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We develop a dynamic contingent-claim framework to model S. Myers’s idea that a

firm is a collection of growth options and assets in place. The firm’s composition

between assets in place and growth options evolves endogenously with its investment

opportunity set and its financing of growth options, as well as its dynamic leverage

and default decisions. The firm trades off tax benefits with the potential financial

distress and endogenous debt-overhang costs over its life cycle. Unlike the standard

capital structure models of Leland, our model shows that financing and anticipated

endogenous default decisions have significant implications of firms’ growth-option

exercising decisions and leverage policies. The firm’s ability to use risky debt to

borrow against its assets in place and growth options substantially influences its

investment strategies and its value. Quantitatively, we find that the firm consistently

chooses conservative leverage in line with empirical evidence in order to mitigate the

debt-overhang effect on the exercising decisions for future growth options. Finally,

we find that debt seniority and debt priority structures have both conceptually im-

portant and quantitatively significant implications on growth-option exercising and

leverage decisions as different debt structures have very different debt-overhang

implications. (JEL E2, G1, G3)

Models of truly intertemporal investments with irreversibility and models
of dynamic financing with endogenous defaults have proceeded relatively
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independent of each other. The literature on intertemporal investments
with multiple rounds of investments often ignores the financing flexibility
possessed by the firms. On the contrary, models of dynamic financing
have tended to ignore the investment opportunity set to a point whereby
proceeds from each round of new financing are paid out to equityholders.
Even though considerable insights have emerged from each strand of
literature, much remains to be done in integrating investment theory
with dynamic financing. Our paper builds on the insights of the real-
options and contingent-claims/credit-risk literature with the objective of
showing the important link between the optimal exercise of growth
options and corporate leverage in a parsimonious and tractable way.
By using our dynamic model of investment and financing, we show
that a rational firm significantly lowers its leverage anticipating its
future growth-option exercising decisions. Our numerical exercise gener-
ates empirically observed low leverage (e.g., around 1/3) once we incor-
porate multiple rounds of growth options, indicating the important
interaction of growth-option exercising, leverage, and valuation.

Integration of multiple rounds of investments with multiple rounds of
financing presents many modeling challenges: first, the firm must solve
endogenously the upper threshold of its value when it must undertake
new investments. In making this decision the firm must take into account
the level of debt it must use to optimally trade off the expected tax
benefits with the possibility of premature termination of the firm when
default occurs, taking into account all future investment and financing
possibilities. The optimal default-decision constitutes a lower threshold
level of the value of the firm, which must also be decided endogenously.
This paper provides an analytically tractable framework to examine
dynamic endogenous corporate investment, financing, and default deci-
sions.1 We provide a tractable model of real options in which the firm
makes these endogenous lower (default) and upper (investment) decisions
over time, while choosing its optimal debt level along the way. In so
doing, we provide a methodological framework for assessing how the
life cycle of the firm may influence the manner in which it makes inter-
temporal investment, and financing decisions. Broadly speaking, we use
the term financing to encompass both the level of debt and the optimal
default decisions.

Several new insights emerge from our analysis. In thinking about of
inter-temporal investments and financing, we start with the intuitive pre-
mise that the firm starts its life as a collection of growth options, much as
in Myers (1977). For simplicity, we assume that the collection of growth

1 See Stein (2003) for a survey on corporate investment, agency conflicts, and information. See Caballero
(1999) for a survey on aggregate dynamic investment. See Harris and Raviv (1991) for a survey on
theories of capital structure.
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options possessed by the firm is known and does not change over time.
Then, as the firm moves through time, it optimally decides when to
exercise each growth option and how to finance each growth option,
keeping in mind that several additional growth options may be available
to the firm in the future. When the firm has exercised all its growth
options, it is left only with assets in place. However, it starts its life
with no assets in place. At all other times, it has some future growth
options and some assets in place. The composition of growth options
and assets is endogenously determined in a dynamic optimizing frame-
work. Thus, our model captures the life cycle of the firm in a natural way.

There is an important economic distinction between assets in place and
growth option in terms of what fraction of each is available to residual
claimants upon default. It is reasonable to argue that assets in place are
“hard assets,” with values that are verifiable and hence may provide
greater liquidation value upon default compared with growth options,
which may have embedded human capital and hence may possess a dif-
ferent (and possibly much lower) liquidation value along the lines of Hart
and Moore (1994). We explicitly incorporate the potential differences of
recovery values for growth options and assets in place. The modeling of
this difference is a new contribution to the real-options literature, as well,
because it requires the values of foregone growth options upon default
(which are non-linear functions of primitive states) to bear on optimal
exercise boundaries. Indeed, we provide explicit quantitative and quali-
tative characterization of the effect of embedded human capital in future
growth options on optimal investment thresholds, default thresholds, and
the level of debt used by the firm at each stage of its life cycle. We believe
that this is a unique contribution of our study.

Our research provides a natural bridge between structural credit risk/
capital structure models, and the dynamic irreversible investment theory.2

We find that even for firms with only one growth option, integrating
investment and financing decisions generates new insights, not captured
by either the standard real-options models (e.g., McDonald and Siegel
1986), or credit risk/capital structure models (e.g., Leland 1994). For
example, Leland (1994) shows that the default threshold decreases in
volatility for the standard (put) option argument in a contingent-claim
framework based on the standard trade-off theory of Modigliani and

2 McDonald and Siegel (1985, 1986) and Brennan and Schwartz (1985) are important contributions to
modern real-options approach to investment under uncertainty. Dixit and Pindyck (1994) is a standard
reference on real-options approach toward investment. Abel and Eberly (1994) provide a unified frame-
work integrating the neoclassical adjustment cost literature with the literature on irreversible investment.
Grenadier (1996) studies strategic interactions among agents in real-options settings. Grenadier and
Wang (2005) analyze the effect of informational frictions and agency on investment timing decisions.
Grenadier and Wang (2007) study the effect of time-inconsistent preferences on real option exercising
decisions. In our earlier draft, Sundaresan and Wang (2006), we provide additional detailed analysis on
the impact of alternative debt structures on corporate investment and leverage policies.
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Miller (1963). However, the default threshold in our model may either
decrease or increase in volatility. The intuition is as follows: (i) a higher
volatility raises the investment threshold in our model for the standard
(call option) value of waiting argument; (ii) a higher investment threshold
naturally leads to a greater amount of debt issuance. That is, the firm
issues more debt (but at a later time), when volatility is higher. Larger
debt issuance raises the default threshold, ceteris paribus. As a result,
unlike Leland (1994), we have two opposing effects of volatility on the
default threshold owing to endogenous investment in our model.

In developing our analysis, we have made the analytically convenient
assumption that the firm uses its financing flexibility only at times when it
makes its optimal investments. At a first glance, the reader may think that
this is a strong assumption. Nevertheless, it turns out that this assump-
tion proves to be innocuous for the following reasons: First, when growth
options are economically meaningful, investments occur over time at
frequent (but stochastic) intervals. Hence the real cost of the assumption
is rather slight. In addition, it is well known (Strebulaev 2007) that even
the introduction of low-costs financing leads to the result that firms will
choose to adjust their capital structure at periodic intervals rather than
continuously. Dudley (2012) shows that when there are fixed costs of
adjustment, it is optimal for firms to synchronize capital structure adjust-
ment with the financing of large investment projects. In our model, the
primary reason for financing is investment, and investments require a
lump-sum cost. Hence, it is natural to model financing adjustments
when investments occur. Moreover, the key focus of our paper is on
the effect of financing on growth-option exercising decisions.

In addition, our study provides several additional insights on the
valuation of equity and credit spreads at different stages in the life
cycle of the firm. We have a natural benchmark to assess of our results:
after all the growth options are optimally exercised, the firm is left with
only assets in place. At this final stage, our results are exactly the same as
either Leland (1994) (when no dynamic financing adjustments are
allowed) or Goldstein, Ju, and Leland (2001) (when dynamic financing
adjustments are allowed). At all previous stages, the firm has a mixture of
assets in place and growth options, and they influence both equity valua-
tion and credit spreads. The key insight is that the incremental financial
flexibility at times other than actual investments is less important when
there are growth options.

Related literature. Recently, there is a growing body of literature that
extends Leland (1994) to allow for strategic debt service,3 and dynamic

3 Anderson and Sundaresan (1996) use a binomial model to study the effect of strategic debt service on
bond valuation. See Mella-Barra and Perraudin (1997), Fan and Sundaresan (2000), and Lambrecht
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capital structure decisions. Fischer, Heinkel, and Zechner (1989);
Goldstein, Ju, and Leland (2001); and Strebulaev (2007) formulate
dynamic leverage decisions with exogenously specified investment poli-
cies.4 Leary and Roberts (2005) empirically find that firms rebalance their
capital structure infrequently in the presence of adjustment costs.
Following Leland (1994), most contingent-claims models of credit risk/
capital structure assume that the firm’s cash flows are exogenously given
and focus on the firm’s financing and default decisions.5 Unlike these
work, our model endogenizes growth-option exercising decisions and
induces dynamic leverage decisions via motives of financing investment.6

Titman and Tsyplakov (2007) also build a model that allows for dynamic
adjustment of both investment and capital structure. Their model is based
on continuous investment decisions, whereas our model focuses on the
irreversibility of growth-option exercising.7 We solve the model in closed
form (up to coupled nonlinear equations), whereas Titman and
Tsyplakov (2007) have three state variables and numerically solve the
decision rules. Ju and Ou-Yang (2006) show that the firm’s incentive to
increase firm risk ex post is mitigated if the firm wants to issue debt
periodically. In the interest of parsimony, we abstract from stochastic
interest rates.8 Guo, Miao, and Morellec (2005) develop a model of irre-
versible investment with regime shifts. Hackbarth, Miao, and Morellec
(2006) study the effects of macro conditions on credit risk and firms’
financing policies. Tserlukevich (2008) studies the effect of real options
on financing behavior.

1. Model

We first set up a dynamic formulation where the firm is a collection of
growth options and assets in place. Assume that the firm behaves in the

(2001) for continuous-time contingent-claim treatment. Sundaresan and Wang (2007) study the interac-
tions between investment and financing decisions when equityholders may ex post strategically force
concessions from debtholders.

4 Early important contributions towards building dynamic capital structure models include Kane, Marcus,
and McDonald (1984, 1985).

5 Leland (1998) extends Leland (1994) by incorporating risk management with capital structure, and also
allows the firm to engage in asset substitution by selecting volatility of the project.

6 Our model ties the investment and financing adjustments to occur at the same time. This assumption is
made for analytical convenience. We leave extensions to allow for separate adjustments of investment
and financing for future research.

7 Brennan and Schwartz (1984) is an early, important contribution, which allows for the interaction
between investment and financing.

8 See Kim, Ramaswamy, and Sundaresan (1993); Longstaff and Schwartz (1995); and Collin-Dufresne and
Goldstein (2001) for extensions of Merton (1974), to allow for a stochastic interest rate and other
features.
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interests of existing equityholders at each point in time.9 At time zero, the
firm starts with no assets in place, and knows that it has N growth
options. These growth options can only be exercised sequentially. One
way to view these growth options is as the discretized decisions for capi-
tal-accumulation decisions.10

The firm observes the demand shock Y for its product, where Y is given
by the following geometric Brownian motion (GBM) process:

dYðtÞ ¼ �YðtÞdtþ �YðtÞdWðtÞ; ð1Þ

and W is a standard Brownian motion.11 Equivalently, we may also
interpret Y as the (stochastic) price process for the firm’s output.12 The
risk-free interest rate r is constant. For convergence, assume that the
(risk-neutral) expected growth rate � is lower than the interest rate, in
that r4�: Assume no production cost after the asset is in place.13 When
the firm exercises its n-th growth option, it creates the n-th asset in place,
which generates profit at the rate of mnY, where mn40 is a constant. We
may interpret mn as the production capacity, or equivalently the constant
rate of output produced by the firm’s n-th asset in place. Let the firm’s
total profit rate from its first n assets in place be MnY, where

Mn ¼
Pn

j¼1 mj.

Let Ti
n denote the endogenously chosen time at which the firm exercises

its n-th growth option, where 1 � n � N: Let In denote the fixed cost of
exercising its n-th growth option. These exercising costs In are constant
and known at time 0. At each endogenously chosen (stochastic) invest-
ment time Ti

n, the firm issues a mixture of debt and equity to finance the
exercising cost In. As in standard trade-off models of capital structure,
debt has a tax advantage. The firm faces a constant tax rate �40 on its
income after servicing interest payments on debt. To balance the tax
benefits, debt induces deadweight losses when the firm does poorly.
The firm dynamically trades off the benefits and costs of issuing debt.
For analytical convenience, assume that debt is perpetual and is issued at

9 We ignore the conflicts of interests between managers and investors and leave them for future research.

10 One could certainly visualize growth options arriving with some intensity at random times in the future.
In such an economy, the optimal investment decisions would reflect the arrival intensity in addition to the
factors that we consider in our formulation. Extension of random arrivals of growth options is clearly an
interesting topic for future research.

11 Let W be a standard Brownian motion in R on a probability space ð�;F;QÞ and fix the standard
filtration fFt : t � 0g of W. Since all securities are traded here, we work directly under the risk-neutral
probability measure Q. Under the infinite horizon, additional technical conditions such as uniform
integrability are assumed here. See Duffie (2001).

12 In our model as in many other investment and capital structure models, the process Y captures both
demand and productivity shocks.

13 Our model ignores operating leverage. We may extend our model to allow for operating leverage by
specifying the firm’s profit from its n-th asset in place as mnY� wn, where wn is the operating cost for the
n-th asset in place.
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par. The assumption of perpetual debt simplifies the analysis substan-
tially and has been widely adopted in the literature.14 Note that we have
assumed that the firm can only issue debt at investment times
fTi

n : 1 � n � Ng. At a first glance, this may appear to be a strong
assumption. In fact, our assumption is actually rather mild. Strebulaev
(2007) has shown that in the presence of frictions firms adjust their capital
structure only infrequently. Therefore, in a dynamic economy that we
model, the leverage of the firm is likely to differ from the “optimum”
leverage predicted by models that permit costless adjustment of leverage.
Given this finding it is more natural to recapitalize when optimal invest-
ment decisions are warranted. In addition, models that permit re-lever-
aging in good times, implicitly or explicitly use the debt proceeds to pay
dividends, which is at odds with the basic provision that senior claims
(such as debt) may not be issued to finance junior claims (such as equity).

Let Cn and Fn denote the coupon rate and the par value of the perpe-
tual debt issued to finance the exercising of the n-th growth option at Ti

n.
Let Td

n denote the endogenously chosen stochastic default time after the
firm exercises n growth options, but before exercising the ðnþ 1Þ-th
growth option, where 1 � n � N. When exercising the new growth
option at Ti

nþ1, the firm calls back its outstanding debt with par Fn and
coupon Cn, and issues new debt with par Fnþ1 and coupon Cnþ1. That is,
at each point in time, there is only one class of debt outstanding.15

Figure 1 describes the decision-making process of the firm over its life
cycle. The firm has (Nþ 1) stages. In stage 0, the firm has no assets in
place. We assume that the initial value of the demand shock is sufficiently
low such that the firm always starts with waiting, the economically most
interesting case. If the demand shock fYðtÞ : t � 0g rises sufficiently high
(i.e., greater or equal to an endogenous threshold Yi

1 to be determined in
Section 2) at the stochastic (endogenous) time Ti

1, the firm exercises its
first growth option by paying a one-time fixed cost I1 at time Ti

1 as in
McDonald and Siegel (1986). Note that since Y(0) is sufficiently low, we
have Ti

140. Notation-wise, we use Yi
1 ¼ YðTi

1Þ. To finance the first
growth-option exercising cost I1, the firm issues a mixture of equity
and perpetual debt. This completes the description of the firm’s decision
in its initial stage (stage 0). Next turn to stage 1.

After the first asset is in place, the firm collects profit flow m1Y until it
decides to either default on its debt or exercise its (second) growth option.
If the firm defaults before exercising the second growth option (Td

1 < Ti
2),

14 We may extend the model by allowing for a finite average maturity for debt as in Leland (1994b) at the
cost of additional modeling complexity.

15 See Section 5 and also Hackbarth and Mauer (2012) for analysis where more than one class of debt are
outstanding. The design of priority structure of debt and its implications for real-options exercise is a
topic worthy of further research.
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it ceases to exist. All proceeds from liquidation go to creditors. However,
liquidation is inefficient because it induces value losses from both the
existing assets in place and foregone growth options. We will specify
the liquidation payoff in the next paragraph when discussing the firm’s
general stage n problem. Intuitively, if the demand shock Y is sufficiently
high, then it is optimal for the firm to exercise its second growth option.
By incurring the fixed investment cost I2, the firm exercises its second
growth option at endogenously chosen time Ti

2. At the second investment
time Ti

2, the firm calls back its outstanding debt with par F1, and issues
a mixture of equity and the new perpetual debt with par F2 to finance
the second growth option exercising cost I2. This concludes the firm’s
decision in stage 1.

Figure 1

The firm’s decision-making process over its life cycle.
The firm starts with N sequentially ordered growth options. We divide its decision making over its life
cycle into ðNþ 1Þ stages. In stage 0, the firm exercises its first growth option when the stochastic process
Y given in Equation (1) rises sufficiently high (i.e., Y � Yi

1 ¼ YðTi
1Þ). The firm waits otherwise. When

exercising, the firm issues a mixture of equity and the first perpetual debt with coupon C1 to finance the
exercising cost I1. This completes the description of the firm’s stage 0 decision. Now move to stage 1.
Provided that Yd

1 < Y < Yi
2, the firm generates cash flow m1Y from its operation. If its cash flow drops

sufficiently low, (i.e., Y � Yd
1), the firm defaults. If the cash flow rises sufficiently high (i.e. Y � Yi

2), the
firm exercises its second growth option, and issues a mixture of equity and the second perpetual debt with
coupon C2 to finance the exercising cost I2. After the second growth option is exercised, the firm
generates stochastic cash flow ðm1 þm2ÞY, provided that Y � Yd

2. This process continues. If the firm
reaches the final stage N, the firm has total N assets in place and collects total cash flow MNY, where

MN ¼
XN

n¼1
mn. The decision variables include N investment thresholds Yi

n, N default thresholds Yd
n,

and N coupon policies Cn, where n ¼ 1; 2; . . . ;N: Notation-wise, we define the n-th stage as Y, such that

Yd
n � Y < Yi

nþ1 where Yi
nþ1 ¼ YðTi

nþ1Þ and Yd
n ¼ YðTd

nÞ.
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It is straightforward to describe the firm’s stage-n decision problem.
After immediately exercising the n-th growth option, the firm operates
its existing n assets in place until the demand shock Y either rises suffi-
ciently high, which triggers the firm to call back debt with par Fn,
issue a mixture of new perpetual debt and equity to finance Inþ1 to
exercise the ðnþ 1Þ-th growth option, or the demand shock Y drops
sufficiently low, which leads the firm to default on its outstanding debt
with par Fn.

Let AnðYÞ denote the after-tax present value of all n existing assets in
place (under all equity financing), in that

AnðYÞ ¼
1� �

r� �

� �
MnY; 1 � n � N; ð2Þ

where Mn is the production capacity for all existing n assets in place and
is given by

Mn ¼
Xn
j¼1

mj; 1 � n � N: ð3Þ

When equityholders default on debt, the firm is liquidated. Let LnðYÞ
denote the proceeds from liquidation in stage n. Liquidation proceeds Ln

ðYÞ has two components: one from the existing assets in place, and the
other from foregone growth options. Following Leland (1994),
we assume that the firm uncovers ð1� �AÞ fraction of the present value
AnðYÞ from existing n assets in place. Unlike Leland (1994), our
model has growth options. Even though growth options may be less
tangible, they still have scrap value upon liquidation. We calculate the
liquidation value for unexercised growth options in an analogous way as
we do for the liquidation value from existing assets in place. That is, we
assume that the firm collects ð1� �GÞ fraction of the present value of
unexercised foregone growth options. We use the workhorse
real-option model to assess values for unexercised growth options, as if
these options were stand-alone and financed solely by equity. Let GkðYÞ
denote the present value of a stand alone growth option (with exercise
cost Ik and cash-flow multiplier mk40) under all-equity financing. The
following lemma summarizes the main results (McDonald and Siegel
1986).

Lemma 1

Consider an all-equity financed firm with a single growth option. The
firm may exercise its stand-alone growth option by paying a one-time
fixed cost Ik, and then generate a perpetual stream of after-tax stochastic
cash flow ð1� �ÞmkY, where mk40 is a constant and the stochastic
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process Y is given by Equation (1). The firm (option) value is given by

GkðYÞ ¼
Y

Yae
k

� ��1 1� �

r� �

� �
mkY

ae
k � Ik

� �
; Y < Yae

k ; ð4Þ

where Yae
k is the optimal growth-option exercising threshold and is

given by

Yae
k ¼

r� �

1� �

�1
�1 � 1

Ik
mk
; ð5Þ

and �1 is the (positive) option parameter and is given by

�1 ¼
1

�2
� ��

�2

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

�2

2

� �2

þ 2r�2

s2
4

3
541: ð6Þ

The firm’s liquidation value in stage n, LnðYÞ, is then given by

LnðYÞ ¼ ð1� �AÞAnðYÞ þ ð1� �GÞ
XN

k¼nþ1

GkðYÞ; ð7Þ

where AnðYÞ given in Equation (2) is the after-tax present value of the
existing n assets in place, and GkðYÞ given in Equation (4) is the after-tax
present value of k-th unexercised growth options. The specification of
our liquidation payoff is reasonably general and also intuitive. We allow
for different loss rates �A and �G for assets in place and growth options,
respectively. For example, the growth options may reflect the
embedded human capital of current owners, which the new owners
may not be able to replicate after liquidation. This may suggest that �G
is greater than �A, although our model specification does not require this
condition. In addition to being realistic, the specification for liquidation
payoffs is also quite tractable, and we have closed-form solutions for
both liquidation values of assets in place and of growth options, as
shown above. Finally, we tie liquidation values for assets in place and
growth options to their respective stand-alone values under all-equity
financing.

Having detailed the firm’s decision making in stage n, we introduce a
few value functions, and leave the formal mathematical definition of these
value functions to the Appendix. Let EnðYÞ denote equity value in stage n,
(i.e., the present discounted value of all future cash flows accruing to the
existing equityholders after servicing debt and paying taxes). Even
though equity value EnðYÞ does not internalize the benefits and costs of
debt in stage n, it does include the tax benefits and distress costs of debt in
future stages. Let DnðYÞ denote debt value in stage n. Recall that debt
coupon Cn is serviced until debt is either called back at par Fn at
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investment time Ti
nþ1, or is defaulted at Td

n. At default, creditors collect
LnðYðT

d
nÞÞ given in Equation (7), which is less than Cn=r in equilibrium.16

Let VnðYÞ denote stage-n firm value, which is the sum of equity and debt
values, in that VnðYÞ ¼ EnðYÞ þDnðYÞ.

The firm follows the decision-making process sketched earlier during
each stage of its life cycle until it defaults. If the firm survives to exercise
its last growth option (i.e., t � Ti

N), then the firm has exercised all of its
growth options. The firm then collects MNY in profit flow from its N
assets in place, servicing debt payment CN and paying taxes, until profit
drops sufficiently low, which triggers the firm to default on its outstand-
ing debt with par FN at time Td

N. The last-stage default-decision problem
for the “mature” firm is the one analyzed in Leland (1994).

Having described the decision-making process over the life cycle of the
firm, we next solve the model using backward induction.

2 Solution

We solve our model in four steps. The first three steps take debt coupon
levels fCn : 1 � n � Ng and liquidation payoff fLnðYÞ : 1 � n � Ng in
each stage n as given, and analyze the firm’s growth option and
default-option-exercising decisions. To be specific, first, we study the
default decision in stage N (no investment decision in the last stage).
This is effectively the classic capital structure/default problem treated
in Leland (1994). Second, we characterize the firm’s optimal growth-
option and default-option exercising decisions when the firm is in the
intermediate stages of its life cycle (stage 1 to stage N – 1). Third, we
analyze the firm’s initial growth-option exercising decision (no
default decision in stage 0). After solving the investment and default
decisions, we provide optimality conditions for the firm’s financing poli-
cies fCn : 1 � n � Ng over its life cycle (stage 0 to stage N – 1).

2.1 The final stage (stage N) in the firm’s life cycle

In the final stage, the firm has exercised all its growth options and hence
operates N assets in place, which generate the profit flow at the rate of

MNY with MN ¼
PN

k¼1 mk being the total production capacity.

Conditioning on the optimal choice of the investment threshold Yi
N, we

have the classic Leland (1994) formulation. In addition, the correspond-
ing details of proof are provided in the Appendix.

16 Because default is endogenous, equityholders will never default when liquidation value exceeds the risk-
free value of debt.
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Leland (1994) and Goldstein, Ju, and Leland (2001) show that equity
value ENðYÞ is given by

ENðYÞ¼ ANðYÞ�
ð1��ÞCN

r

� �
þ
ð1��ÞCN

r
�ANðY

d
NÞ

� �
Y

Yd
N

� ��2
; Y�Yd

N;

ð8Þ

where ANðYÞ given in Equation (2) is the after-tax present value of N
existing assets in place, and the optimal default threshold Yd

N for a given
coupon CN is given by

Yd
N¼

r��

MN

�2
�2�1

CN

r
; ð9Þ

and �2 is given by

�2¼�
1

�2
��

�2

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

�2

2

� �2

þ2r�2

s2
4

3
5< 0: ð10Þ

Equity value ENðYÞ is given by the after-tax present value of all N assets
in place, ANðYÞ, minus the after-tax present value of the risk-free perpe-
tual debt ð1��ÞCN=r, plus the option value of default, the last term in
Equation (8). The standard option-value argument implies that the default
threshold Yd

N decreases with volatility �, and equity value ENðYÞ is convex
in Y. Naturally, when Y�Yd

N, equity is worthless, i.e., ENðYÞ¼ 0.
Similarly, the market value of debt DNðYÞ is given by

DNðYÞ ¼
CN

r
�

CN

r
� LNðY

d
NÞ

� �
Y

Yd
N

� ��2
; Y � Yd

N; ð11Þ

where the second term captures the default risk. In stage N, the firm only
has assets in place, and therefore, LNðY

d
NÞ ¼ ð1� �AÞANðY

d
NÞ. Note that

DNðYÞ is concave in Y because the creditor is short a default option.
The second term in Equation (11) measures the discount on debt owing
to the risk of default, which has two components: the loss given default
ðCN=r� LNðY

d
NÞÞ for the creditor, and ðY=Yd

NÞ
�2 , the present discounted

value for a unit payoff when the firm hits the default boundary Yd
N.

Intuitively, firm value is VNðYÞ ¼ ENðYÞ þDNðYÞ which is given by

VNðYÞ ¼ ANðYÞ þ
�CN

r
� �AANðY

d
NÞ þ

�CN

r

� �
Y

Yd
N

� ��2
; Y � Yd

N: ð12Þ

Firm value VNðYÞ is given by the after-tax value of the N assets in
place ANðYÞ, plus the perpetuity value of the risk-free tax shield �CN=r,
minus the cost of liquidation. Importantly, firm value VNðYÞ is concave
in Y, because the firm as a whole is short in a liquidation option.
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Intuitively, after Ti
N, the firm is long in the N assets in place and the risk-

free tax shield perpetuity �CN=r, and short in the liquidation option.
Upon liquidation, the firm as a whole loses �A fraction of assets in
place value ANðY

d
NÞ and also the perpetual value of tax shields, the sum

of the two terms in the square bracket in Equation (12).

2.2 Intermediate stages (stage ðN� 1Þ to stage 1)

Having analyzed the firm’s optimization problem in stage N, we now use
backward induction to analyze the firm’s decision problem in stage
ðN� 1Þ. As Figure 1 indicates, the key decisions are (i) the N-th
growth-option exercising and (ii) the default decision on the existing
debt with par FN�1. For generality, we solve the firm’s decision problem
for its intermediate stage n, including stage ðN� 1Þ as a special case.

2.2.1 Equityholders’ decisions and equity pricing. For given investment
threshold Yi

nþ1 and default threshold Yd
n in stage n, equity value EnðYÞ

solves the following ODE:

rEnðYÞ ¼ ð1� �ÞðMnY� CnÞ þ �YEn0ðYÞ þ
�2

2
Y2E

00

nðYÞ; Yd
n � Y

� Yi
nþ1: ð13Þ

Now consider boundary conditions for investment. When exercising the
ðnþ 1Þ-th growth option, equityholders are required to call back the old
debt at the par value Fn. Importantly, we will determine the value of Fn as
part of the model solution that depends on the firm’s endogenous invest-
ment, default, and coupon decisions.

Note that since the firm has to call back the debt at its par, the total cost
of exercising the ðnþ 1Þ-th growth option is given by ðInþ1 þ FnÞ, the sum
of investment cost Inþ1 and the face value of the debt Fn. And part of this
exercising cost is financed by new debt, which has market value Dnþ1ðY

i
nþ1Þ

at issuance time Ti
nþ1. The remaining part ðInþ1 þ Fn �Dnþ1ðY

i
nþ1ÞÞ is

financed by equity. Therefore, the net payoff to equitysholders right
after exercising is Enþ1ðY

i
nþ1Þ � ðInþ1 þ Fn �Dnþ1ðY

i
nþ1ÞÞ: The value-

matching condition for the threshold Yi
nþ1 is then given by

EnðY
i
nþ1Þ ¼ Vnþ1ðY

i
nþ1Þ � ðInþ1 þ FnÞ; ð14Þ

where Vnþ1ðYÞ ¼ Enþ1ðYÞ þDnþ1ðYÞ is firm value in stage ðnþ 1Þ. Because
equityholders optimally choose the threshold Yi

nþ1, the following smooth-
pasting condition holds:

E0nðY
i
nþ1Þ ¼ V0nþ1ðY

i
nþ1Þ: ð15Þ

Now turn to the default boundary conditions. Using the same arguments
as those for equity value ENðYÞ in the last stage, equityholders choose the

Dynamic Investment, Capital Structure, and Debt Overhang

13



default threshold Yd
n to satisfy the value-matching condition EnðY

d
nÞ ¼ 0

and the smooth-pasting condition E0nðY
d
nÞ ¼ 0.

Unlike the decision problem in the last stage, we now have a double
(endogenous) barrier option exercising problem, where the upper bound-
ary is primarily about the real-option exercising decision as in McDonald
and Siegel (1986), and the lower boundary is effectively the financial
default-option-decision as in Leland (1994). Of course, the upper (invest-
ment) and the lower (default) boundaries are interconnected. This is
precisely how the investment and default decisions affect each other.
Next, we formally characterize this interaction between investment and
default decisions.

Let �i
nðYÞ denote the present discounted value of receiving a unit

payoff at Ti
nþ1 if the firm invests at Ti

nþ1, namely, Ti
nþ1 < Td

n. Similarly,
let �d

nðYÞ denote the present discounted value of receiving a unit payoff at
Td
n if the firm defaults at Td

n, namely Td
n < Ti

nþ1. The closed-form expres-
sions for �i

nðYÞ and �d
nðYÞ are given by

�i
nðYÞ ¼ Et e�rðT

i
nþ1
�tÞ1Td

n4Ti
nþ1

h i
¼

1

�n
½ðYd

nÞ
�2Y�1 � ðYd

nÞ
�1Y�2 �; ð16Þ

�d
nðYÞ ¼ Et e�rðT

d
n�tÞ1Td

n<T
i
nþ1

h i
¼

1

�n
½ðYi

nþ1Þ
�1Y�2 � ðYi

nþ1Þ
�2Y�1 �; ð17Þ

and

�n ¼ ðY
d
nÞ
�2ðYi

nþ1Þ
�1 � ðYd

nÞ
�1ðYi

nþ1Þ
�240: ð18Þ

Using these formulas, we may write equity value EnðYÞ as follows:

EnðYÞ ¼ AnðYÞ �
ð1� �ÞCn

r
þ ein�

i
nðYÞ þ edn�

d
nðYÞ; Yd

n � Y � Yi
nþ1;

ð19Þ

where

ein ¼ Vnþ1ðY
i
nþ1Þ � ðInþ1 þ FnÞ � AnðY

i
nþ1Þ �

ð1� �ÞCn

r

� �
40; ð20Þ

edn ¼ � AnðY
d
nÞ �
ð1� �ÞCn

r

� �
40: ð21Þ

Equity value EnðYÞ is given by the after-tax present value of assets in
place AnðYÞ minus the after-tax perpetuity value of risk-free debt with
coupon Cn, (i.e. ð1� �ÞCn=r) plus two option values: the (real) growth
option and the (financial) default option. The third term in Equation (19)
measures the present value of the growth option, which is given by the
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product of �i
nðYÞ, and the net payoff ein from exercising the growth

option. The net payoff ein is the difference between the payoff
from growth-option exercise Vnþ1ðY

i
nþ1Þ � ðInþ1 þ FnÞ and ðAnðY

i
nþ1Þ�

ð1� �ÞCn=rÞ, the forgone unlevered equity value when investing at the
threshold Yi

nþ1. Note that the forgone “un-levered” equity value appears
as an additional cost term in the net payoff ein because the option payoff
Vnþ1ðY

i
nþ1Þ � ðInþ1 þ FnÞ contains cash flows from the existing assets in

place. Similarly, the fourth term in Equation (19) is the present value of
the (financial) default option, which is given by the product of �d

nðYÞ and
the net payoff edn upon default. Because equityholders receive nothing
at default, the net payoff edn is given by the savings, �ðAnðY

d
nÞ�

ð1� �ÞCn=rÞ40, from avoiding the loss of running the “un-levered”
equity value at the default threshold Yd

n.

2.2.2 Debt pricing.

In the Appendix, we show that debt value DnðYÞ in stage n where Yd
n � Y

� Yi
nþ1 is given by:

DnðYÞ ¼
Cn

r
�

�d
nðY

i
nÞ

1��i
nðY

i
nÞ

�i
nðYÞ þ�d

nðYÞ

� �
Cn

r
� LnðY

d
nÞ

� �
; ð22Þ

where �i
nðYÞ and �d

nðYÞ are given in Equation (16) and Equation (17),
respectively. Creditors incur losses when the firm default
(i.e., Cn=r4LnðY

d
nÞ). The second term in Equation (22) gives the

value discount on debt due to the risk of default. We may obtain
the par value Fn of this debt by evaluating DnðYÞ at the investment
threshold Yi

n.
Because debt is priced at par Fn at issuance time Ti

n, we have the
following valuation equation for the par value Fn:

Fn ¼
Cn

r
�

�d
nðY

i
nÞ

1��i
nðY

i
nÞ

Cn

r
� LnðY

d
nÞ

� �
: ð23Þ

Default is costly in that Cn=r4LnðY
d
nÞ. The second term in Equation (23)

gives the value discount of debt at issuance due to default risk.

2.2.3 Firm valuation. Now, we may calculate firm value VnðYÞ as the
sum of debt value DnðYÞ and equity value EnðYÞ, in that

VnðYÞ ¼ AnðYÞ þ
�Cn

r
þ vin�

i
nðYÞ þ vdn�

d
nðYÞ; Yd

n � Y � Yi
nþ1; ð24Þ

where

vin ¼ Vnþ1ðY
i
nþ1Þ � Inþ1 � AnðY

i
nþ1Þ þ

�Cn

r

� �
; ð25Þ
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vdn ¼ LnðY
d
nÞ � AnðY

d
nÞ þ

�Cn

r

� �
: ð26Þ

Having described the details to solve for the default threshold Yd
n and

the investment threshold Yi
nþ1 for stage n � 1, we now turn to the invest-

ment decision for the initial stage. Unlike the intermediate stages, the
initial stage (stage 0) has no default decision, and hence simplifies the
analysis.

2.3 The initial stage (stage 0) in the firm’s life cycle

As in standard real-option models, equity value E0ðYÞ in stage 0 solves
the following ODE:

rE0ðYÞ ¼ �YE
0
0ðYÞ þ

�2

2
Y2E000ðYÞ; Y � Yi

1; ð27Þ

subject to the following boundary conditions

E0ðY
i
1Þ ¼ V1ðY

i
1Þ � I1; ð28Þ

E00ðY
i
1Þ ¼ V01ðY

i
1Þ: ð29Þ

The intuition behind the value-matching Condition (28) builds and
extends the one in McDonald and Siegel (1986). Without any assets
and liability, the firm raises D1ðY

i
1Þ in debt to partially finance the exer-

cising cost I1. Immediately after exercising the first growth option at the
threshold Yi

1, equityholders collect E1ðY
i
1Þ � ðI1 �D1ðY

i
1ÞÞ giving rise to

the value-matching Condition (28). The smooth-pasting Condition (29)
states that the investment threshold Yi

1 is chosen optimally. Finally,
equity value E0ðYÞ also satisfies the standard absorbing barrier condition
at the origin, in that E0ðYÞ ! 0, when Y! 0.

Equity value E0ðYÞ, the solution to the above optimization problem, is
given by

E0ðYÞ ¼
Y

Yi
1

� ��1�
V1ðY

i
1Þ � I1

�
;Y � Yi

1; ð30Þ

where �1 is given by Equation (6), and the investment threshold Yi
1 solves

the following implicit equation:

Yi
1 ¼

1

1� �

r��

m1

�1
�1� 1

I1�
�C1

r

� �
þ
�1��2
�1�1

ðYi
1Þ
�2
�
ðYd

1Þ
�1vi1�ðY

i
2Þ
�1vd1

�� �
;

ð31Þ

and �1 is a strictly positive constant given in Equation (18) with n¼ 1.
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Unlike in the standard equity-based real-options models (e.g., McDonald
and Siegel 1986), the payoff from investment in our model is total firm
value V1ðYÞ, which includes the present values of cash flows from both
operations and financing. Note that equity value E0ðYÞ is convex in Y, a
standard result in the real-options literature.

Having analyzed the firm’s investment and default thresholds, we now
analyze the firm’s dynamic financial (debt) policies, and summarize the
firm’s integrated dynamic decision making over its life cycle.

2.4 Dynamic debt policies and a summary of the firm’s life cycle decisions

First, review the decision problem in stage N. The firm chooses its last
default threshold Yd

N as a function of coupon CN by maximizing equity
value ENðY;CNÞ. The solution for Yd

N as a function of CN is given by
Equation (9), a well-known problem treated in Leland (1994). Then,
equityholders choose CN to maximize VNðYÞ and then evaluate the
first-order condition (FOC) for CN at Y ¼ Yi

N. Intuitively, equityholders
internalize all benefits and costs of debt issuance at Ti

nþ1 and pay fair
market value DNðY

i
NÞ ¼ FN when choosing coupon CN.

17 Because
firm value VNðYÞ given by Equation (12) is known in closed form, we
obtain the following explicit solution for CN in terms of Yi

N:

CN ¼
r

r� �

�2 � 1

�2

1

h
MNY

i
N; ð32Þ

where h is given by

h ¼ 1� �2 1� �A þ
�A
�

� �h i�1=�2
41: ð33Þ

Using Formula (9) for Yd
N for a given coupon CN, we obtain the relation-

ship between the last default threshold Yd
N and the last growth-option

exercising: Yd
N ¼ Yi

N=h.
Now consider stage ðN� 1Þ. Equityholders choose the thresholds Yi

N

and Yd
N�1 to maximize equity value EN�1ðY;CN�1Þ, taking the default

threshold Yd
N in Equation (9) and optimal coupon CN in Equation (32)

in stage N as given. Because equityholders internalize the tax benefits
from issuing debt at Ti

N�1, equityholders choose coupon CN�1 to max-
imize VN�1ðYÞ and then evaluate at Yi

N�1.
Next turn to stage n, where 1 � n < ðN� 1Þ. As in stage ðN� 1Þ, the

firm chooses thresholds Yi
nþ1 and Yd

n to maximize equity value EnðY;CnÞ,
taking into account the firm’s future optimality conditions described ear-
lier. Then, the firm chooses the optimal coupon policy Cn to maximize
VnðYÞ and then evaluate at Yi

n.

17 The optimality for CN and Yi
N and the envelope condition jointly imply that we do not need to consider

the feedback effects between the investment threshold Yi
N and the coupon policy CN.
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Finally, stage 0 is a special case of stage n. The firm chooses the first
investment threshold Yi

1 to maximize equity value E0ðYÞ. Note that Yd
0

¼ 0 (no debt and no default). We have shown that equity value E0ðYÞ is
given by Equation (30) and the investment threshold is given by the
implicit nonlinear Equation (31).

Our model thus have predictions for the dynamics of leverage choice
by the firm, and how the leverage dynamics relate to the life cycle of the
firm. Unlike most existing dynamic financing models, which ignore
investments, our model explicitly incorporates investment frictions,
which are potentially important. The leverage dynamics under investment
frictions will reflect the importance of remaining future growth options,
and the potential for premature liquidation from excessive leverage. We
explore this tension later in the paper.18

Having outlined the solution methodology for the general model spe-
cification, we next summarize the setting where the firm is all-equity
financed (i.e., McDonald and Siegel 1986) with multiple growth options
and taxes.

2.5 All-equity-financing model

We now consider an all-equity setting with multiple rounds of growth
options. Recall that Lemma 1 gives the growth option value GkðYÞ and
the exercise threshold Yae

k for a firm with a stand-alone growth option.
When the firm has N sequentially ordered growth options, the technology
constraint requires that growth option k can only be exercised if and only
if all previous ðk� 1Þ growth options have been exercised. Intuitively, this
sequential exercising constraint binds when future growth options
are worthy immediately exercising after growth options are exercised.
We can show that simultaneously exercising growth options k and ðk� 1
Þ is optimal if and only if mk=Ik � mk�1=Ik�1. Then we may combine these
two consecutive growth options into one, with an exercise cost ðIk þ Ik�1Þ
and a “new” cash flow multiplier ðmk þmk�1Þ for the combined growth
option. By redefining growth options, we can always focus on the setting
where mn=In strictly decreases in n, in that

m1

I1
4

m2

I2
4 . . .4

mN

IN
: ð34Þ

Under this condition, the option value of waiting is strictly positive
between any two consecutive growth options in the first-best (all-equity
financing) benchmark. The following lemma summarizes the main results
for the equity financing benchmark.

18 Our characterization of leverage dynamics only requires us to solve a system of non-linear equations for
investment and default thresholds, and coupon policies. This substantially simplifies our analysis, in that
we have solved out the endogenous default and investment thresholds up to a set of nonlinear equations.
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Lemma 2

The firm’s investment decisions follow stopping time rules Ti
n ¼ inff

t � 0 : YðtÞ ¼ Yae
n g for n ¼ 1; 2; . . . ;N, where the investment threshold

Yae
n are given by Equation (5), and the constant �1 is given by Equation

(6). Firm (equity) value EnðYÞ in stage n is given by the sum of assets in
place AnðYÞ and its unexercised growth options, in that

EnðYÞ ¼ AnðYÞ þ
XN

k¼nþ1

GkðYÞ; Y � Yae
n ; 1 � n � N; ð35Þ

where GkðYÞ is the k-th growth option value and is given in Equation (4).

For any stage n, the investment threshold Yae
n is the same as the one if the

n-the growth option were stand-alone. Taxes reduce cash flows but do
not provide benefits under all-equity financing. This explains the factor
1=ð1� �Þ for the investment threshold Yi

n given in Equation (5). As in
standard real-options models (McDonald and Siegel 1986), the invest-
ment threshold Yi

n increases in volatility. For the ease of future reference,
let Y�n denote the n-th investment threshold without taxes ð� ¼ 0Þ.
We have

Y�n ¼ ðr� �Þ
�1

�1 � 1

In
mn
; 1 � n � N: ð36Þ

Next, we analyze the investment and financing decisions for the one-
growth-option setting (N¼ 1).

3 Benchmark: One-Growth-Option Setting

Before delving into the details of the general model where the firm has
multiple rounds of growth options and leverage choices, we first provide
explicit solutions for the one-growth-option setting in Subsection 3.1
and then highlight important economic insights in Subsection 3.2.
Importantly, we show that this simple one-growth-option setting yields
novel insights that can only be obtained by jointly analyzing the firm’s
investment and default decisions.

3.1 Closed-form solution

When the firm has only one growth option, we obtain closed-form for-
mulas for the joint investment, leverage, and default decisions. Our one-
growth-option setting can be viewed as a model setting, where McDonald
and Siegel (1986), the seminal real-options model in a Modigliani-Miller
world, meet Leland (1994), the classic contingent-claim tradeoff model of
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capital structure. The following proposition summarizes the main
results.19

Proposition 1

The firm’s investment decision follows a stopping time rule
Ti
1 ¼ infft : YðtÞ � Yi

1g, where the investment threshold Yi
1 is given by

Yi
1 ¼ 1þ

1

h

�

1� �

� �� ��1
Yae

1 ; ð37Þ

where the constant h is given in Equation (33) and Yae
1 is the all-equity

investment threshold given in Equation (5). The default time Td
1 is given

by Td
1 ¼ infft4Ti

1 : YðtÞ � Yd
1g, where the default threshold Yd

1 is given by
Yd

1 ¼ Yi
1=h < Yi

1. The optimal coupon C�1 for debt issued at the
investment time Ti

1 is given by

C�1 ¼
r

1� �

�2 � 1

�2

� �
�1

�1 � 1

� �
hþ

�

1� �

� ��1
I1: ð38Þ

Firm value V1ðYÞ (after investing at Ti
1) is given by

V1ðYÞ ¼ A1ðYÞ þ
�C�1
r
� �AA1ðY

d
1Þ þ

�C�1
r

� �
Y

Yd
1

� ��2
; Y � Yd

1: ð39Þ

Firm (equity) value E0ðYÞ (before investing at Ti
1) is given by

Equation (30).

We make the following observations. The investment threshold Yi
1, the

default threshold Yd
1, and the optimal coupon C�1 are all proportional to

the investment cost I1. At investment time Ti
1, equity value E1ðY

i
1Þ, debt

value D1ðY
i
1Þ, and firm value V1ðY

i
1Þ are all proportional to the invest-

ment cost I1. This implies that the market leverage at the moment of
investment Ti

1;D1ðY
i
1Þ=V1ðY

i
1Þ is independent of the size of the investment

cost I1. Next, we turn to the model analysis.

3.2 Model analysis and insights

One of the most important results of real-options analysis is that both the
investment hurdle and option value increase with volatility (by drawing
the analogy to the standard Black-Scholes-Merton option pricing
insight.) We show that debt financing invalidates this well-known result

19 Mauer and Sarkar (2005) derive similar results for the one-growth-option setting. Their focus on the
results and economic interpretations is very different. We derive explicit formulae and provide explicit
link between investment and default thresholds, while they do not. They contain operating leverage
(variable production costs), and we do not.
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in the real-options literature, in that the value of growth option may
decrease with volatility. The intuition is as follows. Before debt financing
and exercising the growth option, the firm is a growth option. What is the
underlying asset for this growth option? Unlike in the standard real-
options setting such as McDonald and Siegel (1986), the value of the
underlying asset is given by the sum of (i) the value of the “unlevered”
equity and (ii) the (stochastic annuity) value of tax shields (prior to
default) minus (iii) the present value of financial distress because of equi-
tyholders’ optimal exercising of the ex post default option as in Leland
(1994). The underlying asset value, given by the sum of these three com-
ponents of the firm’s value, is therefore concave in Y as we have
shown (because of the short position in the inefficient liquidation loss.)
Therefore, increasing volatility may lower the payoff value from growth-
option exercising. This negative effect on the payoff (upon the real-option
exercising) partially mitigates the standard positive-volatility effect on the
real-option value, causing the total effect of volatility � on the firm’s
option value E0ðYÞ to be non-monotonic.

Figure 2 highlights these two opposing effects of volatility � on the
option value E0ðYÞ. Panel A shows that the option value E0ðYÞ is increas-
ing in volatility � for sufficiently low values of Y (e.g., Y¼ 0.05). In this
case, the standard real-option positive-volatility effect on the option
value dominates, because the option value is deep out of the money
and hence the standard real-option convexity argument applies.
However, as Y increases, the growth option becomes sufficiently in the
money. In this case, the standard real-option volatility effect becomes less
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Figure 2

Two opposing effects of volatility on the firm’s option value E0ðYÞ.
Panel A pots the monotonic relation of E0ðYÞ in � for Y¼ 0.05. However, for a higher value of Y where
the growth option is deeper in the money, we find that volatility � has a non-monotonic relation on the
value of real option E0ðYÞ. Panel B shows that E0ðYÞ first decreases and then increases with � for Y¼ 0.1.
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important compared with the negative effect of volatility on the option-
exercise payoff becomes more important. As a result, we see that the
option value E0ðYÞ is non-monotonic in volatility � in Panel B of
Figure 2, where Y¼ 0.1 is sufficiently large. For our example, we find
that E0ðY ¼ 0:1Þ decreases in � for values of � < 0:23 and increases in �
for �40:23 (i.e., when volatility is sufficiently high).20

Next, we turn to the volatility effects on the investment threshold Yi
1 and

the default threshold Yd
1. Panel A of Figure 3 shows that the investment

hurdle Yi
1 is increasing with volatility �, which can be shown by using the

closed-form solution (37). Moreover, this result is consistent with the stan-
dard real-options intuition that the higher the volatility �, the longer the
firm waits before investing, and hence a higher threshold Yi

1 is the result.
However, the default threshold Yd

1 is non monotonic in � as shown in
Panel B of Figure 3 because the two opposing effects of volatility on the
firm’s default threshold Yd

1. First, for a given value of Y0, Leland (1994)
and Goldstein, Ju, and Leland (2001) show that the default threshold Yd

1

decreases with �, consistent with the standard real-option result, despite an
intuitive but involved argument.21 The dashed line in Panel B of Figure 3
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Figure 3

Volatility effects on the investment threshold Yi
1 and the default threshold Yd

1.
This figure shows that even though the investment threshold Yi

1 is monotonically increasing in � as in
standard real-option models, the default threshold Yd

1 is non-monotonic in � unlike in the standard
contingent-claim tradeoff model of capital structure due to the endogenous choice of the investment
threshold Yi

1. To demonstrate the endogenous investment threshold effect on Yd
1, we plot the dashed line

in Panel B, which corresponds to the default threshold in Leland (1994), where leverage is chosen at time
zero at a fixed value of Y0 for all values of volatility �. For the Leland case, we set Y0 ¼ 0:07, which is the
optimal investment threshold for the case with � ¼ 10% in our one-growth-option setting (i.e.,
Yi

1ð� ¼ 0:1Þ ¼ Y0 ¼ 0:07).

20 Miao and Wang (2007) show the opposing effects of volatility on real options in an incomplete-markets
setting where the entrepreneur cannot fully diversify the idiosyncratic risk of the underlying project.

21 To be precise, in Leland (1994), volatility � also has two opposing effects on the default threshold
Yd

1. Given coupon C, the higher the volatility �, the lower the default threshold due to the standard
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shows the monotonically decreasing function of Yd
1 in volatility �. Second,

as debt coupon C is chosen at the moment when the firm exercises its
growth option and the optimal investment threshold Yi

1 is increasing in
volatility � as shown in Panel A, the firm’s optimal debt coupon C is also
increasing with �, thus providing a channel for the default boundary Yd

1 to
potentially increase with �. Combining the standard Leland mechanism
with the newly introduced channel (via the endogenous Yi

1 at which the
firm issues debt), we see that the default threshold Yd

1 first decreases in �
(when the Leland mechanism dominates) but then increases in � as the
investment threshold Yi

1 significantly increases.
Our results, that real option value does not necessarily increase with

volatility and the timing of exercising (default/put) options may not
decrease with volatility are more than theoretical possibilities. Indeed,
we think that our results have important practical implications for
firms’ capital budgeting. Growth option/capital investments are often
financed by a mixture of debt and equity, but current real-options-
based capital budgeting recommendations covered in standard MBA
textbooks and practitioners’ journals hold only under all-equity-financed
firms. When the M&M theorem does not hold and there is room for debt
financing, we need to be careful in providing real-option-style capital-
budgeting recommendations. It is no longer clear that we should empha-
size the positive effect of volatility on the value of real options nor should
we emphasize that the higher the volatility, the longer we should wait
before exercising the real options.

Having analyzed the two benchmarks, we next turn to the feedback
effects between investment and financing when the firm has multiple
rounds of growth options.

4 Analysis for the General Model

To highlight the rich interactions between a firm’s investment and finan-
cing decisions over its life cycle, we first analyze the two-growth-option
setting (N¼ 2), and then generalize our model to settings with multiple
growth options (e.g., N ¼ 3; 4; 5; 6).

4.1 Parameter choices

For the baseline calculation, we use the following annualized parameter
values summarized in Table 1. As in Leland (1994) and the follow-up
dynamic capital structure literature, we choose the risk-free interest rate

real-option convexity argument. However, coupon C is endogenous. Indeed, the higher the volatility �,
the lower the debt coupon C. Therefore, the second (endogenous coupon) effect mitigates the first option
effect on the default threshold Yd

1, but the overall, the standard real-option effect still dominates the
endogenous coupon effect causing the firm’s default threshold Yd

1 to decrease with �.
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r¼ 0.05, the expected growth rate � ¼ 0:01, annual volatility � ¼ 0:2,
and the effective tax rate � ¼ 0:2. The default cost parameters are �A ¼
0:25 for assets in place and �G ¼ 0:5, implying that the recovery rate for
assets in place is 75% of the unlevered asset value and 50% for the
(unlevered) unexercised growth option value, respectively. Whenever
applicable, all parameter values are annualized.

Without loss of generality, we normalize the cost of exercising the
growth option to unity, in that In¼ 1, for all stages 1 � n � N. Instead
we capture the net value of each sequential growth option via the the
production capacity (the rate at which output is generated from each
asset in place) mn. We normalize the production capacity in the first
stage to be unity, m1 ¼ 1, and decrease the production capacity mn at
an exponential rate (i.e., mn ¼ mn�1 � ð1� gnÞ). We choose gn ¼ 0:2 for
n ¼ 2; 3; . . . , which implies that the profitability of each new asset in
place decays at 20%. Therefore, m2 ¼ 0:8 and m3 ¼ 0:82 ¼ 0:64;
m4 ¼ 0:83, and m5 ¼ 0:84.

4.2 The settings with N¼ 1, 2, 3 growth options

Our framework is general enough that we can allow the firm to have
multiple growth options. Earlier, we treated the case of a firm with two
growth options. We now extend our analysis to the case of a firm that has
three growth options. Panels A, B, and C in Table 2 report the firm’s
decisions in three models (with 1, 2, and 3 growth options in total,
respectively.)

One growth option (N¼ 1). Panel A of Table 2 summarizes the closed-
form solution for the one-growth-option setting (N¼ 1 and
m1 ¼ 1; 0:8; 0:64). First, we analyzes the baseline case with m1 ¼ 1. The
firm optimally chooses to invest when Y exceeds Yi ¼ 0:099, and defaults
when its earning Y falls below Yd ¼ 0:038. When exercising its growth
option at Yi ¼ 0:099, the firm issues perpetual risky debt with coupon
rate C¼ 0.082 at a credit spread of 108 basis points. The implied initial
leverage is 62.1%. For lower production capacity m1, the firm chooses a
higher investment threshold and also a higher default threshold. For the
case with m1 ¼ 0:8, we have Yi ¼ 0:124 and Yi ¼ 0:047, and for the case
with m1 ¼ 0:64, we have Yi ¼ 0:155 and Yi ¼ 0:059. Importantly, the
production capacity has no effect on the optimal coupon C and leverage.

Table 1

Parameter values (annualized whenever applicable)

r � � � In mn �A �G

0.05 0.2 0.01 0.2 1 0:8n�1 0.25 0.5
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This is due to the endogenous adjustment of investment and default
thresholds such that the firm achieves its optimal leverage ratio at
62.1% at the moment of debt issuance.

Two growth options (N¼ 2). Panel B of Table 2 reports the results for
the two-growth-option setting. First consider the decision rules in the
second (last) stage. After the first debt is in place, the firm exercises its
second growth option when its earning exceeds Yi

2 ¼ 0:126, larger than
0.124, the investment threshold for the setting with N¼ 1 and m1 ¼ 0:8
(see Panel A and B of Table 2). This reflects the effect of debt overhang,
in that the firm exercises its investment option later than an otherwise
identical firm with this stand-alone growth option (with m1 ¼ 0:8) does.
The cost of exercising the second growth option is higher now because the
equityholders need to call back the existing debt at par, which potentially
involves the wealth transfer to creditors.22 However, conditioning on
calling back the existing debt and exercising the growth option, equity-
holders optimally choose their leverage and maximize the firm value
going forward. This again gives rise to 62.1% leverage ratio, the same
level as in the stand-alone one-growth-option setting, which is due to the
scaling invariance property of the leverage ratio for assets in place as in
Leland (1994). Given that the equityholders are investing at a higher
threshold and needs to call back the existing debt, the coupon is naturally
much higher (i.e., C2 ¼ 0:188) than the coupon for stand-alone one-
growth-option setting (i.e., C¼ 0.082). Despite a higher debt coupon,

Table 2

Models where the number of growth options N¼ 1, 2, 3

Stage Production Investment Default Coupon Leverage Credit spreads
capacity m threshold Yi threshold Yd rate C Lev cs (bps)

Panel A. N¼ 1

1st 1 0.099 0.038 0.082 62.1% 108

1st 0.8 0.124 0.047 0.082 62.1% 108

1st 0.64 0.155 0.059 0.082 62.1% 108

Panel B. N¼ 2

1st 1 0.095 0.030 0.077 43.8% 129

2nd 0.8 0.126 0.048 0.188 62.1% 108

Panel C. N¼ 3

1st 1 0.093 0.028 0.080 39.1% 127

2nd 0.8 0.117 0.036 0.156 46.6% 123

3rd 0.64 0.158 0.060 0.319 62.1% 108

This table reports results for three settings with N¼ 1, 2, 3. For the setting with N¼ 1, we consider three
subcases with m1 ¼ 1; 0:8; 0:64. For the setting with N¼ 2, we set m1 ¼ 1 and m2 ¼ 0:8. Finally, for the
case with N¼ 3, we set m1 ¼ 1;m2 ¼ 0:8, and m3 ¼ 0:64.

22 There is another truncation effect that effects the credit-spread calculation, but that effect is dominated.
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the credit risk of the second-stage debt is the same as the one in the stand-
alone one-growth option setting. This is in the spirit of Leland (1994) and
our one-growth-option benchmark result.

Now, we turn to the first-stage decision making and see how the pre-
sence of the second growth option influences the optimal-exercising and
financing decisions of the first growth option. First, note the anticipation
effect of the subsequent debt overhang as we have discussed in the pre-
vious paragraph. Equityholders anticipate future debt overhang and thus
rationally lowers the leverage and take into account the future conflicts of
interest between equityholders and debtholders. This is reflected via a
lower leverage, 43.8%, in stage 1 compared with 62.1% in stage 2.
Moreover, the presence of the second growth option raises the firm’s
debt capacity. Therefore, benefits from exercising the first growth
option are higher in the two-growth-option setting than in the stand-
alone one-growth-option setting with m1 ¼ 1. Therefore, in the two-
growth-option setting, the payoffs from investing in the first round are
greater, and hence the firm optimally invests earlier (i.e., Yi

1 ¼ 0:095
compared with Yi

1 ¼ 0:099 for the stand-alone one-growth-option setting
with m1 ¼ 1). Additionally, the firm defaults later, as we can see from
Yd ¼ 0:03, which is lower than 0.038 for the setting with N¼ 1 and
m1 ¼ 1.

Three growth options (N¼ 3). Here, we show that the exercising timing
decisions for early-rounds growth options are even earlier with more
growth options in the future. One effect of having more future-growth
options is that the firm can raise more debt against future cash flows,
which effectively raises the firm’s immediate ability to issue debt and
makes investment more attractive. This explains the result that Yi

1

¼ 0:093 in three-growth-option setting, which is lower than Yi
1 ¼ 0:095

in the two-growth-option setting. Additionally, the leverage chosen by
the firm when it exercises its first growth option is now lowered to 39.1%
from 43.8%. We see the pattern for eventual convergence as we increase
the number of growth options.

By comparing our results for the two-growth-option setting with those
for the three-growth-option setting, we see that quantitatively the three-
growth-option problem can be “somewhat approximately” decomposed
into two two-growth-option optimization problems. The intuition is as
follows. The additional effect of current growth-option exercising and
financing effect on any future growth-option exercising and financing
decisions beyond the immediate one is quantitatively less significant.
Using this logic, we may simplify an N-stage growth-option exercising/
financing problem into ðN� 1Þ two-growth-option exercising problem.
Of course, our approximation based on the economic insight only
holds for growth options that are sufficiently close to each other.
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For growth options that are somewhat different from each other, our
insights for this approximation may work better if we decompose the
N-growth option problem into a collection of three-growth-option
problems. Based on what we have shown and also what we will show
in the following subsection, we conjecture that for some sophisticated
real-world corporate-investment/financing-decision problem with many
growth options, we may obtain a good understanding at first pass (and
potentially also in terms of quantitative analyses) by using a tractable and
plausible setting with only a few growth options (perhaps as few as three
or four.)

4.3 Multiple growth options

In principle, we can extend our analysis to treat a firm with any number,
N, of growth options. Such a treatment will allow us to see, how a firm
optimally decide on its dynamic leverage strategy, while taking into its
cognizance that it may have to issue additional debt to finance future
growth options. Intuitively, we would expect such a firm to start with
fairly low to moderate levels of debt in its early stages and slowly ramp up
the debt level, By doing so, the firm can mitigate the debt-overhang
effects on its growth options in earlier stages, and exploit its steadier
cash flows from assets in place to service a higher level of debt in its
later stages.

4.3.1 N growth options. In Table 3, we present the investment thresh-
olds Yi

1, default thresholds Y
d
1, the optimal coupon rate C1 and optimal

leverage Lev1 when the firm is in its first stage and at the the moment of
exercising its first growth option, in six setting where the firm faces one to
as many as six growth options into the future. Note that the first growth
option in all cases has the identical parameter values. Thus, the differ-
ences in these models only arise from the future growth options and
assets in places across them.

Table 3

The first-stage decisions in models with N growth options

Model with N Investment Default Coupon Leverage
growth options threshold Yi

1 threshold Yd
1 rate C1 ratio Lev1

1 0.099 0.038 0.082 62.1%

2 0.095 0.030 0.077 43.8%

3 0.093 0.028 0.080 39.1%

4 0.093 0.027 0.082 37.0%

5 0.092 0.026 0.083 35.3%

6 0.092 0.026 0.083 34.5%

This table reports the first-stage decisions in a model with N growth options.
We increase N from 1 to 6. Our parameter values are m1 ¼ 1;m2 ¼ 0:8;
m3 ¼ 0:64;m4 ¼ 0:512;m5 ¼ 0:410, and m6 ¼ 0:328. Others are reported in
Table 1.
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It is worth making the following observations. First, the investment
threshold Yi

1 monotonically decreases from Yi
1 ¼ 0:099 for the case with

N¼ 1 to Yi
1 ¼ 0:092 for the case with N¼ 6. Intuitively, the additional

benefit of not distorting future investment options in models with more
growth options (a higher value of N) encourages the firm to exercise its
growth options in earlier stages sooner. Second, the optimal leverage level
Lev1 decreases from 62.1% for the case with N¼ 1 to 34.5% for the case
with N¼ 6. This partly reflects the debt conservatism as the firm worries
about the debt-overhang costs in the future if leverage is too high. Third,
a firm with more growth options tends to default at a much later point
than a firm with fewer growth options. For example, the default thresh-
old Yd

1 decreases from Yd
1 ¼ 0:038 for the case with N¼ 1 to Yd

1 ¼ 0:026
for the case with N¼ 6. This makes intuitive sense: for the firm with many
growth options, the cost of default should include the forgone opportu-
nities associated with the loss of all future growth options, and hence the
firm chooses to default much later in the case with N¼ 6 than that with
N¼ 1, in line with the predictions from the leverage pattern that we
discussed earlier.

To reiterate, leverage, default, and investment thresholds in early
stages all monotonically decrease as the firm has more growth options.
This life-cycle pattern driven by the endogenous composition between
growth options and assets in place is important. Quantitatively, in our
model with N¼ 3 or more growth options, we obtain leverage in the
empirically plausible range of 1/3 for U.S. corporations. Moreover, the
optimal investment and default, as well as coupon decisions, essentially
all converge as we increase the number of growth options to six (i.e.,
N¼ 6). Intuitively, the additional growth option (most likely to be exer-
cised in the distant future if the firm has not defaulted by then) has little if
any effect on the decision making in stage 1 because of the discounting
effect.

4.4 Growth-option liquidation recoveries ð1� gGÞ and leverage

Growth options and assets in place generally have different recoveries
during the liquidation process. Intuitively, growth options tend to have
lower debt capacity than assets in place, for various reasons, such as
different degrees of tangibility and also inalienability of human capital
embedded in growth options. To capture this important feature and
analyze its effect on leverage, we allow for growth options and assets
in place to have different recovery rates in liquidation. For simplicity,
we have assumed that the recovery value of an unexercised growth option
is equal to a constant fraction, ð1� �GÞ, of GkðYÞ given by Equation (4),
which is the value for an otherwise identical (all-equity) stand-alone
growth option.
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In this section, we explore the comparative static effects of varying
liquidation loss parameter �G on leverage. First, we recall that in our
baseline case (reported in Table 1), we fix the liquidation loss parameter
for assets in place, �A, to be 25% and the loss parameter for growth
options, �G, to be 50%. That is, the recovery value for growth option
is 50% of its market value (if it were stand-alone and all-equity financed),
which is significantly smaller than the recovery value for assets in place,
which is 75% of its market value (if it were stand-alone and all-equity
financed.)

Next, in Table 4, we report leverage in the first stage by considering
four values for the growth-option liquidation-loss parameter �G: 25%,
50% (baseline case), 75%, and 100%. First, we note that for the case with
only one growth option (i.e., N¼ 1), the parameter �G has no effect on
leverage choice because the only growth option has already been exer-
cised at the moment of debt financing and hence changing the effect o �G
cannot have any effect on leverage. Second, the higher the loss parameter
for the growth option, �G, the more costly the firm’s default is, and hence
the lower the leverage. For all five cases with N � 2 where the firm still
has un-exercised growth options after making the first leverage decision,
we see that leverage (in the first stage) clearly decreases with �G. For
example, the first-stage leverage ratio decreases from 45.5% to 41.8%
when �G increases from 0.25 to 1 for N¼ 2.

Third, the first-stage leverage decreases substantially with N.
Intuitively, a firm with more growth options tends to take a lower lever-
age (especially at early stages) in order to mitigate the debt-overhang
burdens in the future. The flexibility of increasing leverage in the future
when the firm has more assets in place is a valuable option for the firm.23

Table 4

Effects of liquidation loss parameter gG on leverage

Model with N �G ¼ 0:25 �G ¼ 0:5 �G ¼ 0:75 �G ¼ 1

1 62.1% 62.1% 62.1% 62.1%

2 45.5% 43.8% 42.6% 41.8%

3 40.1% 39.1% 38.0% 36.9%

4 37.6% 37.0% 36.5% 35.9%

5 35.9% 35.3% 34.8% 34.2%

6 34.9% 34.5% 33.8% 33.2%

This table reports the effect of the growth-option liquidation-loss parameter, �G,
on leverage in the first stage for models with N growth options, where N ranges
from 1 to 6. The liquidation loss parameter for assets in place, �A, is fixed at 0.25
for all six models. Note that the recoveries of assets in place are weakly greater
than the recoveries of growth options for all six models. Other parameter values
are reported in Table 1.

23 Additionally, by construction, a firm with more growth options in our model also has more financing
options as we require the firm to choose leverage when exercising a growth option. However, quantitatively,
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In a model with informational asymmetry and real options, Fulghieri,
Garcia, and Hackbarth (2013) show that high-growth firms may prefer
equity over debt, and then switch to debt financing as they mature. Their
predictions under a different model formulation are in line with our
model’s prediction in that leverage increases over the firm’s life cycle in
our model, as the firm sequentially exercises its growth options and
becomes one with more assets in place.

Does a firm with more growth options have a larger leverage response
to the change of �G? The answer is not obvious. For example, for the case
with N¼ 2, leverage in the first stage decreases from 45.5% to 41.8% by
3.7%, and for the case with N¼ 6, it decreases from 34.9% to 33.2% by
1.7% as we decrease recovery, 1� �G, from 75% to zero. It is not easy to
assess the significance of this difference (3.7% versus 1.7%).

5 Alternative Debt Structures

In our baseline model, we assume that the existing debt is called back and
new debt is issued when the firm exercises its growth option. In reality,
we often see different types of debt in terms of seniority and priority
coexisting. To analyze the effects of debt seniority and priority, we
next consider two widely used alternative debt structures: the APR and
the pari passu structure. For simplicity, we only consider the cases with
two rounds of growth options.

5.1 Formulation and solution under alternative debt structures

Let c1 and c2 denote the coupon rate on the first and second perpetual
debt, respectively. And let Df

2ðYÞ and Ds
2ðYÞ denote the market value of

the first debt and that of the second debt issued at the second investment
time Ti

2, respectively. These debt values (after the second growth option is
exercised (i.e., t � Ti

2)) are given by

Df
2ðYðtÞÞ ¼ E

"Z Td
2

t

e�rðs�tÞc1dsþ e�rðT
d
2
�tÞDf

2ðYðT
d
2ÞÞ

#
; Ti

2 � t � Td
2;

ð40Þ

given that it is not uncommon that investment and financing take place at the same time or within very
close time window, this approximation (of tying a firm’s investment and financing decisions at the same
time) appears a second-order issue for a firm that has recurrent and sufficiently regular investment
opportunities. Put differently, the additional flexibility of having a timing for financing different from
that for investment may have a second-order effect on firm value (at least for some parameter values).
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Ds
2ðYðtÞÞ ¼ E

"Z Td
2

t

e�rðs�tÞc2dsþ e�rðT
d
2
�tÞDs

2ðYðT
d
2ÞÞ

#
; Ti

2 � t � Td
2;

ð41Þ

where the residual values of the first and second debt, Ds
2ðYðT

d
2ÞÞ and

Df
2ðYðT

d
2ÞÞ are given by the debt structures to be discussed later.

The total market value of debt after exercising both growth options is
then given by D2ðYÞ ¼ Df

2ðYÞ þDs
2ðYÞ. Let D1ðYÞ denote the market

value of the first debt after the first growth option is exercised, but
before the second growth option or the first default option is exercised
(i.e., Ti

1 < t < ðTd
1 ^ Ti

2ÞÞ. We have

D1ðYðtÞÞ ¼ E

"Z Td
1
^Ti

2

t

e�rðs�tÞc1dsþ e�rðT
d
1
�tÞD1ðYðT

d
1ÞÞ1Td

1
<Ti

2

þ e�rðT
i
2
�tÞDf

2ðYðT
i
2ÞÞ1Td

1
4Ti

2

#
: ð42Þ

Under the new debt structure, the total coupon level for all outstanding
debt in stage 1 and 2 are C1¼ c1 and C2 ¼ c1 þ c2, respectively. The
valuation for equity remains the same as that in the baseline model,
given the specified coupon levels for all outstanding debt.

When the firm defaults, it splits the recovery values to the first and the
second debt valued at Df

2ðY
d
2Þ and Ds

2ðY
d
2Þ, depending on the debt cove-

nants. Assume that the debt covenants will be strictly enforced by the
court without any deviation. Given these endogenous values at the
chosen default boundary Yd

2, we may write the market value of the sea-
soned debt issued at Ti

1 and that of the second debt issued at Ti
2, before

default at Td
2, as follows:

Df
2ðYÞ ¼

c1
r
�

c1
r
�Df

2ðY
d
2Þ

h i Y

Yd
2

� ��2
; Y � Yd

2; ð43Þ

Ds
2ðYÞ ¼

c2
r
�

c2
r
�Ds

2ðY
d
2Þ

h i Y

Yd
2

� ��2
; Y � Yd

2; ð44Þ

where Df
2ðY

d
2Þ and Ds

2ðY
d
2Þ are valued differently under different debt

structures as we have noted. Thus, the total debt value is D2ðYÞ ¼
Df

2ðYÞ þDs
2ðYÞ. In addition, the total debt value at default D2ðY

d
2Þ is

equal to the total firm’s liquidation value at default, because equity is
worthless at default.

Now we turn to analyze the effect of the debt structure on the financing
decision in different stages. First, consider stage 2. Define Vs

2ðYÞ as the
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sum of equity value E2ðYÞ and Ds
2ðYÞ, the value of debt issued when the

firm exercises its second growth option, in that Vs
2ðYÞ ¼ E2ðYÞ þDs

2ðYÞ.
Using Equation (8) and Equation (44), we have

Vs
2ðYÞ ¼ A2ðYÞ þ

�C2 � C1

r

þ Ds
2ðY

d
2Þ � A2ðY

d
2Þ þ

C1 � �C2

r

� �
Y

Yd
2

� ��2
; Y � Yd

2: ð45Þ

The distinction between V2ðYÞ and Vs
2ðYÞ is essential for our analysis.

Equityholders no longer care about the payoffs to the first-round debt-
holders after collecting the proceeds from the debt issuance at Ti

2. This
creates conflicts of interests between equityholders and the existing (first-
round) debtholders. Equityholders choose the investment threshold Yi

2

and the coupon policy c2 to maximize Vs
2ðYÞ, not V2ðYÞ. The first debt

issued at Ti
1 to finance the exercise of the first growth option generates a

debt-overhang problem and distorts the exercising decision for the second
growth option. Of course, the first-round debtholders anticipate the equi-
tyholders’ incentives in stage 2 and hence price the debt accordingly in
stage 1 at the moment of debt issuance. As a result, equityholders even-
tually bear the cost of this debt overhang induced by debt issued in stage
1. Unlike most papers in the literature on debt overhang, the amount of
preexisting debt and hence the severity of debt-overhang in our model is
determined endogenously. We show that different debt structures affect
the debt overhang problem in different ways.

Next, we consider two commonly used debt structures: the absolute
priority rule (APR) and the pari passu structure.

5.2 Absolute priority rule

The long maturity of debt allows us to generate debt overhang in a
convenient way (Myers 1977; Hennessy 2004). Because debt is perpetual
and not callable, the first debt continues to exist even after exercising the
second growth option.

Now, we consider the APR. For expositional simplicity and concrete-
ness, we assume that the first debt has seniority over the second debt,
unless otherwise noted. Smith and Warner (1979) document that 90.8%
of their sampled covenants contain some restrictions on future debt issu-
ance. As in Black and Cox (1976), at default, the junior debtholders will
not get paid at all until the senior debtholders are completely paid off.
At the second default threshold Yd

2, the senior debtholders collect

Df
2ðY

d
2Þ ¼ minfF1; ð1� �AÞA2ðY

d
2Þg; ð46Þ

where F1 is the par value of the first debt and is equal to F1 ¼ D1ðY
i
1Þ.
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The payoff Function (46) states that either the senior debtholders receive
F1 at T

d
2 or collect the total recovery value of the firm ð1� �AÞA2ðY

d
2Þ at

Td
2. It is immediate to see that under this seniority structure, the junior

debt value at default time Td
2 is given by

Ds
2ðY

d
2Þ ¼ maxfð1� �AÞA2ðY

d
2Þ � F1; 0g: ð47Þ

Let F2 denote the par value of the second debt issued at Ti
2. The second

debt is also issued at par, and thus we have F2 ¼ Ds
2ðY

i
2Þ. Equityholders

receives nothing at default, and hence in equilibrium we have
ð1� �AÞA2ðY

d
2Þ � F1 þ F2. Even when the senior debtholders receive

par F1 at default time Td
2, senior debtholders still prefer that the firm

does not default. This is intuitive, because the par value F1 < C1=r.
Debt seniority structure matters not only for payoffs at default bound-

aries Yd
2 as in Black and Cox (1976), but also for the real investment and

financial-leverage decisions. The costs and benefits of issuing debt depend
on the seniority and payoff structures. Moreover, the equityholders’
interests and incentives also change over time and after each financing
and investment decisions. How equityholders’ incentives change over
time naturally depends on the debt seniority structure.

5.3 Pari passu
Now, we turn to another debt structure, pari passu, which requires that
debt issued at Ti

1 and that issued at Ti
2 have equal priority in default at

stochastic time Td
2. The total debt recoveries at default ðY ¼ Yd

2Þ are
proportional to ð1� �AÞA2ðY

d
2Þ, the total liquidation value of the firm.

Because both types of debt are perpetual, the residual values at the
default threshold Yd

2 are thus given by

Df
2ðY

d
2Þ ¼

c1
c1 þ c2

ð1� �AÞA2ðY
d
2Þ; ð48Þ

Ds
2ðY

d
2Þ ¼

c2
c1 þ c2

ð1� �AÞA2ðY
d
2Þ: ð49Þ

Here, we assume that the payments to debtholders are based on the debt
values at the second investment time Ti

2. This assumption captures the
key feature of the pari passu structure, and substantially simplify the
analysis.24

Equityholders choose c2 at stochastic time Ti
2 to maximize Vs

2ðYÞ given
in Equation (45), the sum of equity value E2ðYÞ and newly issued debt
value Ds

2ðYÞ. The following implicit function characterizes the optimal

24 Under this assumption, we do not need to carry the face values F1 and F2 for both classes of debt. A more
realistic way to model pari passu seniority structure is to make the payment at default proportional to the
face values F1 and F2.
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coupon c2 for a given level of the first coupon c1:

c2 ¼ �c1 þ
r

r� �

�2 � 1

�2

� �

1

h
1�

�2
�2 � 1

��1 � �2ð1� �A þ �A=�Þ

1� �2ð1� �A þ �A=�Þ

� �
c1

c1 þ c2

� �1=�2
M2Y

i
2:

ð50Þ

5.4 The effects of debt structures

Table 5 reports the effects of debt structures on investment and default
decisions, optimal coupon and leverage choices, and the equilibrium
credit spread.25 We compare the results from the three debt structures:
APR, pari passu, and our baseline case (where new debt is only issued if
and only if existing debt is retired and paid back in full.)

First, we note that debt structures have significant implications on the
second growth-option exercising timing. The investment threshold Yi

2 ¼

0:138 under the APR, which is significantly larger than Yi
2 ¼ 0:126 under

our baseline case, which in turn is also significantly larger than Yi
2 ¼

0:115 under the pari passu case. This sequencing is consistent with our
intuition. As APR offers the strongest protection for the existing
debtholders, the debt-overhang problem is most severe, and hence the
investment threshold is the largest among the three. pari passu gives
the most favorable seniority treatment for the new debt, and hence the

Table 5

The effects of debt structures

Stage Production Investment Default Coupon Leverage Credit spreads
capacity m threshold Yi threshold Yd rate C Lev cs (bps)

Panel A. Baseline

1st 1 0.095 0.030 0.077 43.8% 129

2nd 0.8 0.126 0.048 0.188 62.1% 108

Panel B. APR

1st 1 0.096 0.031 0.079 48.8% 75

2nd 0.8 0.138 0.044 0.173 54.8% 82

Panel C. pari passu

1st 1 0.096 0.017 0.041 23.7% 120

2nd 0.8 0.115 0.053 0.208 71.1% 151

This table reports results for three commonly used debt restructures: the baseline, APR, and pari passu.
We set m1 ¼ 1 and m2 ¼ 0:8 for a model with N¼ 2.

25 Hackbarth and Mauer (2012) also study the priority-structure choice by considering the trade-off
between pari passu and APR.
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equityholders are least concerned about the debt-overhang burden caus-
ing the investment threshold to be even lower than our baseline case.

Second, the optimal leverage Lev and coupon rate C also reflect the
severity of debt overhang that depends on the underlying debt structure.
Intuitively, as APR offers the strongest protection for the existing debt
and pari passu offers least protection for debt issued in the first stage, the
second-stage leverage and coupon rate are the lowest under APR (54.8%
and 0.173, respectively) and the highest under pari passu (71.1% and
0.208, respectively). Because of the anticipated debt-overhang problem
in the second stage, the equityholders choose the first-stage leverage and
debt coupon in the reverse order, in that leverage and coupon in stage 1
are the highest under APR (48.8% and 0.079) and the lowest under pari
passu (23.7% and 0.041).

Third, the protection of the existing debt also implies that credit spread
for the risky debt is lowest under APR and highest under pari passu in
stage 2.

In summary, we find that debt structures have substantial effect on
investment timing decisions and leverage through the life cycle of the
firm mostly through the important endogenous debt-overhang channel.

6 Conclusions

Our paper provides an integrated framework for thinking about multiple
rounds of sequential investments simultaneously with dynamic financing.
Our modeling approach is tractable and provides a coherent way to think
about a complex, dynamic problem that is at the heart of both invest-
ments theory and dynamic financing. Importantly, we show that the firm
substantially lower its leverage in order to take advantage of its growth
options going forward, and indeed we obtain empirically plausible lever-
age (around 1/3) with as few as three growth options. Besides providing a
natural way to model the life cycle of the firm, our model also highlights
the need to distinguish between the residual values of “assets in place”
and that of remaining live-growth options upon default.

In addition, we find that debt seniority and debt priority structures
have conceptually important and quantitatively significant implications
on growth-option exercising and leverage decisions, because different
debt structures (e.g., APR versus pari passu) have very different endo-
genous debt-overhang implications.

Finally, mainly for tractability reasons, we have assumed that finan-
cing and investment timing decisions coincide and also side-stepped
from some important frictions that may influence a firm’s financing
and investment decisions over its life cycle. We see generalizing our
model to separate investment and financing decisions as a natural
next step. More broadly, we expect that future research will incorporate
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important frictions, such as dynamic corporate liquidity considerations,
contractual frictions because of moral hazard, and informational fric-
tions, into a corporate life cycle framework similar to ours. Over the
last decade or so, we have seen significant progress in the development
of dynamic corporate finance models that can be structurally estimated,
such as Hennessy and Whited (2005, 2007). We have also seen a fast
growing dynamic financial contracting literature, including DeMarzo
and Fishman (2007), DeMarzo and Sannikov (2006), and DeMarzo
and others (2012). Our model builds on the classic McDonald-Siegel-
Leland contingent-claims real-options framework. We expect to see fruit-
ful cross-overs among the three different but highly complementary
approaches from which researchers can draw to further deepen our
standing of the dynamics of corporate financial and investment decision
making. For example, Asvanunt, Broadie, and Sundaresan (2007) and
Bolton, Wang, and Yang (2014) study the effect of liquidity on real
option decisions and valuation.

A Appendix

We provide derivations and proofs for various results used in the main text.

A.1 Derivations of Main Results in Section 2
We solve the firm’s decision problem and its valuation equations for debt, equity, and firm

using backward induction. First, note that the decision problem in the last stage is the

standard model analyzed in Leland (1994).

A.2 The Final Stage (Stage N)

A.2.1 Equity pricing. Using the standard valuation argument, we may value equity

ENðYÞ using the following ordinary differential equation (ODE):

rENðYÞ ¼ ð1� �ÞðMNY� CNÞ þ �YE
0
NðYÞ þ

�2

2
Y2E

00

NðYÞ; Y � Yd
N; ðA:1Þ

subject to the following conditions at the endogenously chosen default boundary Yd
N:

ENðY
d
NÞ ¼ 0; ðA:2Þ

E0NðY
d
NÞ ¼ 0: ðA:3Þ

The value-matching (A.2) states that equity value is zero when equityholders default. The

smooth-pasting (A.3) implies that equityholders optimally choose the default boundary Yd
N.

Moreover, the default option is completely out of money when Y approaches 1.

A.2.2 Debt pricing. Similarly, using the standard valuation argument, we may value

debt DNðYÞ using the following ODE:

rDNðYÞ ¼ CN þ �YD
0
NðYÞ þ

�2

2
Y2D

00

NðYÞ; Yd
N � Y; ðA:4Þ
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subject to the following conditions:

DNðY
d
NÞ ¼ LNðY

d
NÞ; ðA:5Þ

lim
Y!1

DNðYÞ ¼
CN

r
: ðA:6Þ

A.3 Intermediate Stages (Stage ðN� 1Þ to Stage 1)
Now consider the firm’s intermediate stage n, where 1 < n < N. Given the default threshold

Yd
n and the investment threshold Yi

nþ1, we may write down equity value as in Equation (19),

using �i
nðYÞ and �d

nðYÞ, which are the present discounted value of receiving a unit payoff

contingent on the ðnþ 1Þ-th growth option exercised before the firm defaults at Td
n or not,

respectively. Formally,

�i
nðYÞ ¼ Et½e

�rðTi
nþ1
�tÞ1Td

n4Ti
nþ1
�; and �d

nðYÞ ¼ Et½e
�rðTd

n�tÞ1Td
n<T

i
nþ1
�; ðA:7Þ

where 1Td
n4Ti

nþ1
and 1Td

n<T
i
nþ1

are the indicator functions. If Td
n4Ti

nþ1, we have 1Td
n4Ti

nþ1
¼ 1:

Otherwise, 1Td
n4Ti

nþ1
¼ 0: It is important to see that

�d
nðY

d
nÞ ¼ �i

nðY
i
nþ1Þ ¼ 1;�d

nðY
i
nþ1Þ ¼ �i

nðY
d
nÞ ¼ 0, and �d

nðYÞ40;�i
nðYÞ40, for

Yd
n < Y < Yi

nþ1.

Using the equity value Formula (19) and the firm value Formula (24), we have

YE0nðYÞ ¼ AnðYÞ þ ein�
i0
nðYÞYþ edn�

d0
n ðYÞY; ðA:8Þ

YV0nþ1ðYÞ ¼ Anþ1ðYÞ þ vinþ1�
i0
nþ1ðYÞYþ ednþ1�

d0
nþ1ðYÞY: ðA:9Þ

Applying the smooth pasting condition E0nðY
i
nþ1Þ ¼ V0nþ1ðY

i
nþ1Þ to (A.8) and (A.9) gives

1� �

r� �

� �
mnþ1Y

i
nþ1 ¼ �1ðY

i
nþ1Þ

�1
einðY

d
nÞ
�2 � ednðY

i
nþ1Þ

�2

�n
�
vinþ1ðY

d
nþ1Þ

�2 � vdnþ1ðY
i
nþ2Þ

�2

�nþ1

" #

� �2ðY
i
nþ1Þ

�2
einðY

d
nÞ
�1 � ednðY

i
nþ1Þ

�1

�n
�
vinþ1ðY

d
nþ1Þ

�1 � vdnþ1ðY
i
nþ2Þ

�1

�nþ1

" #
:

ðA:10Þ

Similarly, the smooth pasting condition E0nðY
d
nÞ ¼ 0 gives

0 ¼ AnðY
d
nÞ þ �1ðY

d
nÞ
�1
einðY

d
nÞ
�2 � ednðY

i
nþ1Þ

�2

�n
� �2ðY

d
nÞ
�2
einðY

d
nÞ
�1 � ednðY

i
nþ1Þ

�1

�n
: ðA:11Þ

For given investment threshold Yi
nþ1 and default threshold Yd

n in stage n, debt value Dn

ðYÞ solves the following ODE:

rDnðYÞ ¼ Cn þ �YD
0
nðYÞ þ

�2

2
Y2D

00

nðYÞ; Yd
n � Y � Yi

nþ1; ðA:12Þ

subject the following boundary conditions:

DnðY
d
nÞ ¼ LnðY

d
nÞ; ðA:13Þ

DnðY
i
nþ1Þ ¼ Fn: ðA:14Þ
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Using the ODE (A.12) for debt value DnðYÞ and the corresponding boundary conditions

(A.13) and (A.14), we have the debt value is given by:

DnðYÞ ¼
Cn

r
�

Cn

r
� Fn

� �
�i

nðYÞ �
Cn

r
� LnðY

d
nÞ

� �
�d

nðYÞ; Yd
n � Y � Yi

nþ1: ðA:15Þ

Intuitively, debt value is given by the risk-free debt value Cn=r, minus the present value of

the discount when debt is called back at Ti
nþ1, and minus the present value of the loss when

the firm defaults at Td
n. Because debt is priced at par Fn at issuance time Ti

n, using the debt

pricing Formula (A.15), we have the par value is given by Equation (23). And then using

Equation (23), debt value DnðYÞ is then given by Equation (22).

Now turn to the firm’s decision making in stage 0. Substituting the conjectured equity

value Equation (30) into the ODE Equation (27) and applying the endogenous default

boundary conditions (28) and (29) give the following implicit equation for the first invest-

ment threshold Yi
1:

A1ðY
i
1Þ ¼

�1
�1 � 1

I1 �
�C1

r
þ

�i0
1ðY

i
1ÞY

i
1 � �1�

i
1ðY

i
1Þ

�1
vi1 þ

�d0
1 ðY

i
1ÞY

i
1 � �1�

d
1ðY

i
1Þ

�1
vd1

� �
:

ðA:16Þ

Simplifying the Equation (A.16) gives Equation (31). Note that we may also obtain the

same results directly using the general Formulation (A.10) with the following properties:

Yd
0 ¼ 0, ed0 ¼ 0; ei0 ¼ V1ðY

i
1Þ � I1, and �0 ¼ ðY

d
0Þ
��2 ðYi

1Þ
�1 .

A.4 Proof of Lemmas 1 and 2
Following the standard real-option analysis (e.g., McDonald and Siegel 1986), the value of

the growth option, GkðYÞ, for a stand-alone investment opportunity with one-time exercise

cost Ik that generates cash flow ð1� �ÞmkY, solves the following ODE:

rGkðYÞ ¼ �YG
0
kðYÞ þ

�2

2
Y2G

00

kðYÞ; Y � Yae
k ; ðA:17Þ

subject to the following boundary conditions

GkðY
ae
k Þ ¼

ð1� �ÞmkY
ae
k

r� �
� Ik; ðA:18Þ

G0kðY
ae
k Þ ¼

ð1� �Þmk

r� �
: ðA:19Þ

In addition, we have the absorbing barrier condition Gkð0Þ ¼ 0 because Y is a GBM pro-

cess. Using the standard guess-and-verify procedure, we obtain the option value

Formula (4) for GkðYÞ for Y � Yae
k , and the growth-option exercise threshold Yae

k given

in Equation (5).

When the firm is all-equity financed and holds a sequence of decreasingly attractive

growth option, the exercising decisions of each option is independent of the exercising

decisions of other options. This is a robust result under all-equity financing. Therefore,

when m1=I14m2=I24 . . .4mN=IN holds, all-equity-financed firm value is given by the sum

of assets in place and unexercised growth options. That is, in stage n, the firm has n existing

assets in place valued at AnðYÞ and N – n unexercised growth options. Each growth option is

valued at GkðYÞ with exercising cost Ik and cash-flow multiple mk. Total firm value is then

given by Equation (35). Note that the growth options are ordered sequentially from the

most attractive (1st growth option) to the least attractive is without loss of generality. See

the main text for discussions on how we may redefine the growth options if the preceding

growth option is more attractive. (For example, if m2=I2 � m1=I1, we can combine the first
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two growth options and relabel the option with exercising cost I1 þ I2 and cash-flow multi-

ple m1 þm2.)

A.5 Proof of Proposition 1
When the firm has only one growth option, by definition, the exercise threshold for the

second growth option is infinite, in that Yi
2 ¼ 1. Therefore, Equation (16) and Equation

(17) imply �i
1ðYÞ ¼ 0 and �d

1ðYÞ ¼ ðY=Y
d
1Þ
�2 , for Y � Yd

1. Since the firm only has one

growth option, we have

vd1 ¼ L1ðY
d
1Þ � A1ðY

d
1Þ þ

�C1

r

� �
¼ � �AA1ðY

d
1Þ þ

�C1

r

� �
: ðA:20Þ

Equation (31) for the first investment threshold Yi
1 thus implies

Yi
1 ¼

1

1� �

r� �

m1

�1
�1 � 1

I1 �
�C1

r

� �
þ
�1 � �2
�1

�AA1ðY
d
1Þ þ

�C1

r

� �
Yi

1

Yd
1

� ��2" #
: ðA:21Þ

The optimal coupon policy is given by

C1 ¼
r

r� �

�2 � 1

�2

1

h
m1Y

i
1: ðA:22Þ

Rearranging and simplifying Equation (A.21) gives the following implicit equation for the

investment threshold:

ð�1 � 1ÞA1ðY
i
1Þ ¼ �1I1 � �1

�C1

r
þ ð�1 � �2Þ

C1

r
�Að1� �Þ

�2
�2 � 1

� �
þ �

� �

¼ �1I1 � �1
�C1

r
þ ð�1 � �2Þ

�C1

r

h��2

1� �2

� �
h�2 ; h�2 ;

¼ �1I1 � ð�1 � 1Þ�
1

h

m1Y
i
1

r� �
;

ðA:23Þ

where the first, second, and third line uses the explicit formulae for Yd
1 as a function of C1

given in Equation (9) (when stage 1 is the last stage (i.e. N¼ 1)), h given in Equation (33),

and coupon C1 given in Equation (A.22), respectively. Finally, re-arranging the last expres-

sion gives Yi
1 in Equation (37). Substituting Equation (37) into Equation (A.22) gives the

coupon policy Equation (38) and the default threshold Yd
1 ¼ Yi

1=h.
If the initial value Y0 is below the investment threshold Yi

1 given in Equation (37),

the firm will wait before investing. Equity value before investment E0ðYÞ is given by

Equation (30).
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