1998). Also see Kogan (2001) who applies this method to solve an irreversible (incremental)

investment model.
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these expansions in (12)–(14), we show in the appendix that x̄0 ¼ I þ ax=r and

x̄1 ¼ x̄0 þ
1

ax

� g
� �

s2x
2
. (16)

This solution indicates that, to a first-order approximation with respect to s2x, a stronger
precautionary savings motive (higher g) lowers the investment threshold, consistent with
our earlier discussions based on the nonlinear ODE (12) and the boundary conditions
(13)–(14).

The above approximate solution also helps us to understand the effect of volatility on
the investment threshold. An increase in volatility sx has two opposing effects. On one
hand, higher volatility increases the option value and hence encourages waiting, as in
standard real options models. On the other hand, an increase in sx also raises the
precautionary savings demand and thus lowers the certainty equivalent wealth GðxÞ, and
hence lowers the threshold, ceteris paribus. Both effects are reflected in the last term on the
right side of (16). When g is sufficiently small, the option effect dominates the
precautionary savings effect. Thus, an increase in volatility sx raises the implied option
value and delays investment, consistent with the predictions in the standard real options
models. By contrast, when g is sufficiently large, the precautionary savings effect can
dominate the option effect. Therefore, an increase in sx lowers the certainty-equivalent
wealth GðxÞ, and hence encourages the agent to exercise his option sooner, contrary to the
standard real options result.

Finally, we use numerical solutions to confirm our intuition. We apply the projection
method detailed in the Appendix to solve the free-boundary problem characterized by
(12)–(14). We find that, for a small sx, our preceding approximate solution is very close to
the ‘‘true’’ solution delivered by the projection method. For a large range of parameter
values, Fig. 2 plots the investment threshold as a function of volatility sx and the risk
aversion g. This figure demonstrates that our preceding results and intuition extend to
general parameter values.

Consumption. We now turn to the agent’s consumption policies. After exercising the
option, the agent solves a deterministic consumption-smoothing problem. As noted earlier,
his wealth remains constant and consumption is equal to the interest income at all times.
Before exercising the option, the agent’s consumption rule (11) is given by the annuity
value of the sum of his financial wealth w and his certainty-equivalent wealth GðxÞ.

Even though the agent does not receive payoff x before exercising the option, he
rationally anticipates that he will exercise his investment option sometime in the future.
Thus, the future investment payoff matters not only for his future consumption but also
for his current consumption. Our model captures the forward-looking consumption
smoothing intuition in an incomplete markets setting with endogenous stochastic income.

The standard intuition in the consumption literature is that volatility lowers consump-
tion because of the precautionary savings motive. Here, we show that consumption can
potentially increase in volatility because the option effect can dominate the precautionary
savings effect on GðxÞ. This effect is not present in the consumption literature, because
almost all models in that literature take stochastic income as exogenously given and hence
rule out the option effect of income volatility on consumption.

In summary, the uninsurable idiosyncratic risk alters results in the standard real options
and consumption literature. When idiosyncratic risk is large or the precautionary savings
motive is strong, the option value and the investment threshold can decrease in volatility,
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contrary to the standard real option results. Therefore, applying real options analysis and
ignoring the consumption-smoothing motive in settings where idiosyncratic risk is likely to
matter, such as entrepreneurial investments, is potentially misleading and incorrect.

3. Lump-sum payoff with hedging opportunities (Model II)

In the previous section, the agent can trade only a risk-free asset to partially insure
himself against project risk. We now generalize the setting by allowing the agent to trade a
risky asset to partially hedge against project risk. We can interpret this financial asset as
the market portfolio. Unlike Model I where all risks are idiosyncratic and uninsurable,
investing in the risky asset allows the agent to partially hedge and hence separate
systematic volatility from idiosyncratic volatility. We will show that these two volatilities
play different roles in determining the option value and the exercising decisions. Our
analysis nests the standard complete-markets analysis as a special case.

3.1. Setup

Let fPt : tX0g denote the risky asset’s price process and assume that the return is
governed by the following process:

dPt=Pt ¼ me dtþ se dBt, (17)

where me and se are positive constants, and B is a standard Brownian motion correlated
with the Brownian motion Z, which drives the innovations of the project payoff as given
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in (2). Let r 2 ½�1; 1� be the correlation coefficient between the return on the risky asset
and the agent’s project payoff, and let Z ¼ ðme � rÞ=se40 denote the Sharpe ratio of the
market portfolio.

One can alternatively rewrite the observed payoff process fX t : tX0g given in (2) as
follows:

dX t ¼ ax dtþ rsx dBt þ �x deBt, (18)

where B and eB are two independent standard Brownian motions, and

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sx. (19)

One can think of B as the Brownian motion describing the systematic (market) risk, and
thus rsx is the systematic component of volatility for the project payoff. One can then
interpret eB as the Brownian motion describing idiosyncratic project risk, and thus �x is
idiosyncratic volatility. A higher absolute value of the correlation coefficient jrj implies
that systematic volatility has a larger weight, ceteris paribus.

Let pt be the amount allocated to the risky asset at time t, measured in units of the
consumption good. The agent’s problem is to choose a consumption process C, a portfolio
allocation rule p, and an investment timing strategy t to maximize his utility (1) subject to
his wealth dynamics:

dW t ¼ ðrW t þ ptðme � rÞ � CtÞdtþ ptse dBt; W 0 given. (20)

Similar to Section 2, the agent’s wealth jumps immediately after he invests, in that
W t ¼W t� þ X t � I , where W t� and W t are his wealth immediately before and after his
investment at time t, respectively. Note that (20) is the same both before and after the
option exercise.

We use the same dynamic programming method as in Section 2 to solve the agent’s
problem and summarize the results below.

Proposition 2. The agent exercises the investment option the first time the process X hits the

threshold x̄ from below. After exercising the option, the optimal consumption and portfolio

rules are given by

c̄ðwÞ ¼ r wþ
Z2

2gr2

� �
, ð21Þ

p̄ðwÞ ¼
Z
gse

1

r
. ð22Þ

Before exercising the option, the optimal consumption and portfolio rules are given by

c̄ðw;xÞ ¼ r wþ GðxÞ þ
Z2

2gr2

� �
, ð23Þ

p̄ðw;xÞ ¼
Z
gse

1

r
�

rsx

se

G0ðxÞ, ð24Þ

where ðG; x̄Þ is the solution to the following free-boundary problem:

rGðxÞ ¼ ðax � rsxZÞG0ðxÞ þ
s2x
2

G00ðxÞ �
gr�2x
2

G0ðxÞ2, (25)
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subject to the no-bubble condition limx!�1GðxÞ ¼ 0, and also the boundary conditions

Gðx̄Þ ¼ x̄� I , ð26Þ

G0ðx̄Þ ¼ 1. ð27Þ

Moreover, G is increasing.

We next discuss the implications of this proposition and analyze the role of hedging.

3.2. Undiversifiable idiosyncratic risk and implied option value

Similar to the self-insurance model in Section 2, we can interpret GðxÞ either as the
certainty-equivalent wealth or as the implied option value. Before discussing the option
value GðxÞ, we first sketch out the standard complete-markets model when the
idiosyncratic risk is fully diversifiable. Let FðxÞ denote the option value under complete
markets. Given complete markets, standard finance theory implies that the option value
and the investment threshold are independent of preferences. Indeed, we can apply the
martingale method to rewrite the dynamic budget constraint as a static Arrow-Debreu
budget constraint.9 Appendix B shows that FðxÞ satisfies the following differential
equation:

rFðxÞ ¼ ðax � rsxZÞF0ðxÞ þ
s2x
2
F00ðxÞ, (28)

and the boundary conditions limx!�1FðxÞ ¼ 0, Fðx�Þ ¼ x� � I , and F0ðx�Þ ¼ 1.
Eq. (28) resembles a standard valuation equation in dynamic asset pricing models (see,

e.g., Duffie, 2001). After correcting for risk, traded securities such as the option earn the
risk-free rate of return r, as seen from the left side of (28). The right side of (28) gives the
instantaneous expected changes in the option value with respect to the underlying asset
value x. The risk correction is reflected by the drift change from ax to ðax � rsxZÞ in the
first term on the right side of (28). This risk correction can be obtained from a CAPM
argument and is consistent with standard dynamic asset pricing theories, which state that
only systematic risk demands a premium.
We turn to the differential equation (25) for the option value GðxÞ. Re-writing (25) gives

rGðxÞ ¼ ax � rsxZ�
gr�2x
2

G0ðxÞ

� �
G0ðxÞ þ

s2x
2

G00ðxÞ. (29)

First, we note that the standard convexity effect of volatility on option value depends on
the total volatility sx, which is reflected by the last term in (29), and is the same as in the
complete markets setting (see (28)). Also similar to the differential equation (28) for FðxÞ,
the change of drift from ax to ðax � rsxZÞ in the first term on the right side of (29) accounts
for the effect of systematic risk on valuation, the standard CAPM argument. Importantly,
unlike the differential equation (28) for FðxÞ, the third component in the bracket of the
drift term on the right side of (29), gr�2xG0ðxÞ=2, reflects the effect of idiosyncratic risk on
the implied option value GðxÞ. We call this term the idiosyncratic risk premium.
9See Cox and Huang (1989), and Karatzas, Lehoczky, and Shreve (1987) on the martingale method. This

method and the dynamic programming method deliver the same solution. See Duffie (2001) for a textbook

treatment.
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Intuitively, when idiosyncratic risks cannot be fully diversified, the agent naturally
demands a higher risk premium for a larger idiosyncratic volatility �x, ceteris paribus. A
more prudent agent (with a larger coefficient of risk aversion g) also demands a higher risk
premium. Finally, a higher option delta G0ðX Þ indicates that the option value is more
sensitive to changes in the underlying investment opportunity set and hence requires a
higher idiosyncratic risk premium. Moskowitz and Vissing-Jorgensen (2002) find that the
private equity premium is low in the U.S. given the amount of idiosyncratic risk that
entrepreneurs face. While our model is not designed to address this quantitative private
equity premium issue, our model responds to urgent needs to develop theories that capture
the role of idiosyncratic risk in the interdependent consumption, investment, and portfolio
choices for entrepreneurs, as suggested by Gentry and Hubbard (2004), Heaton and Lucas
(2000), and Moskowitz and Vissing-Jorgensen (2002).

We now turn to the effects of idiosyncratic volatility �x and the risk aversion coefficient g
on the investment threshold x̄. First, note that as in the self-insurance model of Section 2,
the payoffs upon option exercise are given by ðx� IÞ. Hence, neither idiosyncratic
volatility nor risk aversion matters for the project payoff values. Second, a direct
comparison between (28) and (29) implies that a larger idiosyncratic volatility �x or a
higher risk aversion coefficient g lowers the option value GðxÞ, holding systematic risk
constant. Taking the two effects together, we can conclude that a higher idiosyncratic
volatility �x and a larger risk aversion coefficient g lower the investment threshold x̄, ceteris
paribus. This result also implies that the agent hastens investment under incomplete
markets relative to complete markets since the solution for the latter is effectively obtained
by setting g ¼ 0.

3.3. Consumption and portfolio rules

The consumption rule (21) and the portfolio rule (22) after the option exercise are
solutions to the standard Merton-style consumption-portfolio choice problem with CARA
utility (Merton, 1969). After exercising the option, the agent has no more hedging demand
since the lump-sum project payoff has been realized at exercise. Eq. (22) gives the standard
mean-variance efficient rule for CARA utility. The agent’s ability to invest in the risky
asset to take advantage of the risk premium makes him better off relative to the self-
insurance setting in Section 2. This is reflected by Z2=ð2gr2Þ, the second term in the
consumption rule (21).

Next, consider the agent’s consumption decision before the option exercise. Eq. (23)
states that the agent’s consumption is equal to the annuity value of the sum of three terms:
(i) financial wealth w, (ii) certainty-equivalent wealth GðxÞ, and (iii) the constant Z2=ð2gr2Þ.
The forward-looking agent rationally finances a certain fraction of his current
consumption via the certainty equivalent wealth GðxÞ for his investment opportunity.
Moreover, investing in the risky asset makes him better off and yields a higher current
consumption, ceteris paribus. This is reflected by the third component in the consumption
rule (23), similar to the argument for the after-investment consumption rule (21).

We now turn to the agent’s portfolio rule (24) before investment. In addition to the
standard Merton mean-variance term, the agent also has a hedging demand, because his
investment project payoff is correlated with the market portfolio. First, hedging demand is
greater when the degree of correlation jrj is higher, the standard and well-known result.
Second, the portfolio rule (24) suggests that hedging demand is greater when G0ðxÞ, the
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option D, is higher. This result is less known, but is intuitive. Before the investment
decision is made, the agent holds a valuable option on a non-tradable underlying asset.
Hence, the agent naturally hedges more against the fluctuations of the option value of
his investment, if this option value is more sensitive to the change of the underlying asset
(a higher option delta), ceteris paribus.

4. Models with flow payoffs (Models III and IV)

While some real-world examples fit the lump-sum payoff setting that we have just
analyzed, there are many situations under which the investment payoffs are given as cash
flows over time, rather than as a lump-sum payment. We emphasize that unlike the lump-
sum payoff case where the project payoff is exogenously given, one has to derive the
implied value or the certainty-equivalent value of the cash flows by solving the agent’s
consumption decision after the option exercise. Intuitively, idiosyncratic volatility also
lowers the implied project value or the certainty-equivalent wealth after option exercise.
Hence, the overall impact of idiosyncratic volatility on the investment decision and implied
option value is less obvious. Indeed, we show that the predictions for the flow payoff case
can be reversed compared to those for the lump-sum payoff case.
In the flow payoff case, after the agent irreversibly exercises his investment option at

some time t, he obtains a perpetual stream of payoffs fY t : tXtg. Assume that the flow
payoff process Y is governed by an arithmetic Brownian motion process:

dY t ¼ ay dtþ sy dZt; Y 0 given, (30)

where ay and sy are positive constants and Z is a standard Brownian motion. As will be
clear below, the arithmetic Brownian motion process allows us to obtain explicit solutions
after investment so that the problem before investment is easier to analyze. Using a
geometric Brownian motion process to model the cash flow process will complicate the
analysis without adding many new insights.
We present our analysis in three subsections. First, we analyze Model III, the flow

payoff self-insurance case where the agent can trade only a risk-free asset and hence all risk
is idiosyncratic. We then allow the agent to trade a market portfolio to partially hedge
against the flow payoff risk and hence to separate idiosyncratic volatility from systematic
volatility, similar to Model II of Section 3. Finally, we discuss the empirical implications of
the models in both the lump-sum and flow payoff cases.

4.1. Self-insurance with flow payoffs (Model III)

When the agent can trade only a risk-free asset, the agent’s wealth fW t : tX0g after the
option exercise ðtptÞ evolves according to

dW t ¼ ðrW t þ Y t � CtÞdt. (31)

This equation resembles that in a standard incomplete-markets consumption-savings
model with a stream of labor income fY t : tXtg. At investment time t, the agent pays the
cost I and hence wealth is lowered from W t�, the level just prior to investment, to W t, the
level immediately after the option exercise, in that W t ¼W t� � I . Before exercising the
option ð0ptotÞ, the agent does not receive flow payoffs and thus his wealth evolves
according to (3) as in the lump-sum case. The agent’s decision problem is to choose both
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an investment timing strategy t and a consumption process C so as to maximize his utility
(1) subject to wealth accumulation equations (31) and (3) and a transversality condition
specified in the Appendix.

We solve the agent’s decision problem backward by dynamic programming. Let Jðw; yÞ
be the value function after the option exercise. Unlike the lump-sum payoff case, the
payoff value y is an additional state variable for J. By the standard argument, Jðw; yÞ
satisfies the following HJB equation:

rJðw; yÞ ¼ max
c2R

UðcÞ þ ðrwþ y� cÞJwðw; yÞ þ ayJyðw; yÞ þ
s2y
2

Jyyðw; yÞ, (32)

subject to a usual transversality condition. Let V ðw; yÞ denote the value function before the
option exercise. Note that we use the same notation for the value function before
investment as that for the lump-sum payoff case. Similar to Section 2, V ðw; yÞ satisfies the
following HJB equation:

rV ðw; yÞ ¼ max
c2R

UðcÞ þ ðrw� cÞV wðw; yÞ þ ayVyðw; yÞ þ
s2y
2

V yyðw; yÞ. (33)

We now briefly discuss the boundary conditions for the flow payoff case and relate then
to the lump-sum payoff case analyzed earlier. Similar to the lump-sum payoff case, the no-
bubble condition limy!�1V ðw; yÞ ¼ V0ðwÞmust be satisfied. Similar to, but different from
the lump-sum payoff case, we have the following value-matching condition:

V ðw; yÞ ¼ Jðw� I ; yÞ. (34)

This equation determines an investment boundary yðwÞ. Moreover, the agent’s optimality
further requires the following smooth-pasting conditions to hold:

qV ðw; yÞ

qy

����
y¼yðwÞ

¼
qJðw� I ; yÞ

qy

����
y¼yðwÞ

, ð35Þ

qV ðw; yÞ

qw

����
y¼yðwÞ

¼
qJðw� I ; yÞ

qw

����
y¼yðwÞ

. ð36Þ

These smoothing-pasting conditions are both similar to and different from those for the
lump-sum case, because the cash flow payoff y enters as an additional state variable even
after the agent makes the investment.

We use a procedure similar to that in Section 2 to solve the above problem and then
show that the investment threshold ȳðwÞ is independent of wealth w for CARA utility
agents.

Proposition 3. The agent exercises the investment option the first time the process Y hits the

threshold ȳ from below. After exercising the option, the optimal consumption rule is given by

cðw; yÞ ¼ rðwþ f ðyÞÞ, (37)

where f ðyÞ is given by

f ðyÞ ¼
y

r
þ

ay

r2

� 	
�

gs2y
2r2

. (38)

Before exercising the option, the optimal consumption rule is given by

cðw; yÞ ¼ rðwþ gðyÞÞ, (39)
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where ðg; ȳÞ is the solution to the following free-boundary problem:

rgðyÞ ¼ ayg0ðyÞ þ
s2y
2

g00ðyÞ �
grs2y
2

g0ðyÞ2, (40)

subject to the no-bubble condition limy!�1 gðyÞ ¼ 0 and the boundary conditions

gðȳÞ ¼ f ðȳÞ � I , ð41Þ

g0ðȳÞ ¼ f 0ðȳÞ ¼
1

r
. ð42Þ

Moreover, g is increasing.

Comparing Propositions 1 and 3, we see that the valuation equation for the implied
option value is similar. However, the consumption rule after investment and the boundary
conditions are different. We next analyze the implications of these differences.

4.1.1. Implied project value and consumption

When the payoffs are given in terms of cash flows over time, the agent continues to face
undiversifiable idiosyncratic cash flow risk after exercising his investment option.
Therefore, idiosyncratic risk lowers both the implied option value and also the
certainty-equivalent project payoff value. After option exercise, the agent’s optimization
problem is a standard incomplete-markets consumption savings problem with stochastic
income fY t : tXtg. Because of the CARA utility and arithmetic Brownian motion process
specifications, we are able to derive the explicit expression for the consumption rule given
in (37)–(38).10

To understand the consumption rule (37), we define human wealth hðyÞ as the present
discounted value of all investment cash flows following Friedman (1957) and Hall (1978).
For the arithmetic Brownian motion income process (30), this gives

hðyÞ � E

Z 1
0

e�rtY t dt

� ����Y 0 ¼ y

�
¼

y

r
þ

ay

r2
. (43)

Note that this traditional definition of human wealth does not incorporate the effect of
risk. Using hðyÞ, we can rewrite the consumption rule given in (37) and (38) as follows:

cðw; yÞ ¼ r wþ hðyÞ �
gs2y
2r2

 !
. (44)

When g ¼ 0 or sy ¼ 0, consumption is the annuity value of the sum of financial wealth w

and human wealth hðyÞ, in that cðw; yÞ ¼ rðwþ hðyÞÞ. This is Friedman’s permanent-income
hypothesis. In terms of a time series, this implies that consumption is a martingale, in that
Ct ¼ EtðCtþ1Þ, or Hall’s random walk consumption model.
Importantly, when the agent has a precautionary savings motive (g40), a precautionary

savings demand arises in the presence of uninsurable idiosyncratic shocks. This demand
after the option exercise is reflected by the term gs2y=ð2r2Þ in (38). We can interpret f ðyÞ as
the certainty-equivalent (risk-adjusted) human wealth or the implied project value,
10Caballero (1991b) derives this consumption rule in discrete time. Wang (2004) extends Caballero (1991b) to

more general bivariate income processes with partial observability and hence increases precautionary savings

demand due to estimation risk. Wang (2003) shows that general equilibrium restriction eliminates the

precautionary savings demand in Caballero (1991b).
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following essentially the same analysis in Section 2. Since f ðyÞ ¼ hðyÞ � gs2y=ð2r2Þ, the
certainty-equivalent human wealth f ðyÞ decreases in the risk aversion coefficient g and also
in income volatility sy. This differs from the lump-sum payoff case where option exercise
gives a complete exit from incomplete markets and hence the precautionary savings motive
and volatility do not affect the value of payoffs from exercising.

Now consider consumption before investment. Eq. (39) implies that the rational
forward-looking agent finances his consumption partially out of his future payoffs from
his real investment opportunities. More formally, consumption is given by the annuity
value of the sum of financial wealth w and gðyÞ, before the investment is made. Following
our analysis in the lump-sum payoff case, we can interpret gðyÞ as the certainty-equivalent
wealth for the investment opportunity before investment is made, or equivalently, the
implied option value on the investment opportunity. We next turn to the analysis of gðyÞ.

4.1.2. Implied option value and investment threshold

The implied option value gðyÞ and the investment threshold ȳ are determined jointly by
the differential equation (40) and the corresponding boundary conditions (41) and (42).
The differential equation (40) is similar to its counterpart (12) for the lump-sum payoff
case. However, the boundary conditions for the flow payoff case are different from those
for the lump-sum payoff case in Proposition 1 in that the agent values the stream of
payoffs after option exercise with the certainty-equivalent wealth f ðyÞ given in (38). These
boundary conditions jointly suggest that the investment threshold is determined by trading
off between the option value of waiting gðyÞ and the certainty-equivalent wealth f ðyÞ for
the stochastic income stream (after netting out the fixed investment cost I).

Unlike the lump-sum payoff case, the total payoff volatility sy and the precautionary
savings motive also lower the implied project value f ðyÞ, because the agent is exposed to
idiosyncratic shocks after making his investment decision, and hence values the cash flow
at a value lower than hðyÞ, the present discounted value of his future income.

We can analyze the impact of the risk aversion coefficient g and income volatility sy on
the investment threshold ȳ via the approximation method. We approximate gðyÞ and ȳ

simultaneously to the first order of s2y. We then obtain the approximate investment
threshold:

ȳ1 ¼ ȳ0 þ
1

2ay

s2y, (45)

where ȳ0 ¼ rI is the exactly solved investment threshold in the deterministic case ðsy ¼ 0Þ.
Therefore, to the first-order approximation, the investment threshold ȳ1 increases in
volatility sy, and the agent’s risk attitude does not affect investment timing. This prediction
is thus qualitatively the same as in the standard real options models to the first order.

The intuition for this result is as follows. In the flow payoff case, the agent receives a
stream of uninsurable income after the option exercise. Therefore, the agent’s
precautionary savings motive lowers both the implied project value f ðyÞ and the implied
option value gðyÞ. It turns out that the precautionary savings motive has offsetting effects
on gðyÞ and f ðyÞ to the first-order approximation. Thus, there is little impact on investment
timing since the investment threshold ȳ is determined by the relative magnitudes of the
implied option value gðyÞ and the project payoff f ðyÞ. This result differs from the lump-sum
payoff case where the precautionary savings motive only affects the implied option value,
not the project payoff value. As a result, the investment threshold is lowered by the agent’s
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precautionary savings motive to the first-order approximation in the lump-sum payoff
case. In contrast, exercising the option does not eliminate the effect of uninsurable
idiosyncratic shocks when payoffs are given in flow terms over time.
To further understand the impact of the agent’s precautionary motive g on the

investment decision, we use the second-order approximation with respect to s2y and obtain
the following approximate investment threshold:

ȳ2 ¼ ȳ1 þ
1

a2y
g�

r

2ay

� �
s4y, (46)

where ȳ1 is given in (45). Eq. (46) indicates that, to the second-order approximation, the
investment threshold increases in g, opposite to the prediction for the lump-sum payoff
case. While the precautionary savings effect is present both before and after the option
exercise as argued earlier, the precautionary savings effect, to the second-order
approximation, has a larger impact on f ðyÞ than on gðyÞ. The intuition is as follows.
Before exercising the option, the agent can decide when to invest in the risky investment.
While volatility has offsetting effects on the implied option value gðyÞ and the implied
project value f ðyÞ to the first order, the additional flexibility of timing the investment
decision at the margin implies that the precautionary savings effect is stronger after
exercising the option than before. This line of argument suggests that an increase in the
precautionary savings motive g lowers f ðyÞ more than gðyÞ, thereby delaying the exercise of
the option. We emphasize that the effect of g on the investment decision is of the second
order.
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Fig. 3. Investment threshold, risk aversion, and project volatility. This figure plots the investment threshold at

varying levels of the risk aversion parameter g and volatility sy for the flow payoff case. Other parameter values

are set as follows: interest rate r ¼ 2%, drift ay ¼ 0:1, and investment cost I ¼ 10.
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Finally, we use numerical solutions to conduct further analysis. Fig. 3 plots the invest-
ment threshold as a function of volatility sy and the parameter g. This figure confirms our
preceding approximation results. Moreover, it illustrates that the effects of volatility sy

on the investment threshold are stronger when the agent is more precautionary, i.e., when g
is higher.

Fig. 4 illustrates the effect of changes in g. An increase in g raises precautionary savings
both after and before the option exercise, thereby lowering both the implied project value
f ðyÞ and the implied option value gðyÞ. This figure confirms our earlier analysis that f ðyÞ is
lowered more than gðyÞ, so that the agent delays exercising the investment option.

4.2. Flow payoff with hedging opportunities (Model IV)

We now turn to the flow payoff case with hedging. Based on our previous analysis, we
anticipate that the model contains the following two features: (i) the hedging opportunity
allows the separation of idiosyncratic volatility and systematic volatility, and hence
captures the different effects of these two forms of volatility on the investment and
consumption decisions; and (ii) the flow payoff implies that idiosyncratic volatility
continues to matter after option exercise and hence lowers the certainty-equivalent payoff
value, similar to the self-insurance model for the flow payoff case.



ARTICLE IN PRESS
J. Miao, N. Wang / Journal of Financial Economics 86 (2007) 608–642630
Let pt denote the amount allocated in the risky asset with returns given in (17) at time t.
As in Section 3, we can denote �y as the idiosyncratic volatility, in that

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sy. (47)

We can rewrite the observed flow payoff process fY t : tX0g given in (30) as follows:

dY t ¼ ay dtþ rsy dBt þ �y deBt, (48)

where B describes the systematic (market) risk and eB describes the idiosyncratic project
risk.
Before the agent exercises the investment option at time t, his wealth accumulation is the

same as (20). After time t, his wealth evolves as follows:

dW t ¼ ½rW t þ ptðme � rÞ þ Y t � Ct�dtþ ptse dBt. (49)

Note that the flow payoff Y appears in (49), not in (20). As before, the agent’s wealth
immediately after his investment W t is given by W t ¼W t� � I , where W t� denotes his
wealth level just prior to his investment at time t. The following proposition characterizes
the solution.

Proposition 4. The agent exercises the investment option the first time the process Y hits the

threshold ȳ from below. After exercising the option, the optimal consumption and portfolio

rules are given by

c̄ðw; yÞ ¼ r wþ f ðyÞ þ
Z2

2gr2

� �
, ð50Þ

p̄ðw; yÞ ¼
Z
gse

1

r
�

rsy

ser
, ð51Þ

where f ðyÞ is given by

f ðyÞ ¼
1

r
yþ

ay � rsyZ
r2

� �
�

g�2y
2r2

. (52)

Before exercising the option, the optimal consumption and portfolio rules are given by

c̄ðw; yÞ ¼ r wþ gðyÞ þ
Z2

2gr2

� �
, ð53Þ

p̄ðw; yÞ ¼
Z
gse

1

r
�

rsy

se

g0ðyÞ, ð54Þ

where ðg; ȳÞ is the solution to the following free-boundary problem:

rgðyÞ ¼ ðay � rsyZÞg0ðyÞ þ
s2y
2

g00ðyÞ �
gr�2y
2

g0ðyÞ2, (55)

subject to the no-bubble condition limy!�1gðyÞ ¼ 0, and the boundary conditions

gðȳÞ ¼ f ðȳÞ � I , ð56Þ

g0ðȳÞ ¼ f 0ðȳÞ ¼
1

r
. ð57Þ

Moreover, g is increasing.
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As in the previous subsection, we interpret f ðyÞ as the implied project value and gðyÞ as
the implied option value. Unlike the lump-sum payoff model with hedging opportunities in
Section 3, hedging affects not only the implied option value gðyÞ but also the implied
project value f ðyÞ. In particular, hedging lowers the agent’s exposure to idiosyncratic
volatility from sy to �y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sy. Thus, the precautionary savings demand after option

exercise is reduced from gs2y=ð2r2Þ to g�2y=ð2r2Þ. In addition, the portfolio rule (51) after
option exercise consists of the standard mean-variance term and the hedging demand
term.11

To compare with the complete-markets solution, we assume that the agent can
trade an additional risky asset to diversify the idiosyncratic risk as in Section 3.2.
Appendix B shows that the market value of the investment option satisfies the differential
equation

rCðyÞ ¼ ðay � rZsyÞC0ðyÞ þ
s2y
2
C00ðyÞ (58)

and the boundary conditions limy!�1CðyÞ ¼ 0, Cðy�Þ ¼ F ðy�Þ � I and C0ðy�Þ ¼ 1=r,
where

F ðyÞ ¼
1

r
yþ

ay � rZsy

r2
(59)

is the market value of the cash flow process Y. Eqs. (58) and (59) reveal that both the
option value and the project value under complete markets are independent of preferences
and effectively are the solutions in (52) and (55) for g ¼ 0. In addition, both values are
higher than under incomplete markets. Similar to our analysis in Section 4.1.2, the net
effect of incomplete hedging on investment timing depends on the relative magnitudes of
the changes in the implied option value and the project value. Similar to the insights from
the self-insurance model with flow payoffs, the impact of idiosyncratic shocks on the
project value is greater than on the option value to the second order. Thus, unlike in the
lump-sum payoff case analyzed in Section 3.2, incomplete hedging raises the investment
threshold and delays investment, compared to the complete-markets benchmark. This
result demonstrates that the timing of payoffs matters for the investment decision under
incomplete markets, which is different from a complete-markets setting where the timing of
payoffs does not matter as shown in Appendix B.

4.3. Empirical implications

Our analysis has empirical implications. For example, Model I (self-insurance with a
lump-sum payoff) suggests that unlike a standard real options analysis, a positive
investment-uncertainty relation may potentially arise for entrepreneurial activities when
idiosyncratic risk is sufficiently large. Thus, we must be cautious in interpreting some
conflicting results found in empirical studies.12 Our analysis also suggests that the
11See Svensson and Werner (1993), Duffie, Fleming, Soner, and Zariphopoulou (1997), Koo (1998), Viceira

(2001), Heaton and Lucas (2000), Davis and Willen (2002), and Campbell and Viceira (2002, Chapter 6), among

others, on dynamic consumption and portfolio choice when an investor is endowed with nontraded stochastic

income.
12See Quigg (1993), Berger, Ofek, and Swary (1996), Leahy and Whited (1996), and Moel and Tufano (2002) for

empirical works. See Caballero (1991a) for a theoretical analysis.
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investment behavior of undiversified individuals is different from that of well-diversified
individuals or institutions. In particular, risk attitude plays an important role under
incomplete markets. Consider again the real estate development example. Suppose we have
a sample containing both undiversified individual developers and publicly traded REITs.
Suppose that both individual entrepreneurs and REITs specialize in development of and
not management of the properties. That is, we can take the sales value of the property
upon completion of construction as given. Then, Models I and II predict that the
individual entrepreneurs are more likely to develop earlier than the publicly traded REITs,
because idiosyncratic risk lowers the implied option value of waiting for individual
developers. However, if they also manage the properties after completion of development,
then Models III and IV (flow payoff cases) suggest that the preceding prediction could be
reversed because the properties are also less valuable to the undiversified individual
developers. Moreover, developing real estate does not allow the entrepreneur to diversify
away the uninsurable idiosyncratic risk.
5. Robustness

Our main results include the following: (i) risk aversion erodes option value and speeds
up investment in the lump-sum payoff case of Model I; and (ii) risk aversion has no first-
order effect on investment policy and the second-order effect is to delay investment, in the
flow payoff case of Model III. These results are based on the assumptions of CARA utility
and arithmetic Brownian motion payoff processes. We now relax these assumptions.13

First, we derive the optimal investment thresholds in Models I and III using geometric
Brownian motion (GBM) payoff processes instead of arithmetic Brownian motion process
(details available upon request). Consider Model I in which the lump-sum payoff process is
replaced by

dX t ¼ axX t dtþ sxX t dZt, (60)

where ax;sx40. We assume r4ax for convergence. Then we can show a result similar to
Proposition 1; that is, the investment threshold x̄ and the implied option value GðxÞ are
determined by the following free-boundary ODE:

rGðxÞ ¼ axxG0ðxÞ þ
s2xx2

2
G00ðxÞ �

grs2xx2

2
G0ðxÞ2, (61)

subject to the no-bubble condition limx!0GðxÞ ¼ 0, limx!1GðxÞ=xo1, and the (value-
matching and smooth-pasting) boundary condition:

Gðx̄Þ ¼ x̄� I , ð62Þ

G0ðx̄Þ ¼ 1. ð63Þ

The functional forms for the consumption rules and the value functions before investment
and after investment remain the same as the ones reported in Proposition 1, but evaluated
with the new option value GðxÞ, the solution to the above free-boundary problem.
As in Section 2.4, we use the asymptotic expansion method to solve for the approximate

investment threshold. We can show that to the first-order approximation around s2x the
13We are grateful to the anonymous referee for suggesting this analysis.
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investment threshold is given by

x̄1 ¼ x̄0 1þ
1

2ax

�
g
2

rx̄0

r� ax

� �
s2x

� �
, (64)

where x̄0 ¼ rI=ðr� axÞ is the investment threshold in the deterministic case sx ¼ 0. Eq. (64)
resembles (16) and implies that risk aversion speeds up investment. The intuition is that
risk aversion lowers the implied option value GðxÞ as shown in the last term in Eq. (61), but
has no effect on the lump-sum project payoff X. This intuition is in accord with that in
Section 2.4.

Now turn to Model III in which the flow payoff process is replaced by

dY t ¼ ayY t dtþ syY t dZt, (65)

where ay;sy40. We assume r4ay for convergence. Then we can show a result similar to
Proposition 3; that is, the investment threshold ȳ and the implied option value gðyÞ are
determined by the following free-boundary ODE:

rgðyÞ ¼ ayyg0ðyÞ þ
s2yy2

2
g00ðyÞ �

grs2yy2

2
g0ðyÞ2, (66)

subject to the boundary conditions limy!0gðyÞ ¼ 0, and

gðȳÞ ¼ f ðȳÞ � I , ð67Þ

g0ðȳÞ ¼ f 0ðȳÞ, ð68Þ

where the implied project value f ðyÞ after investment satisfies the ODE

rf ðyÞ ¼ yþ ayyf 0ðyÞ þ
s2yy2

2
f 00ðyÞ �

grs2yy2

2
f 0ðyÞ2, (69)

subject to the no-bubble condition limy!1f ðyÞ=yo1. As in the robustness check for the
lump-sum payoff case, the functional forms for the consumption rules and the value
functions before investment and after investment are the same as the ones reported in
Proposition 3, but evaluated with the new implied project value f ðyÞ and the new option
value gðyÞ, characterized by (66)–(69). Note that unlike Proposition 3, there is no closed-
form solution for f ðyÞ nor for the consumption rule after investment.

As in Section 4.1, we can show that to the first-order approximation around s2y the
investment threshold is given by

ȳ1 ¼ ȳ0 1þ
1

2ay

s2y

� �
, (70)

where ȳ0 ¼ rI is the deterministic investment threshold. To ensure convergence for the
first-order approximation, we assume r42ay. The preceding equation resembles Eq. (45)
and implies that risk aversion has no first-order effect on the investment threshold in the
flow payoff case. The intuition is the same as that discussed in Section 4.1. Specifically,
both the implied option value gðyÞ and the implied project value f ðyÞ are lowered by risk
aversion as seen in (66) and (69). The two effects offset each other to the first-order
approximation.
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We can also demonstrate that, to the second-order approximation around s2y, the
investment threshold is given by

ȳ2 ¼ ȳ1 þ
ȳ0

4ðr� ayÞa3y
2Ir2ayg� ðr� ayÞ

2

 �

s4y. (71)

This equation resembles Eq. (46) and implies that risk aversion delays investment. This
result is due to the fact that risk aversion has a bigger (negative) impact on the implied
project value f ðyÞ than on the implied option value gðyÞ to the second order, which is
consistent with the result and the intuition reported for the arithmetic Brownian motion
case in Section 4.1.
Our preceding analysis demonstrates that our main results on the investment timing are

robust to the GBM specification of the payoff process. This finding is not surprising since
our intuition on the interplay between the precautionary savings effect and the option
effect does not hinge upon the specifications of the payoff process.
We now discuss the specification of the utility function. CARA utility allows us to

exploit its lack of wealth effect feature so that we can reduce the two-dimensional free-
boundary problem to a simpler one with the payoff as the only state variable. Another
widely adopted specification is the constant relative risk aversion (CRRA) utility function.
Although this utility function has the homogeneity property, the budget constraints in our
problem are nonlinear due to the jump of wealth at the time of investment. Thus, our
problem does not have a homogeneity property so that we cannot reduce our two-
dimensional problem to one with a single state variable. In this case, the investment
threshold is a function of wealth and differs from that in our CARA utility models.
Therefore, both our asymptotic expansion and numerical methods are not directly
applicable to the CRRA utility specification. Since an agent with CRRA utility also has
precautionary motives, we suspect that our key intuition, primarily building on the
interaction between precautionary savings and option value, is likely to survive.
Nonetheless, we should emphasize that with CRRA utility, the agent’s liquid wealth will
have effects on investment policy that could generate new insights. A thorough analysis is
beyond the scope of the present paper.

6. Conclusions

Entrepreneurs’ business investment opportunities are often nontradable and their
payoffs cannot be spanned by existing traded assets for reasons such as incentives and
informational asymmetries. These features invalidate the standard real options approach
to investment. Extending this approach, we develop a utility-based real options model to
analyze an agent’s interdependent real investment, consumption, and portfolio choice
decisions. We derive semi-closed-form solutions and analyze the solutions using both
asymptotic expansion and numerical methods.
We show that project volatility has both a positive and a negative effect on the implied

option value. The negative effect is induced by the precautionary savings motive. For the
lump-sum payoff case, risk aversion accelerates investment. Unlike in standard real
options analysis, an increase in project volatility can accelerate investment if the agent has
a sufficiently strong precautionary motive. We further extend our model to allow for the
opportunity to hedge. We show that hedging reduces the agent’s exposure to idiosyncratic
risk, and hence raises the option value. In addition, hedging allows the decomposition of
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total project volatility into systematic volatility and idiosyncratic volatility. Idiosyncratic
volatility generates an idiosyncratic risk premium. Finally, we analyze settings where
investment payoffs are given in flow terms over time. Unlike in standard real options
analysis, here the lump-sum and flow payoff cases have different implications. Because the
precautionary savings effect matters both before and after investment in the flow payoff
case, many predictions in this case differ from and can even be opposite to those in the
lump-sum payoff case.

In order to analyze the effect of uninsurable idiosyncratic risk on investment in the
simplest possible setting, we have intentionally ignored the wealth effect by adopting
CARA utility. However, the wealth effect can potentially play an important role for
quantitative assessment in settings such as entrepreneurship. We leave the incorporation of
wealth effects to future research. Finally, when entrepreneurs invest in nontradable
projects, they often need to make financing decisions jointly. For the real estate example,
the construction and operating expenses are often largely financed by mortgages. We
analyze the interaction between investment and financing decisions in Miao and Wang
(2005).
Appendix A. Proofs
Proof of Proposition 1. From the first-order condition U 0ðcÞ ¼ Vwðw; xÞ, we can derive the
consumption policy before the option exercise given in (11). Substituting it into the HJB
equation (5), we can show that GðxÞ satisfies the ODE (12). Given the functional forms of
the value functions, we can also show that the no-bubble, value-matching, and smooth-
pasting conditions become the boundary conditions in Proposition 1. By a standard
dynamic programming argument, one can show that V satisfies

V ðw; xÞ ¼ max
ðt;CÞ

E

Z t

0

e�rtUðCtÞdtþ e�rtV0ðW t þ X t � IÞ

� ����ðW 0;X 0Þ ¼ ðw;xÞ

�
.

(A.1)

Consider xox0. For X 0 ¼ x0, let t0 be the optimal investment time and fC0t : 0ptpt0g be
the optimal consumption process before investment. Since V 0 is an increasing function
and, given any sample path,

X t0 � xþ axt0 þ sxW t0oX 0t0 � x0 þ axt0 þ sxW t0 ,

we haveZ t0

0

e�rtUðC0tÞdtþ e�rt0V0ðW t0 þ X t0 � IÞo
Z t0

0

e�rtUðC0tÞdtþ e�rt0V0ðW t0 þ X 0t0 � IÞ.

Taking conditional expectations yields

E

Z t0

0

e�rtUðC0tÞdtþ e�rt0V 0ðW t0 þ X t0 � IÞ

� ����ðW 0;X 0Þ ¼ ðw;xÞ

�
oE

Z t0

0

e�rtUðC0tÞdtþ e�rt0V 0ðW t0 þ X 0t0 � IÞ

� ����ðW 0;X 0Þ ¼ ðw;x
0Þ

�
¼ V ðw;x0Þ.
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Given the wealth dynamics described in Section 2.1, fC0t : 0ptpt0g and t0 are also feasible
for X 0 ¼ x. Thus, the left side of the above equation is less than or equal to V ðw;xÞ by
(A.1). So, V ðw;xÞoV ðw; x0Þ and V is increasing in x. &

Proof of Proposition 2. Without risk of confusion, we still use V 0ðwÞ and V ðw; xÞ to denote
the value function after and before the option exercise, respectively, when the agent can
trade a risky asset. By a standard argument, V 0 satisfies the following HJB equation:

rV 0ðwÞ ¼ max
ðc;pÞ2R2

UðcÞ þ ½rwþ pðme � rÞ � c�V0
wðwÞ þ

ðpseÞ
2

2
V0

wwðwÞ. (A.2)

The transversality condition limT!1E½e
�rT V 0ðW T Þ� ¼ 0 must also be satisfied. Given

CARA utility, one can follow Merton (1969) to derive the consumption and portfolio rules
in (21)–(22) and

V 0ðwÞ ¼ �
1

gr
exp �gr wþ

Z2

2gr2

� �� �
. (A.3)

Before the option exercise, the value function V ðw;xÞ satisfies the following HJB
equation:

rV ðw;xÞ ¼ max
ðc;pÞ2R2

UðcÞ þ ½rwþ pðme � rÞ � c�V wðw;xÞ þ axV xðw;xÞ

þ
s2x
2

V xxðw;xÞ þ
ðpseÞ

2

2
Vwwðw;xÞ þ psesxrVwxðw; xÞ. ðA:4Þ

We conjecture that the value function V takes the form

V ðw;xÞ ¼ �
1

gr
exp �gr wþ GðxÞ þ

Z2

2gr2

� �� �
, (A.5)

where GðxÞ is a function to be determined. Using the first-order conditions,

U 0ðcÞ ¼ V wðw;xÞ;p ¼
�V wðw;xÞ

V wwðw;xÞ

me � r

s2e
þ
�Vwxðw; xÞ

V wwðw;xÞ

rsx

se

, (A.6)

one can derive the optimal consumption and portfolio policies before exercising the option
given in (23)–(24). Plugging these expressions back into the HJB equation gives (25). As in
Section 2, the boundary conditions are given by the no-bubble, value-matching, and
smooth-pasting conditions similar to (6)–(8). Using these boundary conditions, one can
derive the boundary conditions in Proposition 2. The rest of the proof follows a similar
argument to that in Proposition 1. &

Proof of Proposition 3. We conjecture that the value function after the option exercise J

takes the following form:

Jðw; yÞ ¼ �
1

gr
exp½�grðwþ f ðyÞÞ�, (A.7)

where f ðyÞ is a function to be determined. To solve for this function, we use the first-order
condition U 0ðcÞ ¼ Jwðw; yÞ to derive the optimal consumption rule given in (37). Substitute
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it back into the HJB equation (32) to derive the following ODE:

0 ¼ ðy� rf ðyÞÞ þ ayf 0ðyÞ þ
s2y
2
½f 00ðyÞ � grf 0ðyÞ2�. (A.8)

It can be verified that its solution is given by (38). Moreover, it is such that the value
function satisfies the transversality condition limT!1E½e

�rT JðW T ;Y T Þ� ¼ 0.
We conjecture that the value function before the option exercise, V ðw; yÞ, takes the form

V ðw; yÞ ¼ �
1

gr
exp½�grðwþ gðyÞÞ�, (A.9)

where gðyÞ is a function to be determined. From the first-order condition U 0ðcÞ ¼ V wðw; yÞ,
we can derive the consumption policy before investment given in (39). Substituting it into
the HJB equation (33), we can show that gðyÞ satisfies the ODE (40). By a standard
dynamic programming argument, we can show that V satisfies

V ðw; yÞ ¼ max
t;C

E

Z t

0

e�rtUðCtÞdtþ e�rtJðW t � I ;Y tÞ

� ����ðW 0;Y 0Þ ¼ ðw; yÞ

�
. (A.10)

Since it follows from (A.7) that J is increasing and concave in y, we can show that V is also
increasing and concave in y. The rest of the proof follows from a similar argument to that
in Proposition 1. &

Proof of Proposition 4. Without risk of confusion, we still use Jðw; yÞ and V ðw; yÞ to denote
the value function after and before the option exercise, respectively, when the agent can
also trade a risky asset. By a standard argument, Jðw; yÞ satisfies the HJB equation

rJðw; yÞ ¼ max
ðc;pÞ2R2

UðcÞ þ ½rwþ pðme � rÞ þ y� c�Jwðw; yÞ þ ayJyðw; yÞ

þ
s2y
2

Jyyðw; yÞ þ
ðpseÞ

2

2
Jwwðw; yÞ þ psesyrJwyðw; yÞ. ðA:11Þ

The transversality condition limT!1E½e
�rT JðW T ;Y T Þ� ¼ 0 must also be satisfied. We

conjecture that Jðw; yÞ takes the following form:

Jðw; yÞ ¼ �
1

gr
exp �gr wþ f ðyÞ þ

Z2

2gr2

� �� �
, (A.12)

where the function f is to be determined. By the first-order conditions,

U 0ðcÞ ¼ Jwðw; yÞ;p ¼
�Jwðw; yÞ

Jwwðw; yÞ

me � r

s2e
þ
�Jwyðw; yÞ

Jwwðw; yÞ

rsy

se

, (A.13)

we can derive the optimal consumption and portfolio policies after investment given in
(53)–(54). Substituting them back into the HJB equation (A.11), one can derive the
solution for f ðyÞ given in (52). It can be verified that this solution satisfies the transversality
condition.

The value function before the option exercise, V , satisfies the following HJB equation:

rV ðw; yÞ ¼ max
ðc;pÞ2R2

UðcÞ þ ½rwþ pðme � rÞ � c�V wðw; yÞ þ ayV yðw; yÞ

þ
s2y
2

V yyðw; yÞ þ
ðpseÞ

2

2
Vwwðw; yÞ þ psesyrVwyðw; yÞ. ðA:14Þ
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We conjecture that the value function V takes the following form:

V ðw; yÞ ¼ �
1

gr
exp �gr wþ gðyÞ þ

Z2

2gr2

� �� �
, (A.15)

where gðyÞ is a function to be determined. Using the first-order conditions,

U 0ðcÞ ¼ V wðw; yÞ;p ¼
�Vwðw; yÞ

V wwðw; yÞ

me � r

s2e
þ
�V wyðw; yÞ

V wwðw; yÞ

rsy

se

, (A.16)

one can derive the optimal consumption and portfolio policies before investment given in
(50)–(51). Plugging these expressions into the HJB equation gives a differential equation for
gð�Þ. The rest of the proof follows from a similar argument to that in Propositions 1 and 3. &

Appendix B. Complete markets solution

To derive the complete-markets solution, we assume that the agent can trade an
additional risky asset that spans the idiosyncratic risk generated by the Brownian motioneB. Specifically, let the return of the second risky asset be given by dSt=St ¼ rdtþ sS deBt,
where sS is a positive constant. Since idiosyncratic risk is by definition independent of
market risk, this risky asset yields an expected rate of return r and does not demand a risk
premium by the CAPM. Therefore, the implied unique stochastic discount factor x is given
by �dxt=xt ¼ rdtþ ZdBt with x0 ¼ 1, where Z is the Sharpe ratio of the market portfolio.
The agent’s joint consumption, investment, and asset allocation decision can then be

formulated as a two-stage problem with the agent (i) choosing an investment policy to
maximize the option value so that the agent’s total wealth is maximized and (ii) choosing
optimal consumption given this total wealth.
We first derive the solution for the lump-sum payoff case. Using the unique stochastic

discount factor x, we can write the option value maximization problem as follows:

FðxÞ ¼ max
t

E½xtðX t � IÞjX 0 ¼ x�. (B.1)

By a standard argument, we can derive explicit expressions for the option value and the
investment threshold,

FðxÞ ¼
1

lx

elxðx�x�Þ, ðB:2Þ

x� ¼ I þ
1

lx

, ðB:3Þ

where lx ¼ �s�2x ðax � rZsxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�4x ðax � rZsxÞ

2
þ 2rs�2x

q
40.

For the flow-sum payoff case, we can similarly write the market option value as

CðyÞ ¼ max
t

E

Z 1
t

xtY t dt� xtI
� ����Y 0 ¼ y

�
. (B.4)

By a standard argument, we derive the following explicit expressions for the option value
and the investment threshold:

CðyÞ ¼
1

rly

elyðy�y�Þ, ðB:5Þ
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y� ¼ rI �
ay � rZsy

r
þ

1

ly

, ðB:6Þ

where ly ¼ �s�2y ðay � rZsyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�4y ðay � rZsyÞ

2
þ 2rs�2y

q
40.

We observe that, under complete markets, the lump-sum and flow payoff formulations
are mathematically equivalent, since we can discount cash flows using the unique
stochastic discount factor x. Specifically, by defining X t ¼ x�1t Etð

R1
t

xsY s dsÞ ¼ F ðY tÞ, we
can show that the problems (B.1) and (B.4) are equivalent. Thus, they deliver the same
option value FðxÞ ¼ CðyÞ and investment timing strategy. However, this equivalence fails
when the investment opportunity is not tradable and not spanned by existing traded assets.

Appendix C. Approximation method

To describe our approximation solution methodology, we sketch out the procedure for
the self-insurance model with a lump-sum payoff. Essentially identical procedures can be
applied to the models in Sections 3 and 4. We divide the procedure into four steps.

Step 1: Solve for the case with deterministic payoff ðs2x ¼ 0Þ. With sx ¼ 0, risk attitude
ðgÞ does not affect the investment threshold. The implied option value G0ðxÞ and the
investment threshold x̄0 are both known in closed form and are given by

G0ðxÞ ¼
ax

r
exp

r

ax

ðx� x̄0Þ

� �
; xpx̄0, ðC:1Þ

x̄0 ¼ I þ
ax

r
. ðC:2Þ

Step 2: Consider small s2x. Conjecture that the approximate option value and the
investment threshold are

GðxÞ � G0ðxÞ þ G1ðxÞs2x, ðC:3Þ

x̄1 ¼ x̄0 þ d1s2, ðC:4Þ

where G0ðxÞ and x̄0 are solved in Step 1, and G1ðxÞ and d1 are the coefficient function and
the coefficient to be determined.

Step 3: Plugging the approximate (C.3) into the ODE (12) and boundary conditions
(13)–(14) and keeping the terms up to s2x, we have the following:

axG01ðxÞ þ
1

2
G000ðxÞ �

gr

2
G00ðxÞ

2
¼ rG1ðxÞ, (C.5)

subject to G1ðx̄1Þ ¼ 0 and G01ðx̄1Þ ¼ �rd1=ax. Note that unlike the original nonlinear ODE
(12) for GðxÞ, we now have a free-boundary problem defined by a first-order ODE (C.5) for
G1ðxÞ with certain boundary conditions.

Step 4: Solving the above differential equation gives our reported solution in (16) and

G1ðxÞ ¼
r

2a2x
ðx̄0 � xÞe�

r
ax
ðx̄0�xÞ

�
g
2

e�
r
ax
ðx̄0�xÞ

� e�
2r
ax
ðx̄0�xÞ

h i
; xpx̄1.

Appendix D. Computation method

We describe the solution method to the free-boundary problem described in Proposition 3.
The problems described in other propositions can be solved similarly. We use the projection



ARTICLE IN PRESS
J. Miao, N. Wang / Journal of Financial Economics 86 (2007) 608–642640
method implemented with collocation (Judd, 1998). The traditional shooting method
and finite difference method are inefficient for our nonlinear problem and extensive
simulations.
We first rewrite the second-order ODE (40) as a system of first-order ODEs. Let

DðyÞ ¼ g0ðyÞ. Then (40) can be rewritten as

D0ðyÞ ¼
2

s2y
ðrgðyÞ � ayDðyÞÞ þ grDðyÞ2. (D.1)

The boundary conditions are

lim
y!�1

gðyÞ ¼ 0, ðD:2Þ

gðyÞ ¼ f ðyÞ � I , ðD:3Þ

DðyÞ ¼ 1=r. ðD:4Þ

Note that (D.2) states that when y goes to minus infinity, the agent never exercises the
investment option, and hence the implied option value is equal to zero.
The idea of the algorithm is to first ignore the smooth-pasting condition (D.4) and then

to solve a two-point boundary value problem with a guessed threshold value y0. Since the
boundary condition (D.2) is open ended, we pick a very small negative number y and set
gðyÞ ¼ 0. The true value of the threshold is found by adjusting y0 so that the smooth-
pasting condition (D.4) is satisfied. We then adjust y so that the solution is not sensitive to
this value. The algorithm is outlined as follows.

Step 1: Start with a guess y0 and a preset order n.
Step 2: Use a Chebyshev polynomial to approximate g and D:

gðy; aÞ ¼
Xn

i¼0

aiTiðyÞ;Dðy; bÞ ¼
Xn

i¼0

biTiðyÞ, (D.5)

where TiðyÞ is the Chebyshev polynomial of order i, and a ¼ ða0; a1; . . . ; anÞ and b ¼

ðb0; b1; . . . ; bnÞ are 2nþ 2 constants to be determined. Substitute the above expressions into
the preceding system of ODEs and evaluate it at n roots of TnðyÞ. Together with the two
boundary conditions, we then have 2nþ 2 equations for 2nþ 2 unknowns a ¼

ða0; a1; . . . ; anÞ and b ¼ ðb0; b1; . . . ; bnÞ. Let the solution be ba and bb.
Step 3: Search for y0 such that the smooth-pasting condition, Dðy0; bbÞ ¼ 1=r, is

approximately satisfied.
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