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The Economic and Policy Consequences 
of Catastrophes†

By Robert S. Pindyck and Neng Wang*

How likely is a catastrophic event that would substantially reduce 
the capital stock, GDP, and wealth? How much should society be 
willing to pay to reduce the probability or impact of a catastrophe? 
We answer these questions and provide a framework for policy 
analysis using a general equilibrium model of production, capital 
accumulation, and household preferences. Calibrating the model to 
economic and financial data, we estimate the mean arrival rate of 
shocks and their size distribution, the tax on consumption society 
would accept to limit the maximum size of a catastrophic shock, and 
the cost to insure against its impact. (JEL D81, E22, E23, E32, G22, 
H25, Q54)

What is the likelihood that the United States will experience a devastating cata-
strophic event over the next few decades? And how much should society be 

willing to pay to limit the possible impact of such an event? By “catastrophic event” 
we mean something national or global in scale that would substantially reduce the 
capital stock and/or the productive efficiency of capital, thereby substantially reduc-
ing GDP, consumption, and wealth. Examples might include a nuclear or biological 
terrorist attack (far worse than even 9/11), a highly contagious “megavirus” that 
spreads uncontrollably, a global environmental disaster, or a financial and economic 
crisis on the order of the Great Depression.1 We show how the probability and pos-
sible impact of such an event can be inferred from the behavior of economic and 
financial variables such as investment, interest rates, and equity returns. We also 
show how our framework can be used to estimate the amount society should be will-
ing to pay to reduce the probability of a catastrophic event, or to insure against its 
actual impact should it occur.

1 Readers who are incurable optimists or have limited imaginations should read Posner (2004), who provides 
more examples and argues that society fails to take these risks seriously enough, and Sunstein (2007). For a sober-
ing discussion of the likelihood and possible impact of nuclear terrorism, see Allison (2004).
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An emerging literature has used historical data to estimate the likelihood and 
expected impact of catastrophic events.2 Examples include Barro (2006, 2009), 
Barro and Ursúa (2008), and Barro et al. (2009).3 These studies, however, are lim-
ited in two respects. First, many of the included disasters are manifestations of three 
global events—World War I, World War II, and the Great Depression. Second, the 
possible catastrophic events that we think are of greatest interest today have little or 
no historical precedent—there are no data, for example, on the frequency or impact 
of nuclear or biological terrorist attacks. Or consider the 40-year period beginning 
around 1950 and ending with the breakup of the Soviet Union, during which one 
potential catastrophic event dominated all others: the possibility of a US-Soviet 
nuclear war. The Department of Defense, the RAND Corporation, and others stud-
ied the likelihood and potential impact of such an event, but there was no historical 
precedent on which to base estimates.

We take a different approach from earlier studies and ask what event arrival rate 
and impact distribution are implied by the behavior of basic economic and finan-
cial variables. We do not try to estimate the characteristics of catastrophic events 
from historical data on drops in consumption or GDP, nor do we use the estimates 
of others. Instead, we develop an equilibrium model of the economy that incorpo-
rates catastrophic shocks to the capital stock, and that links the first four moments 
of equity returns, along with economic variables such as consumption, investment, 
interest rates, and Tobin’s q, to parameters describing the characteristics of shocks 
as well as behavioral parameters such as the coefficient of relative risk aversion and 
elasticity of intertemporal substitution. We can then determine the characteristics of 
catastrophes as a calibration output of our analysis. In effect, we are assuming that 
these characteristics are those perceived by firms and households, in that they are 
consistent with the data for key economic and financial variables.4

Our framework also provides a tool for policy analysis. For example, how much 
should society be willing to pay to reduce or limit the impact of a catastrophic event? 
To measure “willingness to pay” (WTP), we calculate the maximum permanent 
percentage tax rate that society should be willing to accept in order to eliminate the 
possibility of a catastrophic shock, or reduce the maximum possible impact of such 
a shock. We also show how our framework can be used to calculate the equilibrium 
price of insurance against catastrophic risk, and we compare the use of insurance to 
the cost of reducing or eliminating risk.

2 The roots of this literature go back to the observation by Rietz (1988) that low-probability catastrophes might 
explain the equity premium puzzle first noted by Mehra and Prescott (1985), i.e., could help reconcile a relatively 
large equity premium (5 to 7 percent) and low real risk-free rate of interest (0 to 2 percent) with moderate risk aver-
sion on the part of households. Weitzman (2007) has shown that the equity premium and real risk-free rate puzzles 
could alternatively be explained by “structural uncertainty” in which one or more key parameters, such as the true 
variance of equity returns, is estimated through Bayesian updating.

3 In related work, Gourio (2008) modeled an exchange economy with recursive preferences and disasters that 
have limited duration. He found that the effect of recoveries on the equity premium could be positive or negative, 
depending on the elasticity of intertemporal substitution. Gabaix (2008) and Wachter (2008) showed that a time-
varying disaster arrival rate could explain the high volatility of the stock market (in addition to the equity premium 
and real risk-free rate).

4 In related work, Russett and Slemrod (1993) used survey data to show how beliefs about the likelihood of 
nuclear war affected savings behavior, and argue that such beliefs can help explain the low propensity to save in the 
United States relative to other countries. Also, see Slemrod (1990) and Russett and Lackey (1987).
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In Section I we lay out a parsimonious model with an AK production technology, 
adjustment costs (which we show are crucial), and shocks that arrive unpredictably. 
Each shock destroys a random fraction of the capital stock. We treat as catastrophic 
those shocks that reduce the capital stock by a “large” amount, e.g., something more 
than 10 or 15 percent. We explain how the model’s calibration yields information 
about the characteristics of shocks, as well as important behavioral parameters, and 
we show how all of the parameters of the model can be identified. Proceeding in 
stages, we show how the variance, skewness, and kurtosis of equity returns can be 
used to identify the parameters that characterize shocks to the capital stock; how 
the equity risk premium can then be used to identify the coefficient of relative risk 
aversion; how, given these parameters, the risk-free interest rate then identifies the 
elasticity of intertemporal substitution and/or the rate of time preference; and how 
the consumption-investment ratio and the real growth rate of GDP then determine 
the marginal propensity to consume, Tobin’s q, and investment. We also explain how 
the calibrated model can be used to determine the equilibrium price of insurance 
against catastrophic risk.

To calibrate the model, we use data for the US economy and financial markets 
over the period 1947 through 2008. Section II presents our calibration results and 
discusses their implications for the characteristics of shocks and for behavioral 
parameters. Section  II also shows the implications of the model for the price of 
insurance against catastrophes of various sizes, and demonstrates the importance of 
adjustment costs. Section III discusses the application of our framework to policy 
analysis. In particular, we calculate the maximum permanent tax on consumption 
that society would accept to reduce or eliminate the impact of catastrophic shocks. 
Section IV concludes.

I.  Framework

In this section, we lay out the building blocks of a simple general equilibrium 
model and then explain how the model is solved.

A. Building Blocks

Preferences.—We use the Duffie and Epstein (1992) continuous-time version of 
Epstein-Weil-Zin (EWZ) preferences, so that a representative consumer has homo-
thetic recursive preferences given by5

(1)	​ V​t​  = ​ ​t​ ​[ ​∫​ 
t
​ 
∞
​ f (​C​s​ , ​V​s​) ds ]​,

5 Epstein and Zin (1989) and Weil (1990) developed homothetic nonexpected utility in discrete time, which 
separates the elasticity of intertermporal substitution from the coefficient of relative risk aversion.
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where

(2)	 f (C, V)  = ​ 
ρ
 _ 

1 − ​ψ​−1​
 ​ ​ 

​C​1−​ψ​ −1​​ − ​​( (1 − γ)V )​​ω​
  __  

​​( (1 − γ)V )​​ω−1​
 ​  .

Here ρ is the rate of time preference, ψ the elasticity of intertemporal sub-
stitution (EIS), γ the coefficient of relative risk aversion, and we define 
ω = (1 − ​ψ​−1​)/(1 − γ). Unlike time-additive utility, recursive preferences 
as defined by equations  (1) and (2) disentangle risk aversion from the EIS. 
Note that with these preferences, the marginal benefit of consumption is ​f​C​  
= ρ​C​ −ψ−1​/[(1 − γ)V ​]​ω−1​, which depends not only on current consumption but also 
(through V ) on the expected trajectory of future consumption.

If γ = ​ψ​−1​ so that ω = 1, we have the standard constant relative risk aversion 
(CRRA) expected utility, represented by the additively separable aggregator:

(3)	 f (C, V )  = ​ 
ρ​C​1−γ​
 _ 

1 − γ
 ​  −  ρV.

One of the questions we address is whether γ is close to ​ψ​−1​, so that the simple 
CRRA utility function is a reasonable approximation for modeling purposes. More 
generally, we examine how equilibrium allocation and pricing constrains the mod-
el’s parameters, including the EIS and the coefficient of relative risk aversion.

Production.—Aggregate output has an AK production technology:

(4)	Y   =  AK  ,

where A is a constant that defines productivity and the capital stock K is the sole 
factor of production. The AK model is widely used, in part because it generates 
balanced growth in equilibrium. In our specification, K is the total stock of capital; 
it includes physical capital as traditionally measured, but also human capital and 
firm-based intangible capital (such as, patents, know-how, brand value, and organi-
zational capital).

Shocks to the Capital Stock.—We assume that discrete downward jumps to the 
capital stock (“shocks”) occur as Poisson arrivals with a mean arrival rate λ. There 
is no limit to the number of these shocks; the occurrence of a shock does not change 
the likelihood of another, and in principle shocks can occur frequently.6 When a 
shock does occur, it permanently destroys a stochastic fraction (1 − Z ) of the capi-
tal stock K, so that Z is the remaining fraction. (For example, if a shock destroyed 
15 percent of capital stock, we would have Z = 0.85.) We assume that Z follows 

6 Stochastic fluctuations in the capital stock have been widely used in the growth literature with an AK tech-
nology, but unlike the existing literature, we examine the economic effects of shocks to capital that involve dis-
crete (catastrophic) jumps. See Jones and Manuelli (2005) for a survey of endogenous growth models with with a 
stochastic AK technology.
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a well-behaved probability density function (pdf) ζ(Z ) with 0 ≤ Z ≤ 1. By well-
behaved, we mean that the moments (​Z​ n​) exist for n = 1, 1 − γ, and  − γ. As we 
will see, these are the only moments of Z that are relevant for our analysis.

As we will show in Section  II when we discuss the calibration of the model, 
shocks occur frequently, but for most shocks losses are small. We consider catas-
trophes to be shocks for which the drop in the capital stock is sufficiently large, 
e.g., more than 10 or 15 percent. Using our calibration, we will see that the model 
predicts that catastrophic shocks are rare.

The capital stock is also subject to ongoing continuous fluctuations. These con-
tinuous fluctuations, along with small jumps, can be thought of as the stochastic 
depreciation of capital. Large shocks, on the other hand, are interpreted as (rare) 
catastrophic events.

Investment and Capital Accumulation.—Letting I denote aggregate investment, 
the capital stock K evolves as

(5)	 d​K​t​  =  Φ(​I​t​ , ​K​t​) dt  +  σ​K​t​ d​W​t​ − (1 − Z )​K​t​ d​J​t​ .

Here the parameter σ captures diffusion volatility, ​W​t​ is a standard Brownian motion 
process, and ​J​t​ is a jump process with mean arrival rate λ that captures discrete 
shocks; if a jump occurs, K falls by the random fraction (1 − Z ). The adjustment 
cost function Φ(I, K ) captures effects of depreciation and costs of installing capital. 
Because installing capital is costly, installed capital earns rents in equilibrium so 
that Tobin’s q, the ratio between the market value and the replacement cost of capi-
tal, exceeds one. We assume Φ(I, K) is homogeneous of degree one in I and K and, 
thus, can be written as

(6)	 Φ(I, K )  =  ϕ(i)K ,

where i = I/K and ϕ(i) is increasing and concave. Unlike other models of catastro-
phes, we explicitly account for the effects of adjustment costs on equilibrium price 
and quantities.7

For simplicity, we use a quadratic adjustment cost function, which can be viewed 
as a second-order approximation to a more general one:

(7)	 ϕ(i)  =  i  − ​  1 _ 
2
 ​ θ ​i​  2​  −  δ .

Catastrophic Risk Insurance.—We will use our model to determine the equi-
librium premium for catastrophic risk insurance. In order to make our analysis of 
insurance as general as possible, we introduce catastrophic insurance swaps (CIS) 

7 Homogeneous adjustment cost functions are analytically tractable and have been widely used in the q theory of 
investment literature. Hayashi (1982) showed that with homogeneous adjustment costs and perfect capital markets, 
marginal and average q are equal. Jermann (1998) integrated this type of adjustment costs into an equilibrium busi-
ness cycle/asset pricing model.
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for shocks of every possible size. These swaps are defined as follows: a CIS for the 
survival fraction in the interval (Z, Z + dZ ) is a swap contract in which the buyer 
makes a continuum of payments p(Z ) dZ to the seller and in exchange receives a 
lump-sum payoff if and only if a shock with survival fraction in (Z, Z + dZ ) occurs. 
That is, the buyer stops paying the seller if and only if the defined catastrophic event 
occurs, and then collects one unit of the consumption good as a payoff from the 
seller. Note the close analogy between our CIS contracts and the widely used credit 
default swap (CDS) contracts. Unlike typical pricing models for CDS contracts, 
however, ours is a general equilibrium model with an endogenously determined risk 
premium.

B. Competitive Equilibrium

Our model can be solved as a social planning problem, but we want to assert that 
the result is equivalent to a decentralized competitive equilibrium with complete 
markets. That is, we assume that the following securities can be traded at each point 
in time: a risk-free asset, a claim on the value of capital of the representative firm, 
and insurance claims for catastrophes with every possible recovery fraction Z.

Because we allow for jumps in the capital stock, market completeness requires 
that agents can trade these insurance claims. But note that as with the risk-free asset, 
in equilibrium the demand for these insurance claims is zero. Although no trad-
ing of the risk-free asset or insurance claims will occur in equilibrium, we allow 
for the possibility of trading so that we can determine the equilibrium prices. In a 
representative agent model like ours, this “zero demand” result is a natural conse-
quence. With heterogeneous agents (differing, e.g., in preferences, endowments, or 
beliefs), there will be trading in general, with some agents being buyers (i.e., hold-
ing long positions) and others being sellers (holding short positions) of these assets. 
However, in equilibrium the prices of these assets will be such that the total long 
positions will equal the total short positions, so that the market clears.

We define the recursive competitive equilibrium as follows. First, the repre-
sentative consumer dynamically chooses investments in the risk-free asset, risky 
equity, and various CIS claims to maximize utility as given by equations (1) and 
(2). Second, the representative firm chooses the level of investment that maximizes 
its market value, which is the present discounted value of future cash flows, using 
the equilibrium stochastic discount factor. The consumer and the firm make these 
choices taking the equilibrium prices of all assets and investment/consumption 
goods as given. Third, all markets clear. In particular, the net supply of the risk-free 
asset is zero; the demand for the claim to the representative firm is equal to unity, the 
normalized aggregate supply; the net demand for the CIS of each possible recovery 
fraction Z is zero; and the goods market clears, i.e., ​I​t​ = ​Y​t​ − ​C​t​ at all t ≥ 0.

These market-clearing conditions are standard. With these conditions, we can 
invoke the welfare theorem to solve the social planner’s problem and obtain the com-
petitive equilibrium allocation, and then use the representative agent’s marginal utility 
to price all assets in the economy. We emphasize that CIS insurance markets are cru-
cial to dynamically complete the markets. This is a fundamental difference between 
our model and models based purely on diffusion processes without jump risk.
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We next summarize the solution of the model via the social planner’s problem, 
outlining the details in Section A of the Appendix. A separate Appendix, available 
from the authors on request, derives the decentralized competitive market equilib-
rium and shows that it yields the same solution.

C. Model Solution

The Hamilton-Jacobi-Bellman (HJB) equation for the social planner’s allocation 
problem is

(8)  0 = ​max   
C
  ​ ​{ f (C, V ) + Φ(I, K)V ′(K )  +  ​ 1 _ 

2
 ​ ​σ​2​ ​K​ 2​ V ″(K )  +  λ ​[ V(ZK) − V(K) ]​ }​ ,

where V(K ) is the value function and the expectation is with respect to the density 
function ζ(Z ) for the survival fraction Z. We have the following first-order condition 
for I :

(9)	​ f​C​ (C, V)  = ​ Φ​I​ (I, K)V′(K ).

The left-hand side of equation (9) is the marginal benefit of consumption. Unlike 
in standard expected utility models, here ​f​C​ depends on not just consumption C but 
also the continuation utility V, which reflects the nonseparability of preferences. The 
right-hand side is its marginal cost, which equals the marginal value of capital V ′(K ) 
times the marginal efficiency of converting a unit of the consumption good into a 
unit of capital, ​Φ​I​(I, K ). With homogeneity, we have ​Φ​I​(I, K ) = ​ϕ′​(i).

We will show that the value function is homogeneous and takes the following 
form:

(10)	 V(K )  = ​   1 _ 
1 − γ

 ​ ​​( bK )​​1−γ​,

where b is a coefficient determined as part of the solution. Let c = C/K = A − i. 
(Lower-case letters in this paper express quantities relative to the capital stock K.) 
Section A in the Appendix shows that b is related to the equilibrium level of the 
investment-capital ratio, ​i​∗​, by

(11)	 b  =  (A − ​i​∗​​)​1/(1−ψ)​ ​​( ​  ρ
 _ 

ϕ′(i∗)
 ​ )​​−ψ/(1−ψ)

​.

The equilibrium ​i​∗​ can then be found as the solution of the following nonlinear 
equation:

(12)  A − i  = ​   1 _ 
ϕ′(i)

 ​​[ ρ + (​ψ​−1​ − 1)​( ϕ(i) − ​ 
γ​σ​2​

 _ 
2
 ​  − ​  λ _ 

1 − γ
 ​ ​( 1 − ​Z​1−γ​ )​ )​ ]​ .

Note that in equilibrium, the optimal investment-capital ratio I/K = ​i​∗​ is constant.
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Consider the special case of no adjustment costs, for which our adjustment cost 
function of equation (7) becomes ϕ(i) = i − δ, where δ can be interpreted as the 
expected rate of stochastic depreciation. It is straightforward to show that in this 
special case

(13)	 i = δ + ψ​( A − δ − ρ )​ + (1 − ψ)​( ​ γ​σ​2​
 _ 

2
 ​  + ​  λ _ 

1 − γ
 ​ ​( 1 − ​Z​1−γ​ )​ )​ ,

and the consumption-capital ratio c = A − i is then given by

(14)  c = ρ + ​( 1 − ψ )​ ​( A − δ − ρ )​ − (1 − ψ)​( ​ γ​σ​2​
 _ 

2
 ​  + ​  λ _ 

1 − γ
 ​ ​( 1 − ​Z​1−γ​ )​ )​.

The last term in both equations (13) and (14) is an adjustment for risk. Ignoring 
those terms, net investment i − δ and consumption net of the rate of time prefer-
ence, c − ρ, are both proportional to A − δ − ρ. Thus, with no adjustment costs, 
the model cannot separately identify A, δ, and ρ (which is a drawback of AK models 
without adjustment costs).

The role of adjustment costs can also be understood as follows. Without adjust-
ment costs, the capital stock is perfectly liquid, so consumption and investment 
are always perfectly substitutable. With no risk, intertemporal smoothing is then 
solely determined by A − δ − ρ, the difference between net productivity A − δ on 
the investment side and the rate of time preference ρ for consumption. Introducing 
adjustment costs makes physical capital illiquid, i.e., it is costly to substitute con-
sumption and investment. Thus, the firm becomes more prudent when investing, 
because capital cannot be used for consumption in the future without incurring 
adjustment costs. Adjustment costs also make installed capital more valuable than 
newly purchased capital, so existing capital earns rents, implying Tobin’s q > 1. 
Incorporating adjustment costs makes the consumption-saving tradeoff more real-
istic and allows us to separate the effects of A − δ from the subjective discount 
rate ρ.

Returning to the general case with adjustment costs, equilibrium capital accumu-
lation is given by

(15)	 d​K​t​/​K​t​ = ϕ(​i​∗​) d t + σd​W​t​ − (1 − Z ) d ​J​t​  ,

where ​i​∗​ is the solution of equation (12). Let g denote the expected growth rate con-
ditional on no jumps. Note that by setting d​J​t​ = 0 in equation (15), g = ϕ(​i​∗​) . The 
expected growth rate inclusive of jumps, denoted by ​

_
 g ​, is then

(16)	​
_
 g ​ = ϕ(​i​∗​) − λ(1 − Z ) ,

where the second term is the expected percentage decline of the capital stock due 
to jumps.
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Section A in the Appendix derives the solution to the social planner’s problem, 
which can be summarized by a resource constraint and first-order conditions for the 
consumer and the firm:

(17)	 i  =  A − c

(18)	 q  = ​   1 _ 
ϕ′(i)

 ​  = ​   1 _ 
1 − θi

 ​

(19)	 c/q = ρ + (​ψ​−1​ − 1)​( g − ​ 
γ​σ​2​

 _ 
2
 ​  − ​  λ _ 

1 − γ
 ​ ​( 1 − ​Z​1−γ​ )​ )​.

Equation (17) is simply an accounting identity that equates investment and 
saving. Equation (18) is a first-order condition for producers. Rewriting it as 
ϕ′(i)q = 1, it equates the marginal benefit of an extra unit of investment (which at 
the margin yields ϕ′(i) units of capital, each of which is worth q) with its marginal 
opportunity cost (one unit of the consumption good).

The left-hand side of equation (19) is the consumption-wealth ratio, c/q. In equi-
librium, c/q is the marginal propensity to consume (MPC) out of wealth, and it is 
also the dividend yield, because consumption in equilibrium is totally financed by 
dividends, and total wealth is given by the market value of equity. (Note that the 
entire capital stock is marketable and its value is qK.) Equation (19) is a first-order 
condition for consumers. What drives the MPC, c/q? Looking at the right-hand side 
of the equation, if ψ = 1, wealth and substitution effects just offset each other, and 
c/q = ρ, the rate of time preference. More generally, if ψ < 1, the wealth effect is 
stronger than the substitution effect, and hence the MPC increases with the growth 
rate g and decreases with risk aversion and volatility. The opposite holds if ψ > 1.

Section A in the Appendix shows that this equilibrium resource allocation has the 
following implications for the risk-free interest rate r and the equity risk premium rp:

(20)  r = ρ + ​ψ​−1​g  −  ​ 
γ(​ψ​−1​ + 1)​σ​2​

 _ 
2
  ​  −  λ ​[ ​( ​Z​−γ​ − 1 )​ + ​( ​ψ​−1​ − γ )​ ​( ​ 1 − ​Z​1−γ​ _ 

1 − γ
  ​ )​ ]​

(21)	 rp = γ​σ​2​ + λ ​[ ​( 1 − Z )​ ​( ​Z​−γ​ − 1 )​ ]​.

Equation (20) for the interest rate r is a generalized Ramsey rule. If ​ψ​−1​ = γ so 
that preferences simplify to CRRA expected utility, and if there were no stochastic 
changes in K, the deterministic Ramsey rule r = ρ + γg would hold. In our model 
there are two sources of uncertainty; continuous stochastic fluctuations in K and 
discrete shocks (i.e., jumps in K ). The third term in equation (20) captures the pre-
cautionary savings effect of continuous fluctuations in K for nonexpected utility. 
The last term describes the effects of jumps on interest rates, which include both the 
precautionary savings effect of risk and the mean effect of a lower expected growth 
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rate (because the capital stock always decreases as jumps occur). Note that the first 
term in the square brackets is the reduction in the interest rate for expected utility. 
The second term gives the additional effects for nonexpected utility; when ​ψ​−1​ < γ, 
the jump risk further increases the equilibrium interest rate from the level implied 
by standard CRRA utility.

Equation (21) describes the equity risk premium, rp. The first term on the RHS 
is the usual risk premium in diffusion models, and the second term is the increase in 
the premium due to jumps in K. When a jump occurs, (1 − Z ) is the fraction of loss, 
and (​Z​−γ​ − 1) is the percentage increase in marginal utility from that loss, i.e., the 
price of risk. The jump component of the equity risk premium is given by λ times 
the expectation of the product of these two random variables. Note that the fraction 
of loss (1 − Z) and the percentage increase of marginal utility (​Z​−γ​ − 1) are posi-
tively correlated, which further substantially contributes to the risk premium. (In the 
limiting case where the loss is close to 100 percent, the increase in marginal utility 
approaches infinity.) Also note that the risk premium depends only on the coefficient 
of risk aversion, and does not depend on the EIS or rate of time preference.

The model can also be used to determine the equilibrium price of catastrophic 
risk insurance. We will examine the price of insurance in the next section when we 
discuss the calibration of the model, after specifying the distribution ζ(Z ) for the 
fraction of the capital stock that survives a jump shock, Z.

II.  Calibration

This section explains our calibration procedure. We begin by specifying the prob-
ability distribution for the survival fraction Z, and we show how this distribution 
simplifies the model and also yields identifying conditions on the second, third, and 
fourth moments of equity returns. Those conditions along with the other equations 
of the model can be used to identify the various parameters. We describe the data 
(for the United States during 1947–2008) used to obtain values for the model’s 
inputs, and we present a baseline calibration and additional sensitivity calibrations. 
We turn next to the pricing of catastrophic risk insurance, and show insurance pre-
mia for different size losses. Lastly, we turn to the role of adjustment costs and 
compare our results with those of Barro (2009). This helps to show the importance 
of adjustment costs and the implications of certain parameter choices.

Note that our calibration is based on data that does not include catastrophic 
shocks, defined as sudden drops in the capital stock of 10 percent or more. But this 
does not mean that we cannot identify the distribution ζ(Z ) or other parameters of 
the model. With rational expectations, agents assign correct probabilities to sce-
narios and hence price risk accordingly. Indeed, the high and time-varying volatil-
ity in asset markets is suggestive that investors may be quite averse to catastrophic 
shocks. Moreover, given the nature of catastrophic shocks, it is expected that such 
low-probability events might not appear in the data. Finally, as an empirical matter, 
we will show that while our approach is completely different from existing work, 
we obtain a distribution ζ(Z ) that is surprisingly close to the one estimated by Barro 
and Jin (2009) directly from panel data.



316	 American Economic Journal: economic policy� November 2013

A. The Distribution for Shocks

The solution of the model presented above applies to any well-behaved distribu-
tion for recovery Z. We assume that Z follows a power distribution over (0, 1) with 
parameter α > 0:

(22)	 ζ(Z ) = α ​Z​α−1​;    0 ≤ Z ≤ 1,

so that (Z ) = α/(α + 1). Thus, a large value of α implies a small expected loss 
(1 − Z ).

The distribution given by equation (22) is general. If α = 1, Z follows a uniform 
distribution. For any α > 0, equation (22) implies that −ln  Z is exponentially dis-
tributed with mean (−ln  Z ) = 1/α. Equation (22) also implies that the inverse of 
the remaining fraction of the capital stock follows a Pareto distribution with density 
function α(1/Z ​)​−α−1​ with 1/Z > 1. The Pareto distribution is fat-tailed and often 
used to model extreme events.

The power distribution for Z given in (22) simplifies the solution of the model. We 
need three moments of Z, namely (​Z​ n​) where n = 1, 1 − γ, and − γ. Equation (22) 
implies

(23)	 (​Z​ n​)  =  α/(α + n),

provided that α + n > 0. Since the smallest relevant value of n is − γ, we require 
α > γ, which ensures that the expected impact of a catastrophe is sufficiently 
limited so that the model admits an interior solution for any level of risk aver-
sion γ. Thus, (1 − Z ) = 1/(α + 1) is the expected loss if an event occurs, and 
(​Z​ −γ​ − 1) = γ/(α − γ) is the expected percentage increase in marginal utility 
from the loss; both are decreasing in α.

B. Equity Returns

The distribution for the survival fraction Z given by equation (22) can be used 
to obtain moment conditions on equity returns. Recall that −ln Z is exponentially 
distributed with mean (−ln Z) = 1/α. Thus, ((ln Z​)​2​) = 2/​α​2​ and ((ln Z ​)​3​) 
= −6/​α​3​.

Because the equilibrium value of Tobin’s q is constant, the value of the firm, 
Q = qK, follows the same stochastic process (with the same drift and volatility) as 
the capital stock K. Also, in equilibrium the dividend yield is constant, so only capi-
tal gains contribute to second and higher order moments of stock returns. Therefore, 
the variance, skewness, and kurtosis for logarithmic equity returns over the time 
interval (t, t + Δt) equal the corresponding moments for ln ​K​t+Δt​/​K​t​  . Let , , 
and  denote the variance, skewness, and excess kurtosis, respectively, for equity 
returns. We show in Section B of the Appendix that they are given by

(24)	  = Δt​( ​σ​2​ + 2λ/​α​2​ )​
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(25)	  =  ​  1 _ 
​√ 
_

 Δt ​
 ​ ​ 

−6λ/​α​3​
 __  

(​σ​2​ + 2λ/​α​2​​)​3/2​
 ​

(26)	  =  ​ 1 _ 
Δt

 ​ ​ 
24λ/​α​4​
 __  

(​σ​2​ + 2λ/​α​2​​)​2​
 ​ .

Here Δt is the frequency with which returns are measured. In our case, returns are 
measured monthly and are in monthly terms because all variables are expressed in 
annual terms for purposes of our calibration, Δt = 1/12.

Using equation (23), the expected growth rate that includes possible jumps is

(27)	​
_
 g ​  =  g − ​  λ _ 

α + 1
 ​ .

Equation (23) can also be used to simplify equations (19), (20), and (21), which 
now become

(28)	​  c _ q ​ = r + rp − ​_ g ​ 

(29)    r = ρ + ​ψ​−1​g − ​ 
γ(​ψ​−1​ + 1)​σ​2​

 _ 
2
  ​ − λ​[ ​ (​ψ​−1​ − γ)(α − γ) + γ(α − γ + 1)

   ___   
(α − γ)(α − γ + 1)

  ​ ]​
(30)	 rp = γ​σ​2​ + λγ​[ ​  1 _ α − γ ​ − ​  α  __  

(α + 1)(α + 1 − γ)
 ​ ]​.

Recall that in equilibrium the consumption-wealth ratio c/q is equal to the divi-
dend yield. Equation (28) is essentially a Gordon growth formula; it states that the 
expected return on equity (r + rp) equals the dividend yield (c/q) plus the expected 
growth rate ​

_
 g ​ (inclusive of jumps).

C. Identification

With equations (17) and (18), and (24) to (30), we can identify the key param-
eters and variables of the model. To do this we use the following inputs: the vari-
ance, skewness, and excess kurtosis of equity returns, the real risk-free rate r and 
equity premium rp, the output/capital ratio Y/K, the consumption/investment ratio 
c/i, and the per capita expected real growth rate ​

_
 g ​. We discuss the data and calcula-

tion of these inputs below. The identification of the model is easiest to see in steps.
First, the two sources of risk in our model (diffusion and jump risk) are character-

ized by three key parameters: volatility σ, jump intensity λ, and the loss distribution 
parameter α. These three parameters determine the second and all higher moments 
for equity returns. Given the variance, skewness and kurtosis for equity returns, we 
use equations (24) to ( 26) to calculate λ, α, and σ. Thus, the three parameters that 
govern stochastic changes in the capital stock are all determined by the second, 
third, and fourth moments of equity returns.
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Second, given these three parameters, we use equation (30) for the equity risk 
premium equation to calculate the coefficient of relative risk aversion, γ. Thus, γ is 
determined by the cost of equity capital relative to the risk-free rate.

Third, we can use equation (29) for the risk-free rate to identify either the rate of 
time preference ρ or the EIS ψ. Except for the special case of expected utility, where 
ψ = 1/γ, our parsimonious model does not allow us to separately identify these two 
parameters. Instead we use equation (29) to obtain ψ as a function of the discount 
rate ρ, and then consider a range of “reasonable” values for ψ and the implications 
for ρ.

Lastly, we use the equations for the real side of the model to identify the remain-
ing variables and parameters. We calculate the productivity parameter A directly; 
it is just the average output/capital ratio (with the capital stock broadly defined 
to include physical, human, and intangible capital). Then, given c/i, equation (17) 
determines both c and i. Finally, given the expected growth rate ​

_
 g ​, equation (19) 

determines q, and equation  (18) determines the adjustment cost parameter θ. 
Because g = ϕ(i) = i − θ​i​2​/2 − δ, we thus also determine δ.

The identification of the model can also be seen in terms of equations and 
unknowns. We have eight equations: (17), (18), and (24) through (30). We use these 
equations to identify eight parameters and variables: the parameters λ, α, and σ that 
govern stochastic changes in K, the behavioral parameters γ and either ψ or ρ, and 
the economic variables c, i, and q.

Note that we use equity returns rather than consumption or output data to mea-
sure the diffusion volatility σ and jump process parameters λ and α. By design, our 
parsimonious model describes a stochastic steady-state growth path that is the same 
for all variables, including consumption, output, dividends, and the price of equity. 
All these variables thus have the same volatility, same likelihood of catastrophic 
shocks and same losses should a catastrophic event occur. This is an inevitable limi-
tation of our simple representative-agent model with constant but risky investment 
opportunities. We chose to measure σ, λ, and α using equity returns because we 
view the stock market as more informative about risk, especially regarding cata-
strophic events, than aggregate consumption series. As an empirical matter, aggre-
gate macro time series are more reflective of information for an “average” agent, 
while time series for equity returns reflect information about the “marginal” investor 
who prices assets.

D. Baseline Calibration

Ours is an equilibrium model, so its calibration should be based on data cover-
ing a time period that is long and relatively stable. We therefore use data for the 
US economy from 1947 to 2008 to construct average values of the output-capital 
ratio Y/K, the consumption-investment ratio C/I, the real risk-free rate r, and the 
expected real growth rate ​

_
 g ​. We calculate the equity risk premium rp and second, 

third, and fourth moments of equity returns using monthly data for the real total 
value-weighted return on the S&P 500. As discussed in Section D of the Appendix, 
our measure of the capital stock includes physical capital, estimates of human capi-
tal, and estimates of firm-based intangible capital (e.g., patents, know-how, brand 
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value, and organizational capital). Thus, we obtain a measure of the productivity 
parameter A = Y/K consistent with the AK production technology of equation (4). 
Our measure of investment (and GDP) includes investment in firm-based intangible 
capital, and we assume that investment in human capital occurs through education 
and is part of consumption.

Table 1 summarizes the inputs used in the baseline calibration, and the calibra-
tion outputs. Note that we obtain a value of 3.1 for the coefficient of relative risk 
aversion, which is well within the consensus range. Recall that we cannot separately 
identify ψ and ρ (except for the special case of expected CRRA utility), so in Table 1 
we set ψ = 1.5, which yields a value of just under 0.05 for the rate of time prefer-
ence ρ.8 Also, our estimate of q is about 1.55, which is close to the value of 1.43 
obtained by Riddick and Whited (2009), who used firm-level Compustat data for 
1972 to 2006.9

We obtain a mean arrival rate λ of 0.734 for the jump process and a value for the 
distributional parameter α of 23.17. These numbers imply that a shock occurs about 
every 1.4 years on average, with a mean loss (1 − Z) = 1/(α + 1) of only about 
4 percent. Thus, most shocks are small, and could be viewed as part of the “nor-
mal” fluctuation in the capital stock. What about larger, “catastrophic” shocks? For 
the power distribution specified in (22), given that the jump occurs, the probability 
that the loss from a shock will be a fraction L or greater, i.e., the probability that 
Z ≤ 1 − L, is (1 − L​)​α​. Thus, the probability that the loss will be at least 10 per-
cent is 0.9​0​23.17​ = 0.087, at least 15 percent is 0.023, and at least 20 percent is 0.006.

Table 2 reports the probability that at least one shock causing a loss larger than 
L will occur over a given time span T. Using the Poisson distribution property, the 

8 Estimates of ψ in the literature vary considerably, ranging from the number we obtained to values as high 
as two. Bansal and Yaron (2004) argue that the elasticity of intertemporal substitution is above unity and use 1.5 
in their long-run risk model. Attanasio and Vissing-Jørgensen (2003) estimate the elasticity to be above unity for 
stockholders, while Hall (1988), using aggregate consumption data, obtains an estimate near zero. The Appendix to 
Hall (2009) provides a brief survey of estimates in the literature.

9 With measurement errors and heterogeneous firms, averaging firm-level data provides a more economically 
sensible estimate for the q of the representative firm than inferring q from aggregate data.

Table 1—Summary of Baseline Calibration

Calibration inputs
(annual rates) Symbol Value Calibration outputs Symbol Value

Output-capital ratio A  0.113 Diffusion volatility σ  0.1355 

Consumption-investment ratio c/i  2.84 Mean arrival rate λ  0.734 

Real expected growth rate ​
_
 g ​  0.02 Distribution parameter α 23.17 

EIS ψ 1.5 Expected loss (1 − Z )  0.0414 

Risk-free interest rate r  0.008 Average q q  1.548 

Equity risk premium rp  0.066 Coefficient of risk aversion γ  3.066 

Stock return variance   0.0211 Rate of time preference ρ  0.0498 

Stock return skewness  −0.1156 Adjustment cost parameter θ 12.025 

Stock return excess kurtosis   0.1374 Consumption-capital ratio c 0.0836
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probability of one or more shocks with loss larger than L occurring over time span 
T is

(31)    Pr (T, L)  =  1 − exp ​[ −λT ​∫​ 
0
​ 
1−L

​ ζ(Z ) dZ ]​ = 1 − exp ​[ −λT(1 − L​)​α​ ]​  .

For example, if we consider as catastrophic a shock for which the loss is 15 percent 
or greater, the annual likelihood of such an event is (0.85​)​α​λ = 0.017. This implies 
substantial risk; for example, the probability that at least one catastrophe (with a loss 
of 15 percent or greater) will occur over the next 50 years is 1 − ​e​−.017×50​ = 0.57.

By comparison, using a sample of 24 (36) countries, Barro and Ursúa (2008) esti-
mated λ as the proportion of years in which there was a contraction of real per capital 
consumption (or GDP) of 10 percent or more, and found λ to be 0.038 (for consump-
tion and GDP). But for the US experience (which corresponds to our calibration), 
there were only two contractions of consumption of 10 percent or more over 137 
years (implying λ = 0.015), and five GDP contractions (implying λ = 0.036). Our 
estimate of λ uses equity market return moments and corresponds to the proportion 
of years for which there is a jump shock of any size. If we use a 10 percent or more 
loss as the threshold to define a catastrophe, then as shown in Table 2 the annual 
probability of a catastrophe occurring is 0.062, which is larger than the Barro and 
Ursúa (2008) estimate. They also found an average contraction size (conditional on 
the 10 percent threshold, and for the international sample) of 0.22 for consumption 
and 0.20 for GDP. Applying our estimate of α (23.17) to losses of 10 percent or 
greater, we find the expected catastrophic loss using the 10 percent threshold to be  
 ​[ (1 − Z ) | (1 − Z ) ≥ 10 percent ]​ = 1 − 0.9α/(α + 1) = 0.137. Thus, com-
pared to Barro and Ursúa (2008), we find that shocks greater than 10 percent occur 
with a greater annual frequency (0.062 versus 0.038) but with a smaller average 
contraction size (.137 versus 0.20 to.22).

Barro and Jin (2009) independently applied the same power distribution that we 
used in equation (22) to describe the size distribution for contractions. We obtained 
a value of the distribution parameter α as an output of our calibration; they estimated 
α for their sample of contractions. In our notation, their estimates of α were 6.27 for 
consumption contractions and 6.86 for GDP, implying a mean loss of about 14 percent  
for consumption and 13  percent for GDP.10 However, they only considered 

10 Equation (22) is the distribution for Z, the fraction of the remaining capital stock. It implies that S = 1/Z 
has the distribution ​f​S​(s) = α​s​−α−1​,  s ≥ 1. Barro and Jin (2009) use data on S, but conditioning on S ≥ ​s _​ = 1.105 

Table 2—Probability of Shocks Exceeding L over Horizon T

Horizon T (years)  1  10  20  40  50 

L = 0.10 0.0619 0.4723 0.7215 0.9224 0.9591
L = 0.15 0.0169 0.1563 0.2882 0.4934 0.5726
L = 0.20 0.0042 0.0409 0.0801 0.1537 0.1883
L = 0.25 0.0009 0.0093 0.0185 0.0367 0.0457
L = 0.30 0.0002 0.0019 0.0038 0.0075 0.0094
L = 0.35 0.000034 0.0003 0.0007 0.0014 0.0017

Note: Each entry is the probability that at least one shock larger than L will occur during the time horizon T.
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contractions that were 10 percent or greater, and as explained above, applying their 
truncation to our calibrated value of α implies a mean loss of 13.7 percent. This 
number is very close to the Barro and Jin (2009) estimate, but note that we obtained 
it in a completely different way. Rather than use historical data on drops in consump-
tions or GDP, we found the mean contraction size as an output of our calibration. 
Thus, one might view our approach (theory-based inference with specific functional 
form assumptions) as complementary to direct estimation.

E. Catastrophic Insurance Premium

Our model solution also implies the equilibrium price of every possible insurance 
claim:

(32)	 p(Z )  =  λ​Z​−γ​ ζ(Z ),

where ζ (Z ) is the probability density function for the recovery fraction Z, so that 
λζ(Z ) is the conditional arrival intensity of a shock that destroys a fraction (1 − Z ) 
of the capital stock. Equation (32) gives the payment rate that the CIS buyer must 
make to insure against a shock with loss fraction (1 − Z ) ; should that shock occur, 
the buyer would receive one unit of the consumption good. Not surprisingly, the 
higher the arrival rate of a shock with survival fraction Z, λζ(Z ), the higher the cor-
responding CIS payment. The multiplier ​Z​−γ​ in equation (32) is the marginal rate 
of substitution between pre-jump and post-jump values, and measures the insurance 
risk premium; the higher is γ and the bigger is the loss (the lower is Z ), the more 
expensive is the insurance.

Using equation (22) for the probability density function that governs the recovery 
fraction Z, we can calculate the cost of insuring against any particular risk. Recall 
that (​Z​ n​) = α/(α + n). Thus, for each CIS with survival fraction Z, the required 
payment is

(33)	 p(Z )  =  λα ​Z​ α−γ−1​ .

For example, to obtain the cost of insuring against a shock that results in losing a 
fraction L or more of the capital stock (i.e., 1 − Z ≥ L), the required payment per 
unit of capital is

(34)	​ ∫​ 
0
​ 
1−L

​ (1 − Z )p(Z ) dZ  =  λα​[ ​ (1 − L​)​α−γ​
 _ α − γ ​  − ​ 

(1 − L​)​α−γ+1​
  _  

α − γ + 1
 ​  ]​  .

Thus, to obtain the required payment per unit of capital to insure against any size 
shock, just set L = 0 in equation (34). Note that unlike the existing catastrophic 

to estimate ​α′​ for the distribution ​f​S​(s) = (α′ − 1)​s​−​α​ ′​​ ​​s _​​​α​ ′​−1​,  s ≥ ​s _​. Thus, our α corresponds to their ​α′​ via  
α = ​α′​ − 1. But note that our distribution is not truncated (i.e., s ≥ 1) while theirs is truncated, including only 
losses at least greater than 1 − ​​s _​​−1​ ≈ 10 percent (so s ≥ ​s _​ = 1.105).
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insurance literature, we obtain the insurance premium in a general equilibrium set-
ting. Also, observe from equation (34) that the CIS payment depends only on risk 
aversion γ, the parameters describing shocks, i.e., λ and α, and the lower bound L of 
the loss insurance. The CIS payment does not depend on the EIS ψ and the discount 
rate ρ, for example, because these parameters do not describe the characteristics of 
or attitudes toward risk.

Using our baseline calibration (which yielded γ = 3.066, λ = 0.739, and 
α = 23.17) and equation (34), the annual CIS payment to insure against shocks 
of any size is about 0.040 per unit of capital, i.e., 4 percent of the capital stock. We 
have A = 0.113, so the total annual cost of the insurance would be 0.040Y/0.113  
= 0.355Y, i.e., about 35 percent of GDP, or about 48 percent of consumption.11 How 
much of this very large annual CIS payment reflects the expected loss from a shock 
and how much is a risk premium? We first calculate the expected loss with no risk 
premium. The implied actuarially fair annual CIS payment is ​∫​ 0​ 

1−L​(1 − Z )λζ(Z ) dZ, 
which can also be found by setting γ = 0 in equation (34). The “price” of risk is 
ratio of the annual CIS payment to the actuarially fair payment.

Table 3 summarizes both the CIS and actuarially fair payments (denoted by AF), 
both as a fraction of consumption, to cover losses of different amounts. If we treat 
as catastrophes shocks that result in losses of 15 percent or more, the annual pay-
ment to insure against such losses is over 7 percent of consumption—a substantial 
amount. If we restrict our definition of catastrophes to only include shocks that 
cause losses of 20 percent or more, the annual insurance payment is nearly 3 percent 
of consumption—still quite large. Note that the “price” of risk (the ratio of the CIS 
payment to the actuarially fair premium) increases with L, the lower bound of the 
loss fraction that is insured. For example, to insure only against catastrophes that 
generate a loss of 10 percent or more, the price of risk is about 1.7. But if insurance 
is limited to only those shocks causing losses of 25 percent or more (i.e., L = 0.25), 
the annual cost is just under 1 percent of consumption, while the actuarially fair rate 
is about 0.3 percent of consumption, implying a price of risk of about 2.8. The price 
of risk is higher in this case because the insurance is covering larger losses on aver-
age and insuring tail risk is expensive.

F. The Role of Adjustment Costs

How important are adjustment costs? To address this question and do welfare 
calculations, we use the quadratic adjustment cost function given by equation (7). 
In our baseline calibration, the resulting value of θ is 12.03, which is determined by 
equation (18): q = 1/​ϕ′​(i) = 1/(1 − θi). In our calibration, q = 1.55, i + c = A, 
and c/i = 2.84, which pins down θ = 12.03.

To explore the role of adjustment costs, we first review Barro’s (2009) results and 
then add adjustment costs to his model. Based on historic “consumption disasters,” 
Barro (2009) estimated λ to be 0.017. He set γ = 4, and using an empirical distri-
bution for consumption declines, estimated the three moments (Z ), (​Z​1−γ​ ), and  

11 Using c + i = A = 0.113 and c/i = 2.84 gives C = 0.740Y = 0.0836K.
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(​Z​−γ​ ). He also set ψ = 2, ρ = 0.052, σ = 0.02, and A = 0.174. (Because there 
are no adjustment costs, only A − ρ can be identified in Barro’s model.)

The first row of panel A in Table 4 shows this calibration of Barro’s (2009) 
model; there are no adjustment costs so capital is assumed to be perfectly liquid and 
q = 1. The calibration gives a sensible estimate of the risk-free rate r and risk pre-
mium rp, but yields a consumption-investment ratio of only 0.38, whereas the actual 
ratio is about three. The rest of the panel A shows how the results change as the 
adjustment cost parameter θ in equation (7) is increased. The experiment here is to 
hold the structural parameters for both preferences and the technology fixed, change 
only θ, and then re-solve for the new equilibrium price and quantity allocations. 
First, as we increase θ, investment becomes more costly, so i falls and c = A − i 
increases. Additionally, q increases because installed capital now earns higher rents 
in equilibrium. When θ = 8, both c/i and q roughly match the data. However, r falls 
below −3 percent. Basically, given Barro’s (2009) parameter choices (particularly 
γ and the productivity parameter A) along with the exogenous inputs for λ and the 
moments of Z, the model cannot match all of the basic economic facts, even allow-
ing for adjustment costs.

Panel B of Table 4 shows results using our baseline calibration, but varying 
the value for θ. (The boldface row corresponds to our baseline calibration where 
θ = 12.03). As θ increases, the cost of investing increases, so investment becomes 
less attractive relative to consumption, and thus i falls. With ψ = 1.5 > 1, the sub-
stitution effect dominates the wealth effect, and hence r also falls. As a result of 
this drop in the cost of capital, q increases. Thus, for a calibrated model to match 
the data, adjustment costs are crucial. Put differently, without adjustment costs, the 
consumption/investment ratio is much too low and interest rates unrealistically high 
because with perfectly liquid capital, q = 1 and investment is overly attractive.

Note that because of the block structure of our calibration procedure, the value 
of the adjustment cost parameter will not affect our estimates of λ and α. But it will 
greatly affect the welfare calculations that we present in the next section. The rea-
son is that to calculate WTP, e.g., to eliminate catastrophic risk, we must determine 
the response of consumption and investment to a change in risk. Adjustment costs 

Table 3—Loss Coverage and Components of Catastrophic Insurance Premia

Minimum loss covered, L CIS AF CIS/AF

L = 0.00 (Full insurance) 0.4795 0.3633 1.320
L = 0.05 0.3429 0.2389 1.435
L = 0.10 0.1736 0.1049 1.655
L = 0.15 0.0734 0.0377 1.949
L = 0.20 0.0271 0.0116 2.331
L = 0.25 0.0089 0.0031 2.829
L = 0.30 0.0026 0.0007 3.484
L = 0.35 0.0007 0.00015 4.362
L = 0.40 (loss 40 % or more) 0.0002 0.00003 5.564

Notes: For each amount of loss coverage, CIS is the required annual insurance payment as a per-
cent of consumption and AF is the actuarially fair payment. L = 0.25 means that only losses of 
25 percent or more are covered.
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make investment more expensive and make intertemporal consumption smoothing 
difficult, and thus have important policy implications, and must be accounted for 
when calculating WTP.

To summarize, these results illustrate some important differences between our 
approach and that of Barro (2009). First, by construction, q = 1 in models with no 
adjustment costs because physical capital is assumed to be perfectly liquid, which 
is not realistic. Our model captures this important feature of the illiquidity of physi-
cal capital and the empirical fact that q ≠ 1. Second, models with no adjustment 
costs cannot separately identify the effect of the productivity coefficient A from the 
effects of the rate of time preference ρ and the expected rate of depreciation δ. In 
our model, A has a distinct effect on the investment-capital ratio i that differs from 
the effects of ρ, so that A and ρ can be separately identified. Third, as noted earlier, 
Barro’s (2009) AK model generates an unrealistically high investment-capital ratio; 
our model does not because adjustment costs make investment more expensive. 
Fourth, including adjustment costs is essential for policy evaluation; they make 
intertemporal consumption smoothing difficult and hence influence WTP calcula-
tions, as we show below.

III.  Policy Consequences

We now turn to the second question raised in the first paragraph of this paper: 
What is society’s willingness to pay to reduce the probability or likely impact of 
catastrophic events? Our measure of WTP is the maximum permanent consumption 
tax rate τ that society would be willing to accept if the resulting stream of govern-
ment revenue could finance whatever activities are needed to permanently limit the 
maximum loss from any catastrophic shock that might occur to some level ​  L​. Of 
course it might not be feasible to limit the maximum loss to ​  L​ with a tax of that size, 
or it might be possible to achieve this objective with a smaller tax. In effect, we are 
examining the “demand side” of public policy—society’s “reservation price” (maxi-
mum tax) for attaining this policy objective.

Table 4—Effects of Adjustment Costs

 θ  i  c  c/i  r  q 

Panel A. Barro (2009) parameters: γ = 4, ψ = 2, ρ = 0.052, σ = 0.02, A = 0.174, λ = 0.017, (Z) = 0.71,
(​Z​1−γ​) = 4.05, (​Z​−γ​) = 7.69 

0 0.126 0.048 0.381 0.011 1.00
4 0.062 0.112 1.806 −0.025 1.33
8 0.038 0.136 3.579 −0.036 1.43
12 0.027 0.147 5.512 −0.041 1.47
20 0.017 0.157 9.234 −0.045 1.51

Panel B. Our parameters: γ = 3.066, ψ = 1.5, ρ = 0.0498, σ = 0.1355, A = 0.113,  λ = 0.734, (Z) = 0.9586, 
(​Z​1−γ​) = 1.098, (​Z​−γ​) = 1.153 

0 0.0764 0.0366 0.479 0.0428 1.00
4 0.0543 0.0587 1.080 0.0241 1.28
8 0.0388 0.0742 1.911 0.0137 1.45
12.03 0.0294 0.0836 2.84 0.008 1.55
20 0.0196 0.0934 4.77 0.002 1.64
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A. Willingness to Pay

We want to determine the effect of a permanent consumption tax. Given invest-
ment ​I​t​ and output ​Y​t​, households pay τ (​Y​t​ − ​I​t​) to the government and consume the 
remainder:

(35)	​ C​t​  =  (1 − τ)(​Y​t​ − ​I​t​) .

Suppose that a costly technology exists that could ensure that any shock that occurs 
would lead to a loss no greater than ​  L​ = (1 − ​  Z​ ). That is, the technology would 
permanently change the recovery size distribution ζ(Z ) to a truncated distribution, 
given by

(36)	​   ζ​(Z; ​  Z​ )  = ​   α ​Z​ α−1​ _  
​∫​ 

​  Z​
​ 1
 ​ α ​Z​ α−1​ d Z

 ​  = ​   α _ 
1 − ​​  Z​​α​

 ​ ​Z​ α−1​;   ​    Z​ ≤ Z ≤ 1.

Here, ​  Z​ is the minimal level of recovery Z.
Using this truncated distribution, we obtain the optimal investment-capital ratio ​  i ​ 

as the solution of the following equation:

(37)  A − ​  i ​ = ​  1 _ 
​ϕ′​(​  i ​ )

 ​​[ ρ + (​ψ​−1​ − 1)​( ϕ(​  i ​) − ​ 
γ ​σ​2​

 _ 
2
 ​  − ​  λ _ 

1 − γ
 ​ ​  ​​( 1 − ​Z​1−γ​ )​ )​ ]​ ,

where ​  ​ is the expectation with respect to the truncated distribution ​  ζ​(Z ).
How much would households be willing to pay the government to finance such a 

technology? Consider two options: (i) the status quo with no taxes and the original 
recovery size distribution ζ(Z ) ; and (ii) paying a permanent consumption tax at rate 
τ to adopt the new technology which changes the distribution ζ(Z ) to ​  ζ​(Z ) given by 
equation (36). Households would be indifferent if and only if the following condi-
tion holds:

(38)	​   V​(K; τ)  =  V(K; 0),

where ​  V​(K; τ) is the household’s value function given by equations (C2) and (C7) 
with a consumption tax rate τ, and with the optimal investment-capital ratio ​  i ​ for the  
truncated distribution given by equation (37). In Section C of the Appendix, we 
show that this condition implies that

(39)	​   b​(τ)  =  (1 − τ)​  b​(0)  =  b(0),

where ​  b​(0), given by equation (C8), is the coefficient in the value function ​  V​(K; 0) 
when there is no tax but the distribution for Z is truncated, as given by equation 
(36). Thus, to eliminate the possibility of catastrophic shocks with losses greater 
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than ​  L​ = (1 − ​  Z​ ), households would be willing to pay a consumption tax at the 
constant rate

(40)	 τ  =  1 − ​ 
b(0)
 _ 

​  b​(0)
 ​  .

For the household, a permanent tax at rate τ is equivalent to giving up a fraction 
τ of the capital stock. This is because the tax is nondistortionary. The tax is pro-
portional to output, so households’ after-tax consumption is lowered by the same 
fraction as the tax rate in all states and in all future periods. Thus, households’ inter-
temporal marginal rate of substitution, which determines the equilibrium interest 
rate and the pricing of risk, remains unchanged for any give rate of tax τ. (Although 
equilibrium pricing and resource allocations are the same with or without a tax, 
they are not the same for different distributions for Z, i.e., for the truncated versus 
nontruncated distribution.) Likewise, the total value of capital (including the taxes 
paid to the government) is unchanged, and investment is unchanged, for any given 
tax rate τ. A fraction τ of ownership is simply transferred from households to the 
government. This key result follows from the recursive homothetic preferences and 
equilibrium property that the economy is on a stochastic balanced growth path.12

B. Tax Calculations

Table 5 shows the maximum permanent tax rate on consumption that society 
would accept to limit the maximum loss from a jump shock to various levels. The 
tax rates are shown for three different values of the EIS ψ, 1.0, 1.5, and 2.0. (Recall 
that given ρ we can pin down ψ, but we cannot pin down both ρ and ψ). The first 
row, for which the maximum loss is zero, gives the tax that society would pay to 
eliminate all jump shocks. That tax rate is very large, on the order of 50 percent. But 
even if we were to limit the impact of shocks to a loss no greater than 15 percent, the 
warranted tax is substantial—close to 7 percent per year (forever). Shocks causing 
losses greater than 25 percent or 30 percent are very rare, so the tax is much lower.

To a first-order approximation, the CIS premium for insuring against losses above 
a particular percentage is close to the maximum consumption tax society would pay 
to eliminate the possibility of such losses. For example, the CIS premium for insur-
ing against losses above 15 percent is 7.34 percent of consumption, which is only 
slightly larger than the corresponding consumption tax rate. Eliminating or reducing 
catastrophic risk, however, is fundamentally different from purchasing insurance since 
the latter is a zero NPV financial transaction, with no gain in value. Using tax proceeds 
to reduce the consequences of catastrophic shocks is a different way to manage aggre-
gate risk than purchasing insurance because the former changes real economic activi-
ties (consumption and investment) while the latter simply transfers resources from one 
party to the other depending on whether the insured event takes place.

12 We have focused on policies that would limit the maximum loss from a shock, but the results also apply if the 
tax is used to reduce the likelihood of a shock of any size.
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Note that because our cost-benefit analysis is a general equilibrium one, it is 
fundamentally different from the standard cost-benefit approach in which an NPV 
is calculated treating input prices and the cost of capital as exogenous. The standard 
approach is adequate for evaluating the construction of a new bridge, because while 
the bridge involves a change in cash flows, there is no change in the cost of capital 
(i.e., the pricing kernel). But when the “project” involves a major change in the 
economy (e.g., reducing catastrophic risk), prices as well as cash flows change, so 
the “project” can only be evaluated by comparing its cost to its WTP, as we have 
done above. Our model of a production economy with adjustment costs is a natural 
framework for general equilibrium cost-benefit analysis.

C. Welfare Decomposition

Our analysis is related to the “cost of business cycle” literature. Beginning with 
Lucas (1987), much of that literature has found the welfare gains from eliminating 
business cycle risk to be low. An exception is Barro (2009), who found the welfare 
gains from eliminating “conventional” business cycle risk—i.e., continuous fluctua-
tions in output—to be very low, but the gains from eliminating disaster risk (jump 
risk in our model) to be substantial. For comparison to the earlier literature, we use 
our model to evaluate these welfare gains.

In our model, we measure welfare gains in terms of WTP, i.e., the maximum 
consumption tax society would pay to change the economy such that various risks 
are reduced or eliminated. We therefore calculate the maximum tax rate to eliminate 
continuous fluctuations in the capital stock, i.e., to make σ = 0, leaving jump risk 
unchanged; to eliminate jump risk (i.e., make λ = 0), leaving σ unchanged; and to 
make σ = λ = 0. We also want to determine the welfare implications of adjustment 
costs (missing in Barro’s analysis), so we repeat these calculations but also setting 
the adjustment cost parameter θ = 0. Finally, we calculate the welfare gain from 
eliminating adjustment costs, but leaving both σ and λ unchanged.

The results are shown in Table 6. The first row, for λ = 0, corresponds to the first 
row of Table 5, and shows a willingness to pay a consumption tax of over 50 percent 
to eliminate jump risk. However, the willingness to pay to eliminate continuous 

Table 5—WTP Tax Calculations

Maximum tax rate τ 

ψ = 1.0 ψ = 1.5 ψ = 2.0 
Maximum loss ρ = 0.0540 ρ = 0.0498 ρ = 0.0477 

0 0.474 0.522 0.560
0.05 0.298 0.316 0.329
0.10 0.154 0.159 0.162
0.15 0.066 0.067 0.067
0.20 0.024 0.024 0.024
0.25 0.008 0.008 0.008
0.30 0.002 0.002 0.002
0.35 0.001 0.001 0.001

Note: A = 0.113, θ = 12.025, δ = −0.0262, γ = 3.065, α = 23.17, σ = 0.1355, λ = 0.734.
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fluctuations ( σ = 0 ), leaving jump risk unchanged, is almost as large—a 44 per-
cent tax. This is in stark contrast to the results of Barro (2009), Lucas (1987), and 
others. There are two reasons for this. First, earlier studies use the 2 to 2.5 percent 
standard deviation of log changes in consumption as the value of σ that describes 
business cycle risk, whereas we estimate σ to be 13.5 percent based on stock return 
data. Second, we include adjustment costs, which make stochastic fluctuations in the 
capital stock (whether continuous or jumps) more costly. Indeed, as the third row of 
Table 6 shows, the willingness to pay to eliminate adjustment costs—leaving both 
σ and λ unchanged—is about 29 percent. The effects of adjustment costs can also 
be seen from rows 5 and 6. The WTP to eliminate both jump risk and adjustment 
costs is a tax rate of about 80 percent, which is much larger than a 52 percent tax 
rate society would pay to eliminate only jump risk. Similarly, the WTP to eliminate 
both diffusion risk and adjustment costs is a tax rate of 73 percent, as opposed to the 
44 percent tax rate society would pay to eliminate only diffusion risk.

Another reason for the high willingness to pay to eliminate stochastic fluctua-
tions (make σ, λ, or both zero) is that in our model changes in the capital stock are 
permanent. Percentage changes in the (endogenous) growth rate are i.i.d., i.e., there 
is no mean reversion. Allowing for catastrophic shocks to be followed by recoveries 
(so that there is mean reversion in growth rate changes), e.g., as in Gourio (2012), 
would reduce the tax rates in Table 6.

Alvarez and Jermann (2004) estimate the cost of consumption fluctuations 
directly from asset prices. They do not specify a utility function and instead use no-
arbitrage restrictions to compare the value of a claim to lifetime consumption with 
a claim to stabilized lifetime consumption. Their calculation takes observed asset 
prices as given to infer the stochastic discount factor and then value the benefits 
of reducing consumption fluctuations. We hypothesize a government intervention 
in the current economy to lower uncertainty and calculate the WTP for the change 
from the current to the new economy. Therefore, the two calculations conceptu-
ally are very different and are designed with different purposes. The advantage of 
Alvarez and Jermann (2004) is that they do not rely on specific utility functions. 
However, their exercise is not suited for our purposes because we are interested in 
the WTP to reduce the likelihood or impact of catastrophic events.

IV.  Concluding Remarks

We have provided a new framework for evaluating the characteristics of possible 
catastrophic events that are national or global in scale, calculating their implications 
for catastrophic risk insurance, and evaluating tax policies to limit their magnitude. 
Rather than using historical data on declines in consumption or GDP as others have 
done, we calculated event characteristics as calibration outputs from a general equi-
librium model and used aggregate asset market data. Our framework provides a 
natural benchmark to quantitatively assess public policy; it fully incorporates gen-
eral equilibrium quantity and price adjustments by the private sector in anticipation 
of a policy intervention. And unlike previous studies, our model also matches the 
production side of the economy such as the investment-capital ratio, and generates 
sensible estimates for Tobin’s q and for the coefficient of relative risk aversion.
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We calculated as a “willingness to pay” measure the permanent tax on consump-
tion that society would accept to limit the maximum loss from a catastrophic shock. 
For our calibration, we found that a permanent tax of about 7 percent would be 
justified if the resulting revenues could be used to limit the impact of shocks to a 
loss no greater than 15 percent of the capital stock. Even if the objective was to limit 
losses to be no greater than 20 or 25 percent, a tax of one or two percent would be 
justified—a substantial tax given that it would be permanent. These results suggest 
that governments should devote greater resources to reducing the risk and poten-
tial impact of catastrophes, and thereby provide quantitative support to arguments 
along these lines made by Allison (2004), Posner (2004), and Parson (2007), among 
others. These arguments are especially important given the tendency of governments 
(with their short political cycles) to underestimate both the likelihood and possible 
impact of catastrophic events and the value of risk mitigation.13

We estimated that the probability that over the next 50 years we will experience 
one or more shocks causing a loss of 15 percent or more of the capital stock exceeds 
50 percent, and the probability of one or more shocks causing a loss of 25 percent 
or more is about 5 percent (see Table 2). These estimates apply to “generic” shocks, 
i.e., of an unspecified nature. For comparison, here are estimates of the likelihood 
and possible impact of some specific catastrophic shocks:

Global Warming.—A consensus estimate of the increase in global mean tem-
perature that would be catastrophic is about 7° C. A summary of 22 climate science 
studies surveyed by the Intergovernmental Panel on Climate Change (IPCC) in 2007 
puts the probability of this occurring by the end of the century at around 5 percent. 
Weitzman (2009) argued that the probability distribution is fat-tailed, making the 
actual probability as high as 10 percent. What would be the impact of a catastrophic 
increase in temperature? Estimates of the effective reduction in (world) GDP range 
from 10 percent to 30 percent.14

Nuclear Terrorism.—Various studies have assessed the likelihood and impact of 
the detonation of one or several nuclear weapons (with the yield of the Hiroshima 
bomb) in major cities. At the high end, Allison (2004) put the probability of this 

13 Our thanks to an anonymous referee for making this point.
14 See, e.g., Pindyck (2012) and Stern (2007).

Table 6—Welfare Analysis

Change from baseline Maximum tax rate τ 

λ = 0 0.522
σ = 0 0.441
θ = 0 0.289
λ = σ = 0 0.786
σ = θ = 0 0.730
λ = θ = 0 0.804
λ = σ = θ = 0 0.986

Notes: A = 0.113, ψ = 1.5, ρ = 0.0498, δ = −0.0262, γ = 3.065, α = 23.17. Unless other-
wise indicated, σ = 0.1355, λ = 0.734, θ = 12.025.



330	 American Economic Journal: economic policy� November 2013

occurring in the next ten years at about 50 percent. Others put the probability for 
the next ten years at 1 to 5 percent. For a survey, see Ackerman and Potter (2008). 
What would be the impact? Possibly a million or more deaths. But the main shock 
to the capital stock and GDP would be a reduction in trade and economic activity 
worldwide, as vast resources would have to be devoted to averting further events.

Megaviruses.—Numerous authors view major pandemics and plagues (including 
bioterrorism) as both likely and having a catastrophic impact, but do not estimate 
probabilities. For a range of possibilities, see Byrne (2008). As with nuclear terror-
ism, the main shock to GDP would be a reduction in trade, travel, and economic 
activity worldwide.

Other Catastrophic Risks.—Less likely, but certainly catastrophic, events include 
nuclear war, gamma ray bursts, an asteroid hitting the Earth, and unforeseen con-
sequences of nanotechnology. For an overview, see Bostrom and ​   

 
 C​irkovi​     c​ (2008).

In concluding, some caveats are clearly in order. Our model is intentionally sim-
ple and stylized. For example, we solved the social planner’s problem for a repre-
sentative firm with a simple AK production technology and adjustment costs, and a 
representative household with rational expectations. This is equivalent to a competi-
tive equilibrium with a large number of identical firms and identical households, 
with the same production technology and preferences, so that we ignore heterogene-
ity among firms and households. The model ignores transitional dynamics and the 
stochastic balanced growth paths for consumption, investment, output, the price of 
equity, and the capital stock are the same, which can have significant implications 
for our conclusions. We also characterized catastrophic events in a simple way—a 
Poisson arrival with a constant mean arrival rate, and a permanent impact, the size of 
which is stochastic. On the other hand, these simplifications make the model highly 
tractable, and provide insight into the questions we raised in the Introduction.

Lastly, we should emphasize that while our calibrations fit the basic economic 
aggregates, we did not statistically test the model. Interestingly, however, although 
our approach to identification is entirely different from existing empirical work, 
the parameters of our calibrated model are close to the direct estimates obtained by 
others (e.g., Barro and Jin 2009) using panel data for large sets of countries over 
long periods of time.

Appendix

A. Solution of Model

Substituting the conjectured value function (10) into the consumption FOC (9) 
yields

(A1)	 ρ ​C​ −​ψ​−1​​​  1 _  
(bK​)​(1−γ)(ω−1)​

 ​  =  ϕ′(i)(bK ​)​ −γ​ b.
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Simplifying and using c = C/K, we have

(A2)	 c = ​​( ​  ρ
 _ 

​ϕ′​(i)
 ​ )​​ψ​ ​b​1−ψ​ .

Substituting (A2) back into the HJB equation (8) yields equation (12) for the 
optimal ​i​∗​.

From Duffie and Epstein (1992), the stochastic discount factor (SDF), 
{​M​t​  :  t ≥ 0}, is

(A3)	​M ​t​  =  exp  ​[ ​∫​ 
0
​ 
t

​ ​f​V​ (​C​s ​, ​V​s​) ds ]​ ​f​C​(​C​t​ , ​V​t​) .

From the equilibrium allocation results,

(A4)	​ f​C​ (C, V )  =  ϕ′(i∗)​b​1−γ​ ​K​−γ​ ,

(A5)	​ f​V​ (C, V )  =  −h ,

where

(A6)	 h  =  − ​ 
ρ(1 − γ)
 _ 

1 − ​ψ​−1​
 ​ ​[ ​​( ​ ​c​∗​ _ 

b
 ​ )​​

1−​ψ​ −1​

​​( ​ ​ψ​−1​ − γ
 _ 

1 − γ
 ​  )​ − 1 ]​.

Using the equilibrium relation between b and ​c​∗​, we can simplify the above as 
follows:

(A7)	 h  =  ρ + ​( ​ψ​−1​ − γ )​ ​[ ϕ(i) − ​ 
γ ​σ​2​

 _ 
2
 ​  − λ​( ​ 1 − ​Z ​1−γ​ _ 

1 − γ
 ​  )​ ]​.

Using Ito’s lemma and the equilibrium allocation, we have

(A8) ​   1
 _ ​M​t−​ ​ d​M​t​  =  −hdt − γ​[ ϕ(​i​∗​)dt + σd​W​t​ ]​ + ​ 

γ(γ + 1)
 _ 

2
  ​ ​σ​2​dt + ​( ​Z​ −γ​  −  1 )​ d​J​t​.

The equilibrium restriction that the expected rate of change of ​M​t​ must equal −​r​t​ 
implies the following formula for the equilibrium interest rate:

(A9)	 r  =  h + γϕ(​i​∗​) − ​ 
γ(γ + 1)​σ​2​

 _ 
2
 ​  − λ ​( ​Z ​−γ​ − 1 )​ .

Let Q(K ) denote the value of the capital stock and q denote Tobin’s q. By homo-
geneity, Q(K ) = qK. The equilibrium dividend is then ​D​t​ = ​C​t​ for all t. The standard 
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valuation methodology implies that ​M​t​ ​D​t​ dt + d(​M​t​ ​Q​t​) has an instantaneous drift 
of zero. Using Ito’s lemma and simplifying yields an equation for q:

(A10)	​  ​c​
∗​ _ q ​  =  ρ − ​( 1 − ​ψ​−1​ )​ ϕ(​i​∗​) + ​ 

γ(1 − ​ψ​−1​)​σ​2​
  _ 

2
 ​  

	 + ​   λ _ 
1 − γ

 ​ ​[ ​( ​ψ​−1​ − 1 )​ ​( ​Z​1−γ​ − 1 )​ ]​.

Using (A2) and q = 1/ϕ′ (i ∗), we can write the above equation as

(A11)	 b  =  ρ​​[ 1 + ​( ​ ​ψ​−1​ − 1
 _ ρ ​  )​ ​  g​ ]​​​  1 _ 

1−ψ
 ​
​ q ,

where ​  g​ is defined as follows,

(A12)	​   g​  =  g − ​ 
γ ​σ​2​

 _ 
2
 ​  − ​  λ _ 

1 − γ
 ​ ​( 1 − ​Z ​1−γ​ )​.

The expected rate of return on equity is then

(A13)	​ r​ e​   =  ρ + ​ψ​−1​ ϕ(​i​∗​) − ​ 
γ(​ψ​−1​ − 1)​σ​2​

  _ 
2
 ​  + λ​( Z − 1 )​ 

	 + ​  λ _ 
1 − γ

 ​  ​[ ​( ​ψ​−1​ − 1 )​ ​( ​Z​1−γ​ − 1 )​ ]​.

Therefore, the aggregate risk premium rp is given by

(A14)	 rp  = ​ r​ e​ − r = γ ​σ​2​ + λ  ​[ ​( Z − 1 )​ ​( 1 − ​Z​−γ​ )​ ]​ .

B. Moments of Equity Returns

Here we derive equations (24), (25), and (26) for the moments of equity returns. 
Let k =  ln K and let F(t; x, ​k​t​) denote the characteristic function: F(t; x, ​k​t​) 
= ​​t​(​e​ix​k​T​​). From (15),

(B1)	 d ​k​t​  = ​   α​dt  +  σd​B​t​ − (1 − z)d​J​t​ ,

where z = ln Z and ​  α​ = (α − ​ 1 _ 2 ​ ​σ​2​). Then F(t; x, k) satisfies the differential 
equation

(B2)	​   α​​F​k​ + ​ ​σ​2​ _ 
2
 ​ ​ F​kk​ + ​F​t​ + λ ​[ F(k + z) − F(k) ]​ = 0 .
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We conjecture that

(B3)	 F(t, x, k)  =  exp ​[ ikG(t, x) + H(t, x) ]​  .

Note that G(T, x) = x and H(T, x) = 0. Substituting (B3) for F(t, x, k) into (B2) 
gives

(B4) ​   α​iG(t, x) − ​ 1 _ 
2
 ​ ​σ​2​G(t, x​)​2​ + ​[ ik​G​t​(t, x) + ​H​t​(t, x) ]​ + λ​[ ​e​izG(t, x)​ − 1 ]​ = 0.

For the term ik​G​t​(t, x), we have ​G​t​(t, x) = 0 and G(T, x) = x, so G(t, x) = x. 
For the remaining terms,

(B5)	​   α​ix − ​ 1 _ 
2
 ​σ​x​2​ + ​H​t​(t, x) + λ​[ ​e​izx​ − 1 ]​ = 0.

The solution is

(B6)	 F(t, x, ​k​t​)  =  exp ​[ ixk + H(t, x) ]​ ,

where H(t, x) is given by

(B7)	 H(t, x)  = ​ [ ​  α​ix − ​ 1 _ 
2
 ​ ​σ​2​ ​x​2​ + λ​( ​e​izx​ − 1 )​ ]​(T − t) .

Let ​ν​n​ = (​z​n​), and note that

(B8)	​ H​x​(t, 0)  =  i[​  α​ + λ(z)](T − t)

(B9)	​ H​xx​(t, 0)  =  −(​σ​2​ + λ​ν​2​)(T − t)

(B10)	​ H​xxx​(t, 0)  =  −iλ​ν​3​(T − t)

(B11)	​ H​xxxx​(t, 0)  =  λ​ν​4​(T − t).

Using ​k​t​ and k interchangeably, the characteristic function of ​k​T​ − ​k​t​ is

(B12)	​ F ​∗​(t, k, x)  = ​ ​t​​( ​e​ix(​k​T​−​k​t​)​ )​  = ​ e​−ixk​ F(k, x) = ​e​H(t, x)​ .

Let ​m​n​ denote the nth (uncentered) moment of ​k​T​ − ​k​t​. Then

(B13)	​ m​n​  = ​ ​t​(​k​T​ − ​k​t​​)​n​  = ​  1 _ 
​i ​n​

 ​ ​ ​∂ ​n​​F ​∗​ _ 
∂ ​x ​n​

 ​ ​ |​
x=0

​ .
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We have

(B14)	 i​m​1​  =   ​ ∂​ F ​∗​ _ 
∂x

 ​ ​ |​
x=0

​  = ​ H​x​(t, 0)  =  i(T − t)[​  α​ + λ(z)] ,

which implies ​m​1​ = (T − t)(​  α​ + λ ​ν​1​). Similarly,

(B15)	​ i​2​ ​m​2​  = ​  ​∂ ​2​​F​ ∗​ _ 
∂ ​x ​2​

 ​​  |​
x=0

​  =  ​H​x​(t, 0​)​2​  + ​ H​xx​(t, 0) 

(B16)	 =  ​i​2​ ​m​ 1​ 2​ + ​[ −​σ​2​ + λ(​i​2​ ​z​2​) ]​(T − t), 

which implies ​m​2​ = ​m​ 1​ 2​ + (​σ​2​ + λ​ν​2​)(T − t). Therefore, the conditional variance 
of ​k​T​ − ​k​t​ is

(B17)	​ m​2​ − ​m​ 1​ 2​  =  (​σ​2​ + λ​ν​2​)(T − t) .

Similarly,

(B18)  ​  i​ 3​ ​m​3​  =   ​ ​∂ ​3​ ​F​ ∗​ _ 
∂ ​x ​3​

 ​​  |​
x=0

​  = ​ H​xxx​(t, 0) + 3​H​xx​(t, 0)​H​x​(t, 0) + ​H​x​(t, 0​)​3​ ,

so ​m​3​ = 3(​m​2​ − ​m​ 1​ 2​)​m​1​ + ​m​ 1​ 3​ + λ​ν​3​(T − t) , and the conditional skewness of 
​k​T​ − ​k​t​ is

(B19)   ​   
​m​3​ − (3(​m​2​ − ​m​ 1​ 2​)​m​1​ + ​m​ 1​ 3​)

   ___  
(​m​2​ − ​m​ 1​ 2​​)​3/2​

 ​   = ​   1 _ 
​√ 
_

 T − t ​
  ​​[ ​  λ​ν​3​ _  

(​σ​2​ + λ​ν​2​​)​3/2​
 ​ ]​ .

For the fourth moment,

(B20)  ​  i​ 4​ ​m​4​  =   ​ ​∂ ​4​ ​F ​∗​ _ 
∂ ​x ​4​

 ​​  |​
x=0

​  = ​ H​xxxx​(t, 0) + 4​H​xxx​(t, 0)​H​x​(t, 0)

	 + 6​H​xx​(t,  0)​H​x​(t,  0​)​2​ + 3​H​xx​(t,  0​)​2​ + ​H​x​(t,  0​)​4​,

which implies ​m​4​ = λ​ν​4​(T − t) + 4 ​m​3​ ​m​1​ − 6 ​m​2 ​​m​ 1​ 2​ + 3 ​m​ 1​ 4​ + 3(​m​2​ − ​m​ 1​ 2​​)​2​ . 
Therefore, the conditional kurtosis of ​k​T​ − ​k​t​ is

(B21)  ​  
​m​4​ − (4 ​m​3​ ​m​1​ − 6 ​m​2​ ​m​ 1​ 2​ + 3 ​m​ 1​ 4​)

   ___  
(​m​2​ − ​m​ 1​ 2​​)​2​

 ​  = 3 + ​  1 _ 
T − t ​ ​[ ​  λ​ν​4​ _  

(​σ​2​ + λ​ν​2​​)​2​
 ​ ]​ .
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For the excess kurtosis, subtract 3 from the RHS of (B21). Equations (24) to (26) 
follow directly, with Δt = T − t. Note that with annual data and returns measured 
on an annual basis, Δt = T − t = 1. With monthly data and annualized returns, 
Δt = T − t = 1/12.

C. Consumption Tax

We will show that in our model a permanent consumption tax is nondistortionary, 
so the social planner’s solution coincides with the competitive market equilibrium. 
We thus proceed by solving the social planner’s problem.

With a tax and a truncated distribution whose probability density function is 
given by equation (36), the first-order condition (FOC) for consumption in the plan-
ner’s problem is

(C1)	 (1 − τ) ​f​C​(C, V )  = ​ ϕ′​(i)​  V​′(K ).

Note that the original nontruncated distribution ζ( ⋅ ) is a special case with ​  Z​ = 0.
Consider a tax to permanently limit the maximum loss from any catastrophic 

shock that might occur to some level ​  L​. We conjecture that ​  V​(K; τ), the value func-
tion for given values of τ, has the homothetic form

(C2)	​   V​(K; τ)  = ​   1 _ 
1 − γ

 ​ ​​( ​  b​(τ)K )​​1−γ​,

where ​  b​(τ) measures certainty-equivalent wealth (per unit of capital) 
when consumption is permanently taxed at rate τ. Let ​  V​(K; 0) and ​  b​(0) 
denote the corresponding quantities in the absence of a tax as in Section II.  
Let ​  c​ = (1 − τ)(A − ​ i ​) denote the after-tax consumption-capital ratio with trun-
cated distribution (36). Substituting ​  V​(K; τ) given by (C2) into the FOC (C1) yields

(C3)	​   c​  = ​​ ( ​ (1 − τ)ρ
 _ 

​ϕ′​(​ i ​)
 ​  )​​ψ​​  b​(τ​)​1−ψ​  .

Substituting (C3) for ​ i ​ = A − ​  c​/(1 − τ) into the Bellman equation (8) and simpli-
fying, we can write the equilibrium consumption-capital ratio ​​  c​​∗​(τ) as

(C4) ​​   c​​∗​(τ) = ​ 1 − τ _ 
​ϕ′​(​​ i ​​∗​)

 ​ ​[ ρ + (​ψ​−1​ − 1)​( ϕ(​​ i ​​∗​) − ​ 
γ​σ​2​

 _ 
2
 ​  + ​  λ _ 

1 − γ
 ​ ​  ​​( 1 − ​Z​1−γ​ )​ )​ ]​.

Using the identity ​​  c​​∗​ = (1 − τ)​( A − ​​ i ​​∗​ )​, the optimal investment-capital ratio ​i​∗​ 
solves

(C5)  A − ​​ i ​​∗​  = ​   1 _ 
​ϕ′​(​​ i ​​∗​)

 ​​[ ρ + (​ψ​−1​ − 1)​( ϕ(​​ i ​​∗​) − ​ 
γ​σ​2​

 _ 
2
 ​  + ​  λ _ 

1 − γ
 ​ ​  ​​( 1 − ​Z​1−γ​ )​ )​ ]​.
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Rewriting (C3) and using ​​ i ​​∗​ from solving (C5), we have the following equation for 
​  b​(τ) :

(C6)	​   b​(τ)  =  (​​  c​​∗​​)​1/(1−ψ)​​​[ ​ (1 − τ)ρ
 _ 

​ϕ′​(​​  i ​​∗​)
 ​  ]​​−ψ/(1−ψ)

​.

Therefore,

	​   b ​(τ) = (1 − τ​)​1/(1−ψ)​ (A − ​​  i ​​∗​ ​)​1/(1−ψ)​ (1 − τ​)​−ψ/(1−ψ)​ ​​[ ​  ρ
 _ 

ϕ′(​​  i ​​∗​ )
 ​ ]​​−ψ/(1−ψ)

​ 

	 = (1 − τ) ​  b​(0),

where the last equality follows from (C5), in that ​ i ​ is independent of tax rate τ. We 
have shown that

(C7)	​   b​(τ)  =  (1 − τ) ​  b​(0),

where

(C8)	​   b​(0)  =  (A − ​​ i ​​∗​​)​1/(1−ψ)​​​[ ​  ρ
 _ 

​ϕ′​(​​  i ​​∗​)
 ​ ]​​−ψ/(1−ψ)

​

and the equilibrium ​i​ ∗​ (without a tax) solves (C5) with the truncated distribution 
given by (36). That is, the aggregate investment-capital ratio, aggregate output, and 
the aggregate capital stock all remain unchanged with respect to taxes, but not the 
distribution ​  ζ​( ⋅ ).

D. Data and Inputs to Calibration

Unless otherwise indicated, National Income and Product data are from the 
Department of Commerce (www.bea.gov/national/nipaweb), data on fixed repro-
ducible assets are from the Federal Reserve’s Flow of Funds (www.federalreserve.
gov/releases/), data on T-Bill rates and the CPI are from the Federal Reserve, and 
returns on the S&P 500 are from Robert Shiller (www.econ.yale.edu/shiller). The 
data are for the period January 1947 to December 2008. Inputs to the calibration are 
measured or calculated as follows. (All data and calculations are in a spreadsheet 
available from the authors on request.)

Capital Stock.—Our measure of the total capital stock ​K​T​ has three components: 
physical capital ​K​P​ , human capital ​K​H​ , and intangible capital held by firms ​K​I​. 
Physical capital, from the Fed’s Flow of Funds data, consists of fixed reproducible 

www.bea.gov/national/nipaweb
www.federalreserve.gov/releases
www.federalreserve.gov/releases
www.econ.yale.edu/shiller
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assets, including those held by federal and state and local governments. To estimate 
the stock of human capital, we use an approach suggested by Mankiw, Romer, and 
Weil (1998), and take the wage premium (the average wage minus the minimum 
wage) to be the return to human capital. We also assume that physical and human 
capital earn the same rate of return. Thus, the total annual return to human capital is 
the wage premium as a fraction of the average wage (about 0.60 on average) times 
total compensation of employees. To get the rate of return on physical capital, we 
use total capital income (corporate profits including the capital consumption adjust-
ment, i.e., gross of depreciation, plus rental income, plus proprietors’ income) as 
a fraction of the stock of physical capital. That rate of return (about 7 percent) is 
used to capitalize the annual return to human capital.15 For the stock of intangible 
capital, we use a weighted average of McGrattan and Prescott’s (2005) estimates 
of the intangible capital stock as a fraction of GDP for 1960–1969 and 1990–2001. 
The result is ​K​I​ = 0.68Y. Given annual values for ​K​P​, ​K​H​ , and ​K​I​ , we calculate 
annual values for A = Y/​K​T​ and use the average value of A (0.121) as an input to 
our calibration.

Investment.—We need total investment, inclusive of investment in intangible cap-
ital, to measure the consumption-investment ratio C/I. In equilibrium, investment 
in intangible capital is given by ​I​I​ = (​δ​I​ + g)​K​I​, where ​δ​I​ is the depreciation rate 
for intangible capital and g is the real GDP growth rate (0.02). The BEA’s estimate 
of the depreciation rate on R&D is 11 percent, but McGrattan and Prescott (2005) 
argue that this rate is too high for most non-R&D intangible capital. McGrattan and 
Prescott (2010) estimate the depreciation rate for intangible capital to be 8 percent, 
which is the rate we use. Thus, ​I​I​ = 0.10  ​K​I​ = 0.068Y.16 Adding this to investment 
in physical capital yields a consumption-investment ratio of 2.84. We assume here 
that investment in human capital occurs through education and is thus part of mea-
sured consumption.

Real Risk-Free Interest Rate and Equity Returns.—For the real risk-free rate, 
we use monthly data on the nominal three-month T-bill rate net of the percentage 
increase in the CPI for all items. Averaging over the (annualized) monthly numbers 
yields r = 0.008. For the equity risk premium, we use the monthly total return on the 
S&P 500 index and subtract the nominal three-month T-bill rate, yielding a risk pre-
mium rp = 0.066. For the variance, skewness, and excess kurtosis of equity returns, 
we again use the monthly total return on the S&P 500. (The equity risk premium 
using the CRSP data is slightly higher, 0.0685 versus 0.0661, but this makes no 
material difference for the results.)

15 For comparison, we also calculated the stock of human capital using the results in Jones et al. (2005), who 
estimated investment in human capital as a fraction of GDP. Assuming the depreciation rates for human and physi-
cal capital are the same, the equilibrium stocks will be in proportion to the investment levels. We obtained similar 
results (to within 15 percent) for the stock of human capital.

16 This is within the range of the Corrado, Hulten, and Sichel (2005) estimates of investment in intangible capital.



338	 American Economic Journal: economic policy� November 2013

Real GDP Growth Rate.—We use real GDP and population data from the Bureau 
of Economic Analysis to compute the annual growth rate of real per-capita GDP. 
Averaging over these annual growth rates yields ​

_
 g ​ = 0.020.
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