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Abstract

We develop an integrated theory of investment, seasoned equity offerings (SEOs), liquidation, and corpo-
rate savings under uncertainty for a financially constrained firm, which features endogenous growth options, 
abandonment options, and payout policies. Facing costly external financing, the firm prefers to fund its in-
vestment internally, so that its optimal policies and value depend on both its earnings fundamentals and 
liquidity holdings. The firm values not only real flexibility but also financial flexibility. The interaction of 
real and financial flexibility generates novel real options results: (1) Limited financial slack significantly 
erodes the value of growth & abandonment options; (2) Firms prefer projects with front-loaded cash-flows; 
(3) The firm’s incentive to forgo costly external financing and to accumulate internal funds may cause sub-
stantial delay in investment; (4) A financially constrained firm over-invests in early stages of its life-cycle 
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in an effort to quickly build up its cash-flow generating capacity; (5) SEOs are driven by both firm survival 
and growth motives. A firm in the mature phase may find itself in three mutually exclusive regions: payout, 
inaction, and liquidation. A firm in its growth phase may find itself in two additional regions: a region where 
investment is partly financed with an SEO and a region where investment is solely financed with internal 
funds. These regions depend on both firm savings and earnings fundamentals.
© 2019 Elsevier Inc. All rights reserved.

JEL classification: G31; G32; G33; G35; E22; G13

Keywords: Real options; Marginal value of cash; Corporate savings; Costly external financing; Seasoned equity 
offerings; Financial flexibility

1. Introduction

Real-options theory following McDonald and Siegel (1986) and Dixit and Pindyck (1994)
assumes that firms operate in a Modigliani-Miller (MM) environment. This is for a good reason. 
The firm’s investment decision can then be formulated as an American option-exercise and valu-
ation problem that can be solved by using the classical option pricing tools of Black and Scholes
(1973) and Merton (1973).

But, in reality firms operate under imperfect capital markets and face significant external 
financing costs that arise from informational asymmetry, moral hazard, transaction costs, and 
other frictions. In order to avoid incurring these costs too frequently firms optimally retain earn-
ings and attempt to mostly internally finance their investments and cover their operating costs. 
Indeed, according to Chen, Karabarbounis and Neiman (2017), “nowadays nearly two-thirds of 
global investment is funded by corporate saving.” Also the surveys of chief financial officers 
(CFOs) by Graham and Harvey (2001, 2002) have revealed the great importance CFOs attach to 
maintaining financial flexibility by holding internal funds.

In practice, the value of real flexibility derived from the optimal timing of real options is in-
tertwined with the value of financial flexibility derived from the optimal management of retained 
earnings and the optimal external financing timing and issuance decisions. Both the effective dis-
count rate used to determine the value of a growth opportunity and the cost of investment depend 
on the firm’s marginal value of cash, which varies with both the size of the firm’s cash holdings 
and the firm’s earnings fundamentals. The reason is that the firm takes account not only of its 
current stock of internal funds but also the information about its future cash flow prospects con-
tained in persistent earnings shocks. Through the firm’s evolving marginal value of cash, the real 
option problem becomes a fundamentally two-dimensional problem, which entails a significant 
generalization of the classical one-dimensional problems of McDonald and Siegel (1986) and 
Dixit and Pindyck (1994).

We embark on such a generalization in this paper and derive how optimal investment-timing 
and abandonment-timing decisions are made, as well as how assets in place and growth options 
are valued, when firms face external financing costs. 1 By introducing external financing costs, we 
are, in effect, integrating two strands of literature, the classical real options literature following 
McDonald and Siegel (1985, 1986) and Dixit and Pindyck (1994) with the corporate finance 

1 This paper supercedes Bolton, Wang and Yang (2014), which was circulated under the title “Investment under uncer-
tainty and the value of real and financial flexibility.”
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literature following Miller and Orr (1966). Our continuous-time model allows us to not only 
derive optimal investment, abandonment, and equity issue size and timing policies but also to 
carry out a systematic valuation analysis.

We model the firm’s life-cycle and its evolving collection of assets in place and growth oppor-
tunities in the spirit of Myers (1977). Although we do not explicitly model adverse selection, one 
interpretation of costly external financing in our model is equity dilution cost (due to mis-pricing 
a la arguments in Myers and Majluf (1984).

In our model, the firm’s investment, financing, payout and abandonment policies depend on 
both earnings fundamentals and the firm’s financial slack. Therefore, our model can explain why 
following a recession low investment persists even though earnings fundamentals have recov-
ered. The reason is that following a recession firms are generally in repair mode, seeking to 
rebuild their financial slack. Similarly, in our model firms have a preference for investments with 
front-loaded earnings. We show that, as a result, a start-up firm may choose to invest in a project 
sooner than predicted by the classical real-option theory in an effort to build future internal fund-
ing capacity. We also show that the firm’s payout policy is fundamentally different depending on 
whether it is in the growth phase or in the mature phase. In the mature phase a more profitable 
firm pays out more, while in the growth phase it pays out less.

Our model also predicts that the value of growth and abandonment options effectively van-
ishes for firms with low internal financing ability. Firms with scarce internal funds are forced 
into inefficiently liquidating their valuable operating assets. We also find that the hurdle for in-
vestment in the growth phase is a non-monotonic function of the firm’s internal funds. When the 
firm’s savings are sufficient to entirely cover the investment cost, the firm’s investment hurdle 
decreases with its internal funds. But when its internal funds cannot entirely cover the cost of 
investment, the hurdle is increasing with the firm’s internal funds. The reason is that when the 
firm is approaching the point where it may be able to entirely fund its investment with retained 
earnings it has a stronger and stronger incentive to delay investment until it has sufficient funds 
to be able to avoid tapping costly external funds. An important implication of this result is that 
investment is not necessarily more likely when the firm has more cash. Investment could well be 
delayed further, as the firm’s priority becomes avoiding costly external financing.

We also show that financially constrained firms prefer growth opportunities with front-loaded 
cash-flows. In the MM-based real options framework there is an equivalence between an option 
that pays cash flows over time and an option that pays immediately upon exercising a lump sum 
with the same present value. This is not true in our model for a financially constrained firm. Not 
only is the value of real options with more front-loaded cash-flows higher but also the firm may 
be induced to over-invest. More generally, a financially constrained firm cares not only about the 
present value of an investment project but also the project’s payback period.

Another subtle prediction is that the amount of external equity financing is also non-
monotonic in the profitability of the firm’s operating assets. The intuition is as follows. For 
a firm whose investment option is sufficiently out of the money, financial flexibility has little 
value. On the other hand, a firm that is so profitable that its investment option is deep in the 
money can easily generate cash from operations. Therefore, funds obtained through an equity 
issue are most valuable for a firm whose profitability is in the medium range. In sum, for firms 
facing external financing costs the value of real options is not just tied to the timing of the real op-
tion but also to financial flexibility. Hugonnier, Malamud and Morellec (2015) consider a model 
of costly and uncertain external financing in which the amount of external financing may also be 
non-monotonic in profitability. Décamps, Gryglewicz, Morellec and Villeneuve (2017) obtain a 
similar prediction in a model with both permanent and transitory shocks.
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A real options theory that includes external financing costs is obviously on a substantially 
stronger empirical footing than the classical theory that assumes perfect capital markets. This is 
evident with respect to the empirical evidence in Kim and Weisbach (2008) on global seasoned 
equity offerings (SEOs) and DeAngelo, DeAngelo and Stulz (2010) on SEOs of U.S. industrial 
corporations. The former paper finds that a large fraction of the SEO proceeds is saved inside 
the firm and savings are larger for growth firms. The latter finds that SEOs are first and fore-
most last-resort financing decisions for firms running out of cash, or in need of funds towards 
anticipated investment outlays. Although they find evidence in support of the market timing hy-
pothesis of Loughran and Ritter (1995, 1997) and Baker and Wurgler (2002) on the one hand, 
and the life-cycle hypothesis on the other,2 these hypotheses do not explain most of the SEOs 
that are observed. The main conclusion that DeAngelo, DeAngelo and Stulz (2010) draw is that 
“paraphrasing Sherlock Holmes, ‘many dogs don’t bark’ at times when according to theory they 
should be barking;... [and] the life-cycle explanation is problematic because too many ‘old dogs’ 
do in fact bark...41.4% of issuances and 52.5% of SEO proceeds come from current and former 
dividend payers, firms that are clearly beyond the growth phase of their life-cycles.” Our theory 
of SEOs is consistent with findings in both papers. In particular, it can explain why so many “old 
and young dogs” bark, as it accounts for both offerings for survival and offerings for growth.3

A striking new prediction of our theory (from our simulation analysis) is that the equity stake 
given up to outside investors via an SEO is substantially smaller on average for firms that use the 
SEO proceeds to invest than for those that do not invest. Such a prediction cannot be obtained in 
models without persistent productivity shocks.

From a macro perspective, our model sheds light on a major challenge for the real-options 
based models that seek to explain the persistently low post-crisis investment despite the substan-
tial increase in corporate cash holdings and the quick recovery of earnings and macroeconomic 
fundamentals. Several studies, in particular, Baker, Bloom and Davis (2016), and Bloom, Floe-
totto, Jaimovich, Saporta-Eksten and Terry (2016), have pointed out that, although investment 
timing optionality as in Bloom (2009) is highly relevant for understanding investment dynamics, 
the standard real options models predict only a short-lived pause in investment caused by higher 
uncertainty following the crisis.

By construction, the standard real options model also cannot explain the increase in corporate 
savings. Our model with external financing costs, however, produces both more persistent in-
vestment dynamics and cash build-ups following a crisis, consistent with the findings in Alfaro, 
Bloom and Lin (2016) and Chen (2017). Our model is also consistent with Campello, Graham 
and Harvey (2010) and Campello, Giambona, Graham and Harvey (2011) who find that the more 
financially constrained firms planned deeper cuts in investment, spending, burned more cash, 
drew more credit from banks, and also engaged in more asset sales and forced liquidations in the 
crisis.4 In sum, our real options model with financial constraints that ties real optionality with 
financial flexibility predicts significantly more plausible investment and cash dynamics.

2 By the life-cycle hypothesis, they mean that equity issuers are primarily young firms with high market-to-book (M/B) 
ratios and low operating cash flows, and mature firms with low M/B ratios pay dividends and fund investments out of 
internal funds.

3 Carlson et al. (2006, 2010) offer a related dynamic theory of SEOs and investment. They assume that investment is 
always financed through an SEO, and therefore they cannot explain the empirical findings of DeAngelo, DeAngelo and 
Stulz (2010).

4 Ivashina and Scharfstein (2010) also document the aggressive credit-line drawdown by firms in the crisis.
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Related literature. Following McDonald and Siegel (1986) the basic formulation of the classical 
real-options problem has been extended in many different directions. Dixit (1989) uses the real 
option approach to examine entry and exit from a productive activity. Titman (1985) and Williams
(1991) analyze real estate development in a real options framework. Abel and Eberly (1994)
analyze a unified framework of investment under uncertainty that integrates the q theory of in-
vestment with the real options approach.

Mauer and Triantis (1994) considers a real options problem for a levered firm, which other-
wise does not face any external financing costs. Hackbarth and Mauer (2012) and Sundaresan, 
Wang and Yang (2015) study the joint investment and financing decisions by building on the 
capital structure model of Leland (1994) and integrating it into the real options framework with 
institutional features. Grenadier (1996), Lambrecht and Perraudin (2003) and others extend the 
real options decision problem to a game-theoretic environment. Grenadier and Wang (2005)
incorporate informational asymmetries and agency problems into a real options framework. 
Morellec (2004) and Lambrecht and Myers (2007, 2008) consider managerial agency problems 
in the context of a real options framework. Kyle, Ou-Yang and Xiong (2006) introduce prospect 
theory and Grenadier and Wang (2007) introduce hyperbolic discounting into the classical real 
options framework.

In strategic dynamic contexts, Grenadier and Malenko (2011) study games in which the de-
cision to exercise an option is a signal of private information to outsiders. Grenadier, Malenko 
and Malenko (2016) consider a problem where an uninformed principal makes a timing deci-
sion interacting with an informed but biased agent. Orlov, Skrzypacz and Zryumov (2019) study 
a Bayesian persuasion game in the context of real options. Miao and Wang (2007) analyze an 
incomplete-markets real-options problem.5 Grenadier and Malenko (2010) develop a model of 
real options with learning about the permanence of shocks.

None of these models discussed above allow for financial flexibility through the accumulation 
of corporate savings. More recently, two related articles have introduced financial flexibility into 
a real options problem, but they only consider one-dimensional problems by removing earnings 
fundamentals as a state variable. The first is by Décamps and Villeneuve (2007) and the second 
is by Hugonnier, Malamud and Morellec (2015). Both articles consider a financially constrained 
firm with an asset in place that generates cash-flows with (transitory) i.i.d shocks and that faces 
a growth option that can increase the drift of the cash-flow process. Put differently, in the MM 
version of these models there is no value of waiting and hence there is no real flexibility: the firm 
would exercise its growth option as soon as it is available.

Thus, our main contribution is to consider a two-dimensional problem that lends itself to a 
general analysis of the value of real and financial flexibility. Our paper is not the first to consider 
a two-dimensional real-options problem, but it is the first to offer a complete and rigorous anal-
ysis of this problem. The first article to consider a two-dimensional real options problem for a 
financially constrained firm is by Boyle and Guthrie (2003). They assume that the firm cannot 
invest at all unless it meets an exogenous borrowing constraint. Once the investment is made the 
firm is immediately liquidated at the market value of the asset. The main point of their analysis 
is to highlight an over-investment incentive, which is driven by the risk of (locally) unbounded 
large losses from the operating assets in place, and the firm’s concern that it might be short of 
cash before it can invest. This concern is contrived as it arises from the ad hoc assumption that 

5 Chen, Miao and Wang (2010) and Wang, Wang and Yang (2012) use the incomplete-markets-based real-options 
model to study entrepreneurial firms’ capital structure, investment, and abandonment decisions. Miao and Wang (2011)
analyze the impact of ambiguity and ambiguity aversion on (real options) investment decisions.
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the firm is not allowed to voluntarily downsize its operating asset.6 That is, they do not account 
for the firm’s abandonment option, which is an important part of our analysis. Unlike their setup, 
our model fully captures both real and financial flexibility by separating financing and invest-
ment option decisions. The firm’s financing needs reflect the joint considerations for investment, 
continued operations, and survival. Moreover, the firm continues to face operating risk after in-
vestment and therefore also faces an abandonment option.

Anderson and Carverhill (2012) study a liquidity management problem for a firm operating 
over an exogenously fixed time horizon and that is subject to mean-reverting productivity shocks. 
Besides these different model specifications the other fundamental difference with our analysis 
is that their model has a one-time investment opportunity at an exogenously fixed time implying 
no investment-timing flexibility.

Three independent studies analyze a similar problem to ours: First, Copeland and Lyasoff
(2013) consider a somewhat narrower framework to ours and do not allow for either abandon-
ment or sequential growth options. Second, Boot and Vladimirov (2019) consider a financially 
constrained entrepreneurial firm with an asset in place that generates random cash flows fol-
lowing a geometric Brownian motion and a new investment opportunity. Third, Babenko and 
Tserlukevich (2013) consider the optimal hedging policy for a financially constrained firm with 
a decreasing returns to scale technology and growth opportunities.

Our paper is also related to Décamps, Mariotti, Rochet and Villeneuve (2011), who consider 
a financially constrained firm’s optimal dynamic payout and SEO policies, and Bolton et al. 
(2011, 2013), who develop a q-theory of investment for financially constrained firms facing 
i.i.d. shocks. One important difference with the generalized q-theory of investment (with convex 
adjustment costs) is that the financially constrained firm issues equity only for survival and never 
for investment as it uses its internal savings to smooth investment, and hence cannot explain the 
above mentioned empirical evidence on SEOs. Bolton, Wang and Yang (2019) use the recursive 
optimal contracting method to develop a dynamic liquidity and risk management model also with 
real investment options for a firm run by an entrepreneur with inalienable human capital.

2. Model

Operating Revenues and Profits. We consider a young firm that has assets in place and an in-
vestment opportunity. At any point in time t ≥ 0 the firm can exercise this investment opportunity 
by paying a fixed investment cost I > 0 as in McDonald and Siegel (1986). Upon exercising this 
investment option the young (growth) firm becomes a mature firm. The investment opportunity is 
more or less attractive depending on the earnings fundamentals Y for its product, which follows 
the geometric Brownian motion (GBM) process

dYt = μYtdt + σYtdBt , (1)

where Bt is the standard Brownian motion defined on the filtered probability space (�, F,

{Ft }t∈R+ , P ) which satisfies the usual conditions.
The firm generates revenues at the rate of mnY , where mn denotes the firm’s production 

capacity, with n ∈ {1, 2}. When n = 1 the firm is in the growth phase, and when n = 2 the firm has

6 A related ad hoc assumption which drives the overinvestment result in their paper is that the growth option payoff 
value is assumed to follow a geometric Brownian motion, while cumulative operating cash-flows from the operating asset 
are assumed to follow an arithmetic Brownian motion causing unbounded large operating losses.
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expanded into its mature phase, so that m1 < m2. We denote the firm’s deterministic operating 
cost (per unit time) by Zn > 0, so that the operating profit per unit of time is (mnYt − Zn). 
Obviously, our model specification allows both the revenue and cost to be stochastic and only 
requires that the operating profit (mnY − Zn) is an affine function in Y . In sum, upon exercising 
the growth option the firm’s operating revenue increases by �mYt , where �m = m2 −m1, and its 
operating cost increases by �Z = Z2 − Z1, so that (�mYt − �Z) is the firm’s incremental profit 
from the second asset.

When profits (mnYt − Zn) are sufficiently negative it may be optimal for the firm to abandon 
operations as the option value of continuing the firm is no longer positive. As in the standard 
real-options literature (e.g., McDonald and Siegel, 1986), by exercising the abandonment option, 
the firm shuts itself down and without loss of generality obtains a liquidation value of zero. The 
firm, thus, has an American-style perpetual liquidation option, where the timing of the option 
is endogenously chosen in both the growth and mature phases. In sum, our model describes a 
simple life-cycle of a firm with three phases: a growth phase, a mature phase, and a liquidation 
(or scale-down) phase. We assume that investors are risk neutral, so that all cash flows are dis-
counted at the risk-free rate r . Equivalently, we may interpret the process (1) as representing the 
risk-neutral measure.

External Financing Costs. In reality firms often face significant external financing costs due to 
asymmetric information and managerial incentive issues. A large empirical literature has sought 
to measure these costs, in particular the costs arising from the negative stock price reaction in 
response to the announcement of a new equity issue.7

To capture these costs, we use a standard specification for external financing costs.8 If the firm 
needs to raise external funds F net of fees, it incurs an external financing cost:

�(F) = φ0IF>0 + φ1F , (2)

where φ0 ≥ 0 is the fixed cost parameter and φ1 ≥ 0 is the marginal cost of external financing, 
and IF>0 is an indicator function which takes the value of one when F > 0 and zero otherwise.9

When the fixed cost φ0 is high the firm may prefer liquidation over equity issuance.
While we could allow for different equity issuance costs in the growth and mature phases to 

capture different types of financing frictions (agency costs and informational asymmetry), we 
keep the external financing costs the same in both phases for simplicity. An important simplifi-
cation, however, is that we do not explicitly model informational asymmetries between the firm 
and outside investors. As a result our model cannot capture how investment and abandonment 
policies differ across different types of issuers and how asymmetric information about option 
values maps into external financing costs.

7 An early study by Asquith and Mullins (1986) found that the average stock price reaction to the announcement of 
a common stock issue was −3% and the loss in equity value as a percentage of the size of the new equity issue was as 
high as −31%. Similar results have been obtained in several subsequent studies (see Eckbo et al., 2007 for a survey). 
Calomiris and Himmelberg (1997) estimate the direct transactions costs firms face when they issue equity and find that 
mean transactions costs (underwriting, management, legal, auditing and registration fees) are as high as 9% of an issue 
for seasoned public offerings and 15.1% for initial public offerings.

8 Explicitly modeling informational asymmetry would result in a substantially more involved analysis. Lucas and 
McDonald (1990) provides a tractable analysis by making the simplifying assumption that the informational asymmetry 
is short lived, i.e. it lasts one period.

9 In other words, to raise the net amount F the firm must raise the gross amount F + �(F) from investors.
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Corporate Liquidity Management. To avoid incurring external financing costs too often the 
firm will seek to accumulate funds internally, so that a key aspect of the firm’s financial manage-
ment is liquidity, or cash, management, to which we next turn.

The growth phase. At the beginning of the growth phase (t = 0) the firm is endowed with a 
stock of cash W0 ≥ 0. Over time the firm’s cash accumulates as follows

dWt = (rWt + m1Yt − Z1)dt + dCt − dUt , (3)

subject to the constraint that its cash holding is non-negative:

Wt ≥ 0 . (4)

The first term in (3) is the sum of the firm’s interest income rW and operating profits m1Yt −
Z1. The second term in (3), Ct , denotes the firm’s non-decreasing cumulative external equity 
financing, and the third term Ut denotes its non-decreasing cumulative payout, in that dCt ≥ 0
and dUt ≥ 0. Should the firm choose to abandon its operations, it then pays out any remaining 
cash Wt to its shareholders. We begin by considering this simpler situation, and later extend the 
analysis to situations where the firm incurs a cash-carrying cost and therefore must also determine 
its payout policy.

When the firm’s liquidity W is insufficient to cover the investment cost, W < I , the firm will 
obviously have to raise external funds to finance the investment cost I or alternatively the firm 
can wait and continue to accumulate internal funds. This is one way in which external financing 
costs will modify the firm’s exercise decision of its growth option. Also, when the firm chooses 
to raise external funds to finance its investment it may decide to raise more funds than needed 
to cover the investment cost because it also needs funds (working capital) to finance potential 
operating losses after it has exercised its growth option.

The mature phase. In the mature phase cash accumulates as follows:

dWt = (rWt + m2Yt − Z2)dt + dCt − dUt , Wt ≥ 0 . (5)

In other words, the dynamics of liquidity are almost the same as in the growth phase, the only 
difference being that production capacity is now m2 and operating costs are Z2.

2.1. The optimization problem

For expositional purposes, we denote by {At}t∈R+ the control process which takes the liquid-
ity process into the positive closed region {Wt ≥ 0}t∈R+ .

Let τn
L denote the abandonment (liquidation) time in the growth phase (n = 1) and in the 

mature phase (n = 2). Also let τi denote the stochastic investment time in the growth phase. 
Next, we turn to the stochastic equity issuance timing and amount. Let τn

F (t) denote the first 
external financing time after time t in phase n, where n = 1 for the growth phase and n = 2 for 
the mature phase, and let Fn ≥ 0 denote the corresponding external financing amount at time 
τn
F (t).

As the firm’s discount rate is equal to the risk-free rate, there is no cost for the firm to carry 
cash in the firm, which means that it is weakly efficient for shareholders to save the firm’s profits 
inside the firm. It is possible that the firm’s savings at time t , Wt , is so high that the firm becomes 
permanently financially unconstrained at all its future time s ≥ t . That is, it is optimal for the 
firm to choose the first-best policies at all s ≥ t with probability one. We use τ 1

U to denote the 
(first) time t when the firm becomes permanently financially unconstrained in the growth phase. 



P. Bolton et al. / Journal of Economic Theory 184 (2019) 104912 9
Similarly, we use τ 2
U to denote the (first) time when the firm becomes permanently financially 

unconstrained in the mature phase.
The control process is then given by At ≡ (τ 2

U , τ 2
L, τ 2

F (t), F2) in the mature phase and by 
At ≡ (τi, τ 1

U , τ 1
L, τ 1

F (t), F1) in the growth phase.10 The extra control in the growth phase is due 
to the investment option.

Before defining the value function and providing its solution, we state the following assump-
tions.

Assumption 1. There exists a nonempty compact metric space K such that At ∈K for all t ∈R+.

A control process is said to be admissible if: 1) it is adapted to the filtration {Ft}t∈R+ ; 2) it 
satisfies Assumption 1; and, 3) Wt following the process, defined by equation (3) for the growth 
phase and the process defined by equation (5) for the mature phase, has a unique strong solution. 
The set of admissible control processes is denoted by A.

Next, we state a sufficient condition that ensures that the value function is well defined.

Assumption 2. The risk-free interest rate is positive, r > 0, and the growth rate of the earnings 
fundamentals is strictly smaller than the risk-free interest rate, r > μ.

Finally, to ensure that the investment option is valuable in the growth phase, we impose the 
following assumption.

Assumption 3. The firm’s production capacity in the mature phase is strictly greater than that 
in growth phase: m2 > m1.

In sum, the firm’s optimization problem involves several dynamic policies: i) an investment 
timing decision; ii) an abandonment timing decisions; and iii) dynamic SEO decisions. Impor-
tantly, the firm uses liquidity management to integrate these interdependent decisions.

3. The first-best solution

Under perfect capital markets (when the Modigliani-Miller theorem holds), the firm only faces 
investment and abandonment timing decisions. We solve for the firm’s value in both mature and 
growth phases together with its optimal abandonment and investment policies.

First, we calculate the firm’s value (i.e. from its asset in place) in the mature phase. We use 
Q∗(Y ) to denote its value in the mature phase. The only decision in the mature phase for the 
fist-best (FB) setting is the abandonment timing decision. The firm’s value is given by

Q∗(Yt ) = max
τ 2
L

Et

⎡⎢⎣ τ 2
L∫

t

e−r(s−t)(m2Ys − Z2)ds

⎤⎥⎦ . (6)

This equation incorporates the value of abandonment as the integral is truncated at the liquidation 
time τ 2

L.

10 For notational simplicity, sometimes we skip time subscripts of the control process. For example, A refers to At and 
τn (t) refers to τn .

F F
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Next, we calculate the firm’s value in the growth phase where it has one asset in place and 
a growth option. We use H ∗(Y ) to denote its value in the growth phase. The decisions in the 
growth phase for the FB setting then involve both abandonment and investment timing decisions. 
Therefore, the firm’s value is then given by

H ∗(Yt ) = max
τi ,τ

1
L

Et

⎡⎢⎣ min{τ 1
L,τi }∫

t

e−r(s−t)(m1Ys − Z1)ds + e−r(τi−t)(Q∗(Yτi
) − I )

⎤⎥⎦ . (7)

As the optimal timing decisions are characterized by optimal threshold policies in our model, 
we next introduce various threshold policies. We use Y ∗

a,2 to denote the optimal abandonment 
hurdle in the mature phase: τ 2

L = inf{s|Ys ≤ Y ∗
a,2, s ≥ t}, use Y ∗

a,1 to denote the optimal aban-

donment threshold in the growth phase: τ 1
L = inf{s|Ys ≤ Y ∗

a,1, s ≥ t}, and use Y ∗
i to denote the 

optimal investment threshold: τi = inf{s|Ys ≥ Y ∗
i , s ≥ t}.

The following theorem states the first-best solution under perfect capital markets.

Theorem 1. Under Assumptions 1-2, the value of the operating asset Q∗(Y ) in the mature phase 
is given by:

Q∗(Y ) =
(

m2Y

r − μ
− Z2

r

)
−

(
m2Y

∗
a,2

r − μ
− Z2

r

)(
Y

Y ∗
a,2

)γ

for Y ≥ Y ∗
a,2 , (8)

where the abandonment hurdle Y ∗
a,2 is given by (A.1) and the constant γ is given by (A.2) in 

Appendix A.
Under Assumptions 1-3, the firm’s value in the growth phase, H ∗(Y ), is given by:

H ∗(Y ) = m1Y

r − μ
− Z1

r

+ (Y ∗
a,1)

γ Y β − (Y ∗
a,1)

βY γ

(Y ∗
a,1)

γ (Y ∗
i )β − (Y ∗

a,1)
β(Y ∗

i )γ

(
Q∗(Y ∗

i ) − I −
(

m1Y
∗
i

r − μ
− Z1

r

))
− (Y ∗

i )βY γ − (Y ∗
i )γ Y β

(Y ∗
a,1)

γ (Y ∗
i )β − (Y ∗

a,1)
β(Y ∗

i )γ

(
m1Y

∗
a,1

r − μ
− Z1

r

)
, for Y ∗

a,1 ≤ Y ≤ Y ∗
i (9)

where the constant γ and β are given by (A.2) and (A.5) respectively, and the investment thresh-
old Y ∗

i and abandonment threshold Y ∗
a,1 jointly solve the equations (A.3) and (A.4) in Appendix A.

Moreover, H ∗(Y ) = Q∗(Y ) − I for Y > Y ∗
i , and H ∗(Y ) = 0 for Y < Y ∗

a,1.

For the mature phase, the value of the firm’s assets in place is equal to Q∗(Y ). The first term 
in (8) for Q∗(Y ) is the present discounted value of operating profits if the firm were to remain 
in operation forever (which would be suboptimal for sufficiently low Y ). The second term in (8)
for Q∗(Y ) is the abandonment option value. The firm operates its asset if and only if Y ≥ Y ∗

a,2. 
When Y < Y ∗

a,2 the asset is abandoned and Q∗(Y ) = 0. As is well known, Q∗(Y ) is convex in Y
due to the abandonment option.

For the growth case, the enterprise value is equal to H ∗(Y ). The first term in (9) for H ∗(Y ) is 
the present discounted value of operating profits if the firm were to remain in operation forever 
generating profits at the rate of m1Y − Z1 without exercising either abandonment or growth 
option. The second term in (9) for H ∗(Y ) is the investment option value (taking into account that 
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the growth option is exercised before the abandonment is exercised in the growth phase). The 
third term givens the value of the abandonment in the growth phase (taking into account that the 
firm is optimally abandoned before it exercises its growth option).

The optimal threshold for the abandonment option in the mature phase, Y ∗
a,2, has the standard 

well-known formula given by (A.1). The optimal threshold for the abandonment option in the 
growth phase and that for the growth option are determined jointly by (A.3) and (A.4).

The proof for Theorem 1 is standard and omitted. Dayanik and Karatzas (2003) provide a 
general characterization of one-dimensional optimal-stopping problems.

Finally, we note that under MM, in the mature phase, the value of a firm, denoted by 
P ∗(W, Y), is simply equal to the sum of its cash holdings W and the value of its asset in place, 
Q∗(Y ), i.e.,

P ∗(W,Y ) = Q∗(Y ) + W . (10)

Similarly, in the growth phase the firm’s value, denoted by G∗(W, Y), is given by

G∗(W,Y ) = H ∗(Y ) + W . (11)

The functions, G∗(W, Y) and P ∗(W, Y), are the upper bounds for the firm’s value in the growth 
and mature phase, respectively.

4. Solution: general case with external financing costs

When the firm faces external financing costs it will optimally hoard liquidity W in order 
to reduce the frequency with which it returns to capital markets to raise external funds. The 
interaction between earnings fundamentals and corporate liquidity gives rise to highly nonlinear 
dynamics for firm value, investment, and financing.

4.1. The mature phase

We begin by defining the liquidity threshold 
2 in the mature phase such that the firm is 
permanently financially unconstrained for any liquidity beyond that threshold.

Definition 1. Let 
2 denote the liquidity threshold for W such that:


2 = r − γμ

r2(1 − γ )
Z2 , (12)

and τ 2
U denote the first time Wt hits 
2 in mature phase: τ 2

U = inf{s|Ws ≥ 
2, s ≥ t}. Further-
more, let τ2 = min{τ 2

F , τ 2
L, τ 2

U }.

Given an admissible control A, the value function in the mature phase is given by:

P(Wt ,Yt ;A) =Et

[
e−r(τ2−t)

[
P(Wτ2− + F2, Yτ2−) − F2 − �(F2)

]
Iτ2=τ2

F

+e−r(τ2−t)Wτ2 Iτ2=τ2
L

+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2
U

]
. (13)

Equation (13) takes into account the three mutually exclusive scenarios. First, the firm issues 
costly external equity at τ 2

F , captured by the first term when τ2 = τ 2
F . Second, the firm liquidates, 

captured by the second term when τ2 = τ 2. Third, the firm becomes permanently financially 
L
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unconstrained, captured by the last term when τ2 = τ 2
U . As the firm is permanently financially 

unconstrained at τ 2
U , the firm attains the first-best mature value P ∗(Wt , Yt ) at t = τ 2

U .
Assumption 2 guarantees that the value function P(Wt, Yt ; A) is well defined for any admis-

sible control. The value function in the mature phase, denoted P(Wt, Yt ), is then given by

P(Wt ,Yt ) = sup
A∈A

P(Wt ,Yt ;A) . (14)

An admissible control is said to be optimal if P(Wt, Yt ) = P(Wt , Yt ; A).
As a first step in the characterization of P(W, Y), we state the following lemmas that summa-

rize the main properties of P(W, Y).

Lemma 1. The value function P(W, Y) must be greater than or equal to the firm’s liquidation 
value at any time, that is:

P(W,Y ) ≥ W . (15)

Lemma 1 follows from the fact that the firm can always liquidate itself and collect W . The 
(net) value of the perpetual American liquidation option, measured by P(W, Y) − W is weakly 
positive.

Lemma 2. The firm always has an option to issue equity, so that P(W, Y) satisfies

P(W,Y ) ≥ P F (W,Y ) (16)

where P F (W, Y) would be the firm’s value if the firm were to immediately issue equity:

P F (W,Y ) = sup
F2≥0

P(W + F2, Y ) − F2 − �(F2) . (17)

Similar to our argument for Lemma 1, Lemma 2 follows from the fact that the firm can always 
issue equity at a cost. By revealed preferences, the fact that the firm chooses not to issue equity 
must imply that the timing is not optimal and hence the inequality given in (16) has to hold.

Lemma 3. The firm’s value P(W, Y) attains the first-best value when W ≥ 
2:

P(W,Y ) = P ∗(W,Y ) = W + Q∗(Y ) , for W ≥ 
2 . (18)

Lemma 3 establishes that the firm is permanently financially unconstrained when its liquidity 
W exceeds 
2, which is given by (12).

The reasoning for this result is as follows. As long as the firm’s savings rate, (rW + m2Y −
Z2), is non-negative, when evaluated at the firm’s first-best abandonment threshold Y ∗

a,2, i.e., 
(rW + m2Y − Z2) ≥ 0, the firm is never involuntarily liquidated, can always achieve the first-
best policies, and hence is permanently financially unconstrained. The preceding inequality is 
equivalent to

W ≥ 
2 , (19)

where 
2 is obtained by substituting the explicit formula for the first-best abandonment hurdle 
Y ∗ , given in (A.1), into (rW + m2Y − Z2) ≥ 0:
a,2



P. Bolton et al. / Journal of Economic Theory 184 (2019) 104912 13

2 =
∞∫
t

e−r(s−t)(Z2 − m2Y
∗
a,2)ds = Z2 − m2Y

∗
a,2

r
= r − γμ

r2(1 − γ )
Z2 . (20)

In sum, the firm is financially unconstrained only when it faces no financial constraint with 
probability one at the current and all future times. This is the case when W ≥ 
2, where 
2
denotes the lowest level of liquidity needed for a mature firm to be permanently financially 
unconstrained.11

The firm’s value P(W, Y) is then equal to the first-best value:

P(W,Y ) = P ∗(W,Y ) = W + Q∗(Y ) for W ≥ 
2 , (21)

where the first-best value Q∗(Y ) is given by (8). For a firm to be financially unconstrained, 
it cannot issue external equity with strictly positive probability at any moment because external 
funding is costly and distorts corporate decisions. That is, the condition for a firm to be financially 
unconstrained in a dynamic setting is much tighter than in a static setting.

Lemma 4. In the limit as Y → ∞, the firm’s value P(W, Y) attains the first-best value, that is

P(W,Y ) = P ∗(W,Y ) = W + Q∗(Y ) , for Y → ∞ . (22)

The reason is that, as its operating revenue Y → ∞, the firm is permanently financially uncon-
strained. Therefore, the firm can support all its first-best policy with probability one and hence 
attains the maximal value under the first-best.

Next, we make the following assumption.

Assumption 4. The function, P(W, Y), is smooth in the inaction region.

The function, P(W, Y), then satisfies L2P = 0, where L2 is the infinitesimal generator given 
by

L2P = (rW + m2Y − Z2)PW + μYPY + σ 2Y 2

2
PYY − rP . (23)

The condition L2P = 0 follows from the standard principle of dynamic optimality. The first 
term on the right side of (23), which is given by the product of the firm’s marginal value of cash 
PW(W, Y) and its saving rate (rW + m2Y − Z2), captures the value of the firm’s savings. The 
second term, μYPY , represents the marginal effect of an expected revenue change μY on firm 
value, and the third term in PYY encapsulates the effects of the volatility of changes in earnings 
fundamentals Y on firm value. Intuitively, in the region where the firm operates normally the sum 
of the first three terms, which amount to the total expected change in firm value P(W, Y), must 
equal rP (W, Y) the normalized value of the firm.

When the firm issues equity or liquidates itself, in other words when either (15) or (16) binds, 
P(W, Y) satisfies

11 Our notion of minimum liquidity holding W for a financially unconstrained firm is analogous to the notion of natural 
borrowing limit in the macroeconomics savings literature following Aiyagari (1994). This borrowing limit is defined as 
the maximum amount of risk-free debt a consumer can accumulate without ever defaulting. A consumer can borrow at 
the risk-free rate up to that natural borrowing limit, but any additional amount of borrowing will give rise to default risk. 
For a firm, 
2 is the minimum W that it needs in order to implement its first-best abandonment policy. Any liquidity 
holding lower than 
2 may induce under-investment via inefficient liquidation with positive probability.
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L2P ≤ 0 . (24)

We summarize the model solution for the mature phase in the following theorem.

Theorem 2. Under Assumptions 1, 2, and 4, the value function in the mature phase, P(W, Y), can 
be solved via the variational-inequality formulation for (W, Y) ∈ �2, where �2 = {(W, Y)|0 ≤
W ≤ 
2, 0 < Y < ∞} denotes the solution region:

max{L2P, max{P F (W,Y ) ,W } − P(W,Y )} = 0 , (25)

where P F (W, Y) is defined by (17). Additionally, the following boundary condition holds

P(W,Y ) = P ∗(W,Y ) = W + Q∗(Y ) , for W = 
2 or Y → ∞ . (26)

The intuition for (25) is as follows. If the firm is in the inaction region, L2P = 0, which 
characterizes the solution, has to hold. Otherwise, the firm must take one of the following two 
actions: (1) issuing equity to replenish liquidity or (2) liquidating itself and returning all cash to 
its shareholders, as one of the two inequalities, (16) or (15), must be satisfied with equality at the 
boundary, which implies P(W, Y) = max{P F (W, Y) , W } at the boundary. Taking the boundary 
behaviors together with the inaction option, we conclude that (25) has to hold.

Next, we establish several fundamental properties of the value function P(W, Y).

Proposition 1. Under Assumptions 1-2 and 4, the following properties for (W, Y) ∈ �2 hold:
i) the solution for P(W, Y) exists and is bounded as W ≤ P(W, Y) ≤ P ∗(W, Y);
ii) the solution for P(W, Y) is strictly increasing in W and strictly increasing in Y before 

liquidation. Additionally, Q(W, Y) = P(W, Y) − W is increasing in W ;
iii) the solution for P(W, Y) is unique.

Finally, we establish the following properties for the liquidation and external financing deci-
sions.

Proposition 2. Under Assumptions 1-2, i) the optimal liquidation boundary, denoted by Y 2(W), 
is decreasing in W ; ii) the firm will delay costly equity issuance until it has entirely exhausted its 
cash.

The proofs for the results in this subsection are provided in Appendix B.
We next turn to the analysis for the growth phase. Anticipating its potential financial con-

straints in the mature phase, a rational forward-looking firm takes these future constraints into 
account for its decisions in the growth phase.

4.2. The growth phase

In the growth phase the firm faces an optimal investment timing problem along with abandon-
ment timing and external equity financing decisions.

Definition 2. Let 
1 denote the liquidity threshold given by


1 = Z1 − m1Y
∗
a,1

, (27)

r
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where Y ∗
a,1 is the first-best abandonment hurdle in the growth phase. Let τ 1

U denote the first time 
liquidity reaches 
 in the growth phase, i.e., τ 1

U = inf{s|Ws ≥ 
}, where 
 is given by


 = max{
1,
2 + I } . (28)

Finally, let τ1 = min{τi, τ 1
F , τ 1

L, τ 1
U }.

Note that τ 1
U is the first time when the firm has accumulated sufficient liquidity to be perma-

nently unconstrained and hence it attains the first-best firm value G∗(Wt , Yt ) with probability 
one under all circumstances. Because the firm is forward looking, the amount of liquidity it is 
required for the firm to never compromise its investment and liquidation decisions is to have at 
least the level of liquidity exceeding max{
1, 
2 + I }.

Given an admissible control A, the value function in the growth phase is given by

G(Wt,Yt ;A) =Et

[
e−r(τ1−t)

[
P(Wτ1− + F1 − I,Yτ1−) − F1 − �(F1)

]
Iτ1=τi

+e−r(τ1−t)
[
G(Wτ1− + F1, Yτ1−) − F1 − �(F1)

]
Iτ1=τ1

F

+e−r(τ1−t)Wτ1 Iτ1=τ1
L

+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1
U

]
. (29)

Equation (29) takes into account the four mutually exclusive scenarios in the mature phase. First, 
the firm invests when τ1 = τi . Second, the firm issues equity and exercises the growth option 
when τ1 = τ 1

F . Third, the firm liquidates when τ1 = τ 1
L. Finally, the firm becomes permanently 

financially unconstrained when τ1 = τ 1
U . As the firm is permanently financially unconstrained at 

τ 1
U , the firm attains the first-best value G∗(Wt , Yt ) at t = τ 1

U in the growth phase, which means 
that the firm can support its growth-option exercising and liquidation decisions at its first-best 
levels in the future.

Assumptions 2-3 guarantee that the value function is well defined for any admissible control. 
Similarly, the value function in the growth phase, denoted G(Wt, Yt ), is defined by

G(Wt,Yt ) = sup
A∈A

G(Wt,Yt ;A) . (30)

An admissible control is said to be optimal if G(Wt, Yt ) = G(Wt, Yt ; A).
As for the mature phase, we spell out a number of lemmas that summarize the main properties 

of G(W, Y).

Lemma 5. The value function in the growth phase G(W, Y) must be greater than or equal to the 
firm’s liquidation value at any time, that is:

G(W,Y ) ≥ W . (31)

The reasoning for Lemma 5 for the growth phase is the same as that for Lemma 1 for the 
mature phase: The firm can always liquidate itself and collect W and the (net) value of the 
perpetual American liquidation option, measured by G(W, Y) − W is always weakly positive.

Lemma 6. The firm always has an option to issue equity in the growth phase, so that G(W, Y)

must satisfy

G(W,Y ) ≥ GF (W,Y ) , (32)



16 P. Bolton et al. / Journal of Economic Theory 184 (2019) 104912
where GF (W, Y) would be the firm’s value if the firm were to immediately issue equity:

GF (W,Y ) = sup
F1≥0

G(W + F1, Y ) − F1 − �(F1) . (33)

Similarly, the reasoning for Lemma 6 for the growth phase is the same as that for Lemma 2
for the mature phase: The timing flexibility in issuing equity is valuable in the growth phase and 
G(W, Y) ≥ GF (W, Y).

Lemma 7. The firm always has an option to invest in the growth phase, G(W, Y) must satisfy

G(W,Y ) ≥ GI (W,Y ) , (34)

where GI (W, Y) would be the firm’s value if the firm were to immediately issue equity to partially 
finance its growth option exercising:

GI (W,Y ) = sup
F1≥0

P(W + F1 − I,Y ) − F1 − �(F1) . (35)

Similarly, Lemma 7 implies the firm’s flexibility in choosing the timing of its investment 
option is always valuable in the growth phase.

Lemma 8. The firm’s value in the growth phase G(W, Y) attains the first-best value when W ≥
max{
1, 
2 + I }:

G(W,Y ) = G∗(W,Y ) = W + H ∗(Y ) , for W ≥ max{
1,
2 + I } . (36)

Lemma 8 establishes that for the firm to be permanently financially unconstrained in the 
growth phase it must be able to pursue all its real decisions including investment timing and 
liquidation (which could occur in either phase) with probability one. This occurs when W ≥
max{
1, 
2 + I }. The intuition is as follows. First, to avoid inefficient liquidation in the growth 
phase, the firm requires at least 
1 in its savings account. To avoid inefficient investment and 
suboptimal liquidation in the mature phase, the firm at least has to have 
2 + I , out of which 
the amount of 
2 ensures that the firm is willing to choose its liquidation policy at the first-best 
level and the amount of I ensures that the firm has plenty liquidity to exercise its growth option 
at the first-best level.

Lemma 9. As Y → ∞, the firm’s value G(W, Y) attains the first-best value, that is

G(W,Y ) = G∗(W,Y ) = W + H ∗(Y ) , for Y → ∞ . (37)

The reasoning for this result is the same as that for Lemma 4. As its operating revenue Y →
∞, the firm is permanently financially unconstrained. Therefore, the firm can support its first-best 
investment and liquidation policies with probability one and hence its value attains the first-best 
level.

Next, we make the following assumption.

Assumption 5. The function, G(W, Y), is smooth in the inaction region.
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The function, G(W, Y), then satisfies L1G = 0, where L1 is the infinitesimal generator in the 
growth phase:

L1G = (rW + m1Y − Z1)GW + μYGY + σ 2Y 2GYY

2
− rG . (38)

When the firm issues equity or liquidates itself, i.e., when either (31), (32), or (34) binds, 
G(W, Y) satisfies

L1G ≤ 0 . (39)

The following theorem summarizes the model solution for the growth phase.

Theorem 3. Under Assumptions 1-5, the value function in the growth phase, G(W, Y), can 
be solved via the variational-inequality formulation for (W, Y) ∈ �1, where �1 = {(W, Y)|0 ≤
W ≤ max{
1, 
2 + I }, 0 < Y < ∞} denotes the solution region:

0 = max
{
L1G, max {GF (W,Y ), GI (W,Y ) , W } − G(W,Y )

}
, (40)

where GF (W, Y) and GI(W, Y) are defined by (33) and (35), respectively. Additionally, the 
following boundary condition holds:

G(W,Y ) = G∗(W,Y ) = W + H ∗(Y ) , for W ≥ max{
1,
2 + I } or Y → ∞ .

(41)

The intuition for (40) is as follows. If the firm is in the inaction region, L1G = 0, which 
characterizes the solution, has to hold. Otherwise, the firm must take one of the following three 
actions: (1) issuing equity to replenish liquidity, (2) issuing equity to partially finance the cost of 
exercising the growth option, or (3) liquidating itself and returning all cash to its shareholders, 
as one of the three inequalities (32), (34), or (31) must be satisfied with equality at the boundary, 
which implies G(W, Y) = max { GF (W, Y), GI (W, Y) , W } at the boundary. Taking the bound-
ary behaviors together with the inaction option, we conclude that (40) has to hold.

Depending on its liquidity holding W , the firm finds itself in the following three different 
regions:

1. Financially Unconstrained Region: W ≥ max{
1, 
2 + I }. If W ≥ 
1 the firm’s liquidity 
can cover operating costs in the growth phase with probability one, and if W ≥ 
2 + I the firm’s 
liquidity can cover the investment cost and operating costs in the mature phase with probability 
one. Naturally, for the firm to be permanently unconstrained in the growth phase it must be able 
to pursue both first-best investment and liquidation strategies with probability one, so that the 
firm is financially unconstrained and attains the first-best value when W ≥ max{
1, 
2 + I }.
2. Medium Cash-holding Region: I ≤ W < max{
1, 
2 + I }. Consider next the situation 
where the firm has moderate financial slack. That is, when it has sufficient internal funds W
to cover the investment cost I if it chooses to invest immediately, but not quite enough cash to 
ensure that it will never involuntarily liquidate its operating asset. The firm may not choose to 
exercise the growth option even when Y reaches the first-best threshold Y ∗

i , and even if it has 
sufficient internal funds W to cover the investment cost I . The reason is that exercising the in-
vestment option would drain the firm of its cash to such an extent that the firm may be pushed to 



18 P. Bolton et al. / Journal of Economic Theory 184 (2019) 104912
raise external funds prematurely to cover operating losses in the mature phase. The firm is there-
fore still financially constrained, even if it can entirely pay for the investment I using internal 
funds, as liquidity concerns distort its investment and abandonment decisions.

At the endogenously chosen investment threshold, denoted by Y(W), firm value G(W, Y)

is continuous, so that Y(W) is an implicit function defined by the following value-matching 
condition:

G(W,Y (W)) = P(W − I,Y (W)) . (42)

In the medium cash-holding region the investment cost I is entirely financed out of internal 
funds, so that post-investment liquidity W decreases by I , as seen on the right side of (42).

3. Low Cash-holding Region: 0 ≤ W < I . The firm is even more severely constrained in this 
region as internal funds are insufficient to cover the investment cost I . The firm then has to raise 
external funds should it decide to invest. No matter how large the realization of its current Y is, 
the firm has to access costly external capital markets if it chooses to invest immediately, as the 
investment cost I is lumpy, W < I , while Y is a flow variable. The post-financing/investment 
liquidity is then given by W + F1 − I . Again, at the moment of investing, the firm’s value is 
continuous, so that the investment boundary Y(W) is implicitly defined by the following value-
matching condition:

G(W,Y (W)) = P(W + F1 − I,Y (W)) − F1 − �(F1) . (43)

The right-hand side of condition (43) gives the firm’s value in the mature phase after it has 
incurred investment cost I and issued gross external funds F1 + �(F1). The left-hand side of 
(43) is the firm’s value before investing.

A firm without any cash (W = 0) can be in one of four possible situations:

a. When Y ≥ Y(0), the firm raises external financing and exercises its growth option.
b. When Z1/m1 ≤ Y < Y(0), the firm is able to generate enough cash from operations to cover 

its operating cost, so that it needs no external financing.
c. When Y 1(0) < Y < Z1/m1, the firm’s internally generated cash-flow cannot fully cover its 

operating cost, and it is optimal to raise external funds so as to continue operations. We will 
characterize the liquidation threshold for a cash-less firm, Y 1(0), later on.

d. When Y ≤ Y 1(0) it is best for the firm to liquidate its operating asset.

When the firm is indifferent between abandoning or continuing, the abandonment hurdle de-
noted by Y 1(W) is given by:

G(W,Y 1(W)) = W . (44)

Next, we establish several key properties of the value function G(W, Y).

Proposition 3. Under Assumptions 1-3 and 5, the following properties for (W, Y) ∈ �1 hold:
i) The solution for G(W, Y) exists and is bounded as W ≤ G(W, Y) ≤ G∗(W, Y).
ii) The solution for G(W, Y) is strictly increasing in W and strictly increasing in Y before 

liquidation. Additionally, H(W, Y) = G(W, Y) − W is strictly increasing in W .
iii) The solution for G(W, Y) is unique.

Finally, we establish the following properties for the liquidation, external financing, and in-
vestment decisions.
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Proposition 4. Under Assumptions 1-3, the following properties hold:
i) the optimal liquidation boundary is decreasing in W ;
ii) the firm delays costly equity issuance until it has entirely exhausted its cash;
iii) if PW(0, Y (I)) ≥ φ1 the investment threshold approaches infinity, i.e., Y(W) → ∞, as 

W → I from the left.

The proofs for the technical results in this subsection are provided in Appendix C.

5. Main results

We begin by motivating our choice of parameter values. We then proceed to numerically solve 
the model and provide economic intuition for the firm’s optimal liquidation, external financing, 
and investment policies. Our numerical solution is based on the variational inequality method 
in the preceding section. To ease our exposition, we also use the more familiar real-options for-
mulation that relies on value-matching and smooth-pasting conditions to characterize liquidation 
and investment decisions, but note that the equity-issuance decision for the survival purpose does 
not satisfy the smooth-pasting condition.12

5.1. Parameter values

Investors are risk neutral as is standard in the real options and dynamic corporate finance liter-
atures. However, for calibration purposes, we recognize that investors are risk averse. Using the 
standard asset pricing methodology, we can interpret our preceding analysis on the risk-adjusted 
basis by treating all our analysis as being done under the risk-neutral measure. Next, we explicitly 
incorporate the firm’s risk premium and beta.13

Let μP denote the drift of the process Y under the physical measure, ρ the correlation coeffi-
cient between the shocks to the firm’s fundamentals Y and the economy-wide systematic shock, 
and η the price of risk for the aggregate stock market. The drift of Y under the risk-neutral mea-
sure is then given by μ = μP − ρησ . The model described thus far can then be understood as 
one in which the firm’s risk premium is fully incorporated through the change from the physical 
measure to the risk-neutral measure.

Following Leland (1994) and others papers in the literature, we set the annual risk-free 
interest rate at r = 0.05 and the annual revenue growth volatility at σ = 0.1. Hence, if we 
take an expected growth rate of μP = 0.014 under the physical measure, a correlation coeffi-
cient of ρ = 0.8, and a market price of risk of η = 0.3, we obtain an expected growth rate of 
μ = μP − ρησ = 0.014 − 0.8 × 0.3 × 0.1 = −0.01 under the risk-neutral measure.

For the growth phase, we normalize the annual operating cost and the revenue multiple to 
Z1 = 1 and m1 = 1, respectively. Furthermore, to simplify the interpretation of our results we 
assume that the firm’s growth option delivers an identical additional operating asset, so that 
earnings are doubled from m1Y − Z1 = Y − 1 to m2Y − Z2 = 2(Y − 1) when the firm exercises 
its growth option. We also normalize the investment cost to I = 1.

12 In our model, these two approaches yield the same solution. Appendix D provides a sketch of the solution algorithm.
13 See Duffie (2010) for details on the equivalent martingale measure (risk-neutral) measure and how to connect the 
physical measure and the risk-neutral measure via Girsanov’s Theorem.
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For the external financing costs, we choose a low and a high level for the fixed cost φ0 for 
illustrative purposes: φ1 = 0.01 and φ0 = 0.5. For brevity, we focus on the case with φ1. Finally, 
we take the marginal financing cost to be φ1 = 0.01.

First-Best. The first-best liquidation hurdle in the growth phase is Y ∗
a,1 = 0.767. This implies 

that an unconstrained firm will continue as a going concern even when it incurs a loss as high as 
Z1 − m1Y

∗
a,1 = 0.333, or 33.3% of the operating cost Z1 = 1. The first-best liquidation hurdle in 

the mature phase is slightly higher, Y ∗
a,2 = 0.8. This means that the firm is less willing to absorb 

losses in the mature phase, as it is ready to abandon operations as soon as it incurs a loss larger 
than Z2 − m2Y

∗
a,2 = 0.4, or 20% of operating costs Z2 = 2.

The firm exercises its growth option when Y reaches the investment hurdle Y ∗
i = 1.3. At that 

level, the project value (including the value of the abandonment option) is Q∗(Y ∗
i ) = 8.39, and 

the NPV is H ∗(Y ∗
i ) = Q∗(Y ∗

i ) − I = 7.39. The minimum W needed for a firm to be permanently 
financially unconstrained in the mature phase is


2 = r − γμ

r2(1 − γ )
Z2 = 8 , (45)

which is four times the operating cost Z2 = 2. In the growth phase this lower bound is 
1 = 4.66, 
so that the firm is permanently financially unconstrained if W ≥ max{
1, I + 
2} = 9.

5.2. Inefficient liquidation or external financing for survival?

Financial constraints both distort investment and impose external financing costs on the firm. 
As a result, a firm is prone to abandon operations sooner than the first-best timing.

5.2.1. Liquidation policy
Liquidation in the growth phase involves the additional opportunity cost of losing any future 

growth options. Therefore, the firm is less willing to liquidate operations in the growth phase 
than in the mature phase, ceteris paribus.

The Growth Phase. Panel A of Fig. 1 plots the optimal liquidation hurdle W1(Y ) in the growth 
phase. The first-best abandonment threshold Y ∗

a,1 = 0.767 is indicated by the dotted line labeled 
MM. When the firm faces an external financing cost of φ0 = 0.5, it abandons operations sooner 
than the first-best, i.e., whenever Y ≤ 0.89. Note also that the firm may abandon operations even 
before it runs out of cash. That is, W 1(Y ) > 0 for Y < 0.89. For example, when Y = 0.8, the 
abandonment threshold for cash holdings is W1(0.8) = 0.12. Finally, the lower the earnings, the 
higher the firm’s W when it abandons operations.

Moreover, as Panel A shows, W 1(Y ) is a strictly decreasing function, indicating that the firm 
is increasingly eager to abandon as Y approaches Y ∗

a,1. In other words, the higher are the firm’s 
cash holdings W the less inefficient is the firm’s liquidation decision. The impact of external 
financing costs on the firm’s liquidation policy essentially disappears when the firm’s liquidity 
holding W reaches 1.2. Note finally that when the firm faces almost no fixed external financing 
cost, φ0 = 0.01, its abandonment policy closely approximates the first-best policy.

The Mature Phase. Panel B of Fig. 1 plots the liquidation hurdle W 2(Y ) for the mature phase. 
The shape of W 2(Y ) is similar to the liquidation frontier in the growth phase. The main differ-
ence with the liquidation policy in the growth phase is that the firm is strictly more conservative 
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Fig. 1. Abandonment hurdle, W 1(Y ) and W2(Y ), and equity issuance for survival, F1(Y ) and F2(Y ). Panels A and B 
plot the abandonment hurdles in the growth and mature phases, respectively. Panels C and D plot the equity issuance in 
the growth and mature phases, respectively.

in its continuation decisions in the mature phase. Compared with the first-best liquidation hur-
dle, Y ∗

a,2 = 0.8, a firm facing external financing costs φ0 = 0.5, liquidates sooner, i.e., when Y
reaches the level of 0.898. The reason is that the firm has no growth option in the mature phase 
and therefore has a lower continuation value than in the growth phase, other things equal (by 
construction we have constant returns to scale, m1/Z1 = m2/Z2 = 1).

5.2.2. Equity issuance: F1(Y ) and F2(Y )

In an environment with time-invariant external financing costs, as in our model, the firm is 
always better off delaying costly equity issuance as long as it can, as it is then able to save the 
time value of money on these financing costs. With a strictly positive liquidity buffer W the 
firm can always cover any flow operating losses, so that it never issues equity before it entirely 
exhausts its cash.

In sum, the firm will only decide to raise costly external equity if it runs out of cash, or if 
it wants to invest and has insufficient internal funds to cover the fixed investment cost I . In the 
growth phase the firm chooses to issue equity at W = 0, therefore,

G(0, Y ) = GF (0, Y ) , (46)

in the region where Y 1(0) < Y < Z1/m1. Otherwise, when Y ≤ Y 1(0), the firm is liquidated and 
hence G(0, Y) = 0.
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By revealed preferences, the dividing boundary Y 1(0) is higher than the first-best abandon-
ment hurdle Y ∗

a,1. Should the firm seek to raise new funds, its optimal external financing amount 
F1 is given by the FOC14:

GW(F1, Y ) = 1 + �′(F1) = 1 + φ1 , Y 1(0) < Y < Z1/m1 . (47)

That is, the marginal value of cash GW(F1, Y) must equal the marginal cost of external financing 
1 + �′(F1). Note that the firm’s marginal value of cash GW(W, Y) depends on its earnings 
fundamentals Y , and GW(W, Y) is greater than 1 at the moment of financing.

Similarly, in the mature phase, the firm only considers issuing equity at W = 0. Conditional 
on issuing equity, the firm’s value is

P(0, Y ) = P F (0, Y ) , (48)

in the region where Y 2(0) < Y < Z2/m2. Otherwise, when Y ≤ Y 2(0), the firm is liquidated 
and hence P(0, Y) = 0. Should the firm issue equity, the optimal external financing amount F2
satisfies the following FOC:

PW(F2, Y ) = 1 + �′(F2) = 1 + φ1 . (49)

Panels C and D of Fig. 1 plot the amount raised in the growth and mature phases, F1(Y ) and 
F2(Y ), when the firm has exhausted all internal funds and prefers to continue rather than abandon 
operations. When external financing is costly (φ0 = 0.5) the firm prefers to continue if Y ≥ 0.89
in the growth phase and Y ≥ 0.898 in the mature phase. When funding is cheap (φ0 = 0.01) the 
firm prefers to continue as long as Y ≥ 0.78 in the growth phase and Y ≥ 0.81 in the mature 
phase.

The two plots for Fn(Y ) can be understood as follows: the lower is Y , the more funds are 
needed to cover operating losses Zn − mnY ; at the same time, when Y is lower the value of 
continuation is also lower. The tension between these two considerations generally translates 
into a non-monotonic function Fn(Y ). For low values of Y , Fn(Y ) is increasing in Y , and for 
higher values of Y , Fn(Y ) is decreasing in Y . This can clearly be seen for the (dotted) plots of 
Fn(Y ) when φ0 = 0.01.15 Finally, note that when mnY > Zn the firm is able to accumulate cash 
from retained earnings and does not need any external funds.

In sum, the firm’s expectation about its future profitability influences its current financing 
policy. This is an important difference with Bolton et al. (2011), where the firm’s expected prof-
itability is constant over time.

In addition, the firm raises more if the fixed costs of external funding φ0 are higher. This can 
be seen for example, at Y = 0.9: when the fixed issuance cost φ0 increases from 0.01 to 0.5, the 
firm’s external financing, F1(0.89), then increases from 0.534 to 0.99. A firm that faces a larger 
fixed issuance cost wants to raise more funds to avoid going back to the capital markets. This 
prediction differs from those based on static models such as Froot, Scharfstein and Stein (1993)
and Kaplan and Zingales (1997), where the higher the fixed financing cost is the more financially 
constrained the firm is, and consequently the lower is the amount of equity financing it demands 
(the firm has no future financing considerations by assumption).

Next, we turn to the firm’s investment decisions.

14 We verify the second-order condition (SOC) to ensure that the FOC solution yields the maximal value.
15 It is not apparent for the plot of Fn(Y ) when φ0 = 0.5, as the fixed cost is then so large that the firm prefers to 
abandon rather than continue with unprofitable operations and limited funds.
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Fig. 2. Investment hurdle Y (W) and the post-investment liquidity level W + F1(Y (W)) − I . Panels A and B plot the 
investment hurdle Y (W) in the growth phase. Panels C and D plot the post-investment liquidity W + F1(Y (W)) − I at 
the transition into the mature phase.

5.3. The growth option: internal versus external financing

Static models, Froot, Scharfstein and Stein (1993) and Kaplan and Zingales (1997), also pre-
dict that firms with more internal funds invest more, as their overall funding costs are lower. 
Again, this prediction does not extend to a dynamic model in which firms can optimally time 
their investment. The main result of this section is that firms can become increasingly conser-
vative in exercising their growth option as they accumulate internal funds. The reason is that by 
delaying investment they may be able to avoid having to turn to costly external funds altogether. 
The closer firms are to entirely funding their investment outlays I with internal funds W , the 
higher the marginal expected return to delaying investment until they have entirely closed the 
funding gap I − W .

The Investment Timing Decision. Panels A and B of Fig. 2 plot the investment hurdle Y(W)

for two values of the fixed external financing cost, φ0 = 0.01 and φ0 = 0.5 in the regions 0 ≤
W < I = 1 and W ≥ 1 respectively. Recall that a firm is financially unconstrained in the growth 
phase if its liquidity W is greater than I + 
2 = 9. We plot Y(W) for W only up to W = 2.4 in 
Panel B because the investment threshold effectively converges to the first-best hurdle Y ∗

i = 1.30
as W → 2.4. Consider first the region where the firm’s internal funds W are sufficient to cover its 
investment cost I = 1 (Panel B). In this region the firm finances its investment outlays entirely 
out of internal funds. As the plot of Y(W) shows, the higher is W the less distorted is the firm’s 



24 P. Bolton et al. / Journal of Economic Theory 184 (2019) 104912
investment timing decision. With a higher W , the firm’s mature value is higher, as it is less likely 
to run out of cash. As a result, the firm is eager to invest sooner.

Consider next the low cash-holding region W ∈ [0, I ). Panel A of Fig. 2 plots the investment 
hurdle Y(W) as a function of W in the region [0, 1). When φ0 = 0.5, Y(W) is strictly increasing 
and convex in W , going from 1.409 at W = 0 to +∞ as W tends I = 1. When φ0 = 0.01, Y(W)

is weakly increasing and convex in W .
This remarkable result is exactly the opposite from the prediction of a static model. Far from 

behaving like a less constrained firm as W → I , it behaves like a much more constrained firm. 
What is the logic behind this behavior? In essence, as W → I the firm increasingly wants to 
avoid the fixed external financing cost by waiting until it has accumulated sufficient internal 
funds rather than taps costly external funds to finance its investment as the firm is very close 
to accumulate enough funds to cover investment costs. Therefore, it therefore takes a larger and 
larger expected earnings fundamentals Y to motivate the firm to invest immediately via costly 
external financing.

Another way of understanding this result is that the firm’s investment-timing decision trades 
off the value of the option to delay against the present cost of financing the investment. When the 
firm is financially constrained both the valuations of the timing option and the cost of investment 
vary with the marginal value of cash. In other words, for a firm the valuation of the timing option 
and the investment cost are fundamentally interconnected through the marginal value of cash, 
unlike in the standard textbook real options analysis.

The financing decision upon investment. Panels C and D of Fig. 2 plot the firm’s post-
investment liquidity at time τi+, Wτi+ = Wτi

+ F1(Wτi
) − I , where F1(Wτi

) denotes the net 
amount of external funds raised when the firm decides to invest at time τi . The following condi-
tions hold under optimal external financing: either

PW(W + F1(W) − I,Y (W)) = 1 + φ1 , and F1(W) ≥ I − W , (50)

or

PW(W + F1(W) − I,Y (W)) ≤ 1 + φ1 , and F1(W) = I − W . (51)

Condition (50) states that the marginal value of cash at investment equals the marginal cost of 
financing. In this case, the firm issues at least I − W . Condition (51) is when the optimum is at 
the corner. In this case, the firm’s net equity issue is I − W and together with internal funds W , 
the firm’s total funds is just sufficient to cover its investment cost I .16

When W < I , the firm is less willing to invest as W increases. In other words, the firm’s 
investment hurdle Y(W) increases with W , so that post investment the firm is better able to gen-
erate internal cash flows from operations when pre-investment liquidity W is higher. Therefore, 
the amount of post-investment liquidity Wτi+ needed decreases with the firm’s current liquid-
ity W , as shown in Panel C. When the firm faces low external financing costs (φ0 = 0.01) the 
post-investment liquidity is essentially zero at all levels of W , since the firm only needs to ob-
tain liquidity to cover the financing gap I −W . Panel D also illustrates that F1(Wτi

), the optimal 
amount of external funds raised when the firm decides to invest, is equal to 0 when W ≥ I , so that 

16 In this case, the firm’s marginal value of liquidity at investment must be weakly lower than the marginal cost of 
issuance. If this were not true, the firm would have chosen to issue equity in excess of I − W , which in turn equates the 
marginal value of cash with the marginal cost of equity issue. But this is the first case that we have already discussed.
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Fig. 3. Enterprise values in the growth and mature phases, H(W, Y ) and Q(W, Y ). Panels A and B plot H(W, Y ) and 
Q(W, Y ) for Y = 0.82. Panels C and D plot H(W, Y ) and Q(W, Y ) for Y = 1.18.

Wτi+ = Wτi
− I . This result is simply a consequence of the dynamic pecking order of financing

principle.

5.4. Value loss due to costly external financing

Our next set of results establishes how large the loss in firm value due to external financ-
ing costs can be. This loss stems directly from the financing costs per se and indirectly from 
the distortions in investment and abandonment policies. A key conclusion from our quantitative 
analysis is that low operating earnings fundamentals Y and low cash buffers W compound in 
making the loss particularly large, as Fig. 3 illustrates.

This result at the individual firm’s level for a stand-alone firm contributes to the downward-
spiral adverse-feedback mechanism in the financial intermediation and crisis literature. For 
example, Brunnermeier and Sannikov (2014) show how an adverse shock to the fundamen-
tals (capital shock in their model) weakens a financially constrained productive sector’s balance 
sheet, which further causes underinvestment generating an adverse feedback loop from the fun-
damentals shock to the equilibrium price of capital.

Panels A and C plot the firm’s enterprise value H(W, Y) = G(W, Y) −W in the growth phase 
for two values of Y , a low value Y = 0.82 for which the firm incurs operating losses, and a high 
value, Y = 1.18, for which the firm makes a profit.

Enterprise value H(W, Y) is, of course, lower the higher are external financing costs φ0. As 
the plots for H(W, Y) illustrate, the loss is particularly large when φ0 = 0.5, Y = 0.82, and 
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the firm runs out of cash. When W approaches 0 the entire first-best enterprise value is then 
essentially wiped out. In contrast, when φ0 = 0.01 the firm loses only around 10% of the first 
best value when W approaches 0. And when Y = 1.18 the loss in value is small even when 
financing costs are high.

A simple yet robust insight from these results is that the significance of external financing 
costs varies considerably with the firm’s operating revenues. One should therefore not expect to 
see a stable relation between firm value and external financing costs in the data.

Panels B and D of Fig. 3 plot the firm’s enterprise value in the mature phase:

Q(W,Y ) = P(W,Y ) − W . (52)

The same qualitative results on value loss obtain in the mature phase as in the growth phase, 
although the size of the losses is somewhat smaller.

In sum, these results illustrate how operating earnings fundamentals Y and internal funds W
are substitutes in terms of mitigating financial constraints. Moreover, abstracting from financial 
flexibility considerations when determining the firm’s real option decisions–as most of the real 
options literature has done–could generate highly misleading predictions and vastly overstate 
the value of real options. Equally, an exclusive focus on financial frictions that ignores the fir-
m’s real flexibility–as is the case for most of the corporate financial constraints literature–risks 
understating the value of precautionary savings.

6. Simulating the firm’s life-cycle

To provide further insight into the dynamics of investment, SEOs, cash management, and 
abandonment decisions, we simulate one sample path of earnings fundamentals Y with two initial 
cash holding values, W0 = 0.1 and W0 = 0.2, with baseline parameter values and φ0 = 0.5. The 
evolution of corporate decisions are illustrated in Figs. 4 and 5, respectively. Table 1 reports 
the decisions and calculates the implied equity ownership dynamics that follow from the firm’s 
decisions over the simulated path used in Figs. 4 and 5.

In the MM world, the optimal investment time for this sample path is t = 2.03, just when the 
firm’s earnings Yt reach 1.3, and the abandonment time is t = 39.5, just as the firm’s earnings Yt

hit the low level of 0.8. Thus, the firm is willing to fund losses of up to 20% of operating costs 
Z2 = 2 under this scenario to maximize the value of its abandonment option.

Recall that when the firm incurs an external financing cost �(Ft) as it raises equity Ft at 
time t , the firm’s post-issuance value is P(Wt+, Yt+). Let ωt+ denote the equilibrium fraction of 
the newly issued equity held by outside investors. By competitive market pricing, we have:

ωt+ = Ft + �(Ft )

P (Wt+, Yt+)
= 1 − P(Wt ,Yt )

P (Wt+, Yt+)
, (53)

as the new investors just break even under perfectly competitive capital markets. Under the simu-
lated sample-path we can highlight the dynamics of equity dilution by keeping track of the equity 
ownership of the original investors who have stayed with the firm since its inception. We denote 
by αt the ownership share of the original equity holders at time t , with α0 = 1 by construction. 
As the firm issues equity to finance investment and/or replenish liquidity over time, the original 
equity investors’ ownership then evolves as follows:

αt+ = αt (1 − ωt+) . (54)
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Table 1
Equity ownership dynamics and (investment, equity issue, and abandonment) timing decisions for a simulated path. The 
parameter values are r = 0.05, μ = −0.01, σ = 0.1, I = 1 m1 = Z1 = 1, m2 = Z2 = 2, φ1 = 0.01 and φ0 = 0.5. For 
the given simulated path with Y0 = 1, we consider two cases with W0 = 0.1 and W0 = 0.2. Under the first-best case, the 
investment time is t = 2.03 and the abandonment time is t = 39.5.

Time t Firm’s
earning Yt

Net equity 
issue Ft

Gross equity issue 
Ft + �(Ft )

% of equity 
issue ωt+

Original investors’ 
ownership αt+ (%)

Panel A: W0 = 0.1

0 1 0 0 0 100%
1.16 0.913 0.98 1.49 30.1% 69.9%
2.04 1.314 0 0 0 69.9%
10.4 0.931 1.17 1.68 82.6% 12.2%
23.8 0.890 0 0 0 liquidation

Panel B: W0 = 0.2

0 1 0 0 0 100%
2.23 1.443 1.11 1.62 12.8% 87.2%
12.9 0.921 1.18 1.69 88.3% 10.2%
24.4 0.926 1.17 1.68 85.1% 1.5%
37.6 0.839 0 0 0 liquidation

In other words, with no issuance ωt+ = 0 and αt+ = αt , so that α does not change. But when new 
equity is issued at time t , with a strictly positive ownership stake for new investors of ωt+ > 0, 
the original equity investors’ equity is diluted to αt+ from αt according to (54).

Fig. 4 plots the scenario where the firm starts with a low cash stock of W0 = 0.1. Panel A 
plots the path of earnings fundamentals Yt starting with Y0 = 1. Note first that when the firm faces 
external financing costs at t = 1.16 where it exhausts its liquidity as W1.16 = 0 and Y1.16 = 0.913, 
and the firm issues net equity of F1(0.913) = 0.98 to replenish its liquidity from W1.16 = 0 to 
W1.16+ = 0.98, by selling ω1.16+ = 30.1% of its equity, and the equity share is α1.16 = 69.9%.

And then it exercises its investment option at time t = 2.04 when Yt reaches 1.314. It then 
pays the investment cost I = 1 solely out of internal funds, thus depleting its stock of cash W2.04+
down to 0.057, as illustrated in Panel B. In this case, obviously there is no equity dilution and 
α2.04 = 69.9%.

Next, at t = 10.4, when the firm’s fundamentals Y10.4 falls to 0.931 and it has exhausted its 
savings, the firm issues net equity of F2(0.931) = 1.17 to replenish its liquidity from W10.4 = 0
to W10.4+ = 1.17, by selling ω10.4+ = 82.6% of its equity. At that point the firm’s original owners 
are nearly wiped out and only retain a stake of α10.4+ = 12.2%.

Finally, at t = 23.8, when the firm runs out cash for the second time and Yt reaches 0.890, it 
simply abandons its asset. At this low point the cost of new external financing simply outweighs 
the benefit of keeping the firm as a going concern.

Fig. 5 plots the scenario where the firm starts with a higher cash stock of W0 = 0.2. Panel A 
again plots the identical simulated path of earnings fundamentals Yt starting with Y0 = 1. As the 
firm’s Yt reaches 1.443 at t = 2.23, the firm finances its investment cost I = 1 via a combination 
of external equity (F(1.443) = 1.11) by issuing a fraction of ω2.23+ = 12.8% firm’s equity and 
internal funds (0.22), leaving the firm with a stock of post-investment cash of W2.23+ = 0.33 (as 
shown in Panel B). As a result, the original owners are diluted down to an ownership stake of 
α2.23+ = 87.2% (as shown in Panel D).
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Fig. 4. Investment, liquidity accumulation, external equity issue, ownership dynamics, and liquidation for a simulated 
path. The firm’s initial cash holding is W0 = 0.1.

At t = 12.9, when earning Yt has collapsed to 0.921 and the firm’s liquidity has been drained, 
the firm returns to the capital markets and raises a net amount of F2(0.921) = 1.18 by selling 
ω12.9+ = 88.3% of the firm’s equity, thus further diluting the firm’s original owners’ down to 
α12.9+ = 10.2% (see Panel D). Next, at t = 24.4, as the firm’s liquidity Wt is again drained out, 
the firm yet again issues equity by selling ω18.6+ = 85.1% of the firm’s equity, raising a total net 
amount of F = 1.17 and diluting the original owners down to a small stake of α24.4+ = 1.5%. 
Finally, at t = 37.6 the firm almost runs out of cash again and abandons its asset given that 
expected operating earnings hit the low level of Yt = 0.839; it then distributes the remaining 
cash 0.08 to its shareholders.

Comparing the two scenarios, we make the following observations: First, in all cases where the 
firm issues equity for purposes of replenishing its liquidity it chooses different financing levels 
because each time it faces different expected operating earnings when it exhausts its liquidity. 
Second, the firm with W0 = 0.1 turns out to abandon its asset sooner (at t = 23.8) than the firm 
with W0 = 0.2 (at t = 37.6), which runs counter to the conventional wisdom that a firm with 
more initial liquidity abandons its operations later.

7. Cash-carry costs and payout policy

A helpful simplification in our analysis so far has been that there is no opportunity cost for 
the firm in holding cash. In reality, however, firms do face an opportunity cost in holding cash 
and therefore do decide to pay out some of their accumulated profits when retained earnings are 
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Fig. 5. Investment, liquidity accumulation, external equity issue, ownership dynamics, and liquidation for a simulated 
path. The firm’s initial cash holding is W0 = 0.2.

high. Accordingly, in this section we extend the model by introducing cash-carry costs. We now 
assume that instead of earning the market interest rate r on its cash savings the firm only earns 
(r − λ), where 0 < λ < r represents the firm’s unit cash-carry cost.

In this case, it is sometimes optimal for the firm to pay out before it closes operations. Specif-
ically, there is an endogenous upper boundary W(Y) such that it is strictly optimal for the firm 
to pay out any excess cash W − W(Y) to its shareholders. With cash-carry cost λ, the cash 
accumulation process is as follows, in the growth phase

dWt = ((r − λ)Wt + m1Yt − Z1)dt + dCt − dUt , Wt ≥ 0, (55)

and in the mature phase

dWt = ((r − λ)Wt + m2Yt − Z2)dt + dCt − dUt , Wt ≥ 0 . (56)

When Y < ∞, there exists a payout boundary 0 < W(Y) < ∞ such that the value of an 
additional retained dollar is exactly equal to the value of paying out that dollar to shareholders. 
And if the firm starts out with W > W(Y), it distributes the difference W −W(Y) as a lump sum 
and thereby brings down the cash stock to W(Y). Since firm value must be continuous before 
and after cash distribution, the value P(W, Y) for W > W(Y) is given by

P(W,Y ) = P(W(Y ),Y ) + (W − W(Y)), W > W(Y) . (57)

All other optimality conditions remain the same as in the baseline model.
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The firm’s payout decision is jointly determined with its investment and liquidity management 
policies. In the growth phase, the firm has no reason to make any payout if its earnings funda-
mentals Y are relatively high but still lower than the endogenous investment boundary, because 
it then expects to invest and expand its operating capacity in the future.17

As Fama and French (2001) have noted, growth firms tend to delay dividend payments as they 
expect to spend their retained earnings on investment outlays. However, when operating earnings 
fundamentals Y are so low that expansion is unlikely, the firm may prefer to make a payout to 
shareholders rather than inefficiently burn through its cash holdings. Thus, in the growth phase 
one would expect the firm to make payouts when Y is low and not when Y is high. In contrast, 
in the mature phase, one would expect the firm to be more eager to pay out retained earnings the 
higher are its operating revenues.

The results shown in Figs. 6 and 7 confirm these insights. These two figures display the firm’s 
optimal decisions–the payout, inaction, investment and liquidation regions–for any pair (W, Y). 
The parameter values are the same as for the baseline model, with the addition of the cash carry 
cost λ = 0.02.

There are three regions in the mature phase, each with a single optimal action. When (W, Y)

are to the right of the dashed payout boundary and when Y exceeds the dotted line, the firm 
optimally pays out some of its earnings, as shown in the payout region of Fig. 6. When (W, Y)

take intermediate values in the “inaction region” bordered by the (dashed) payout boundary, the 
(solid) liquidation boundary, and the y-axis, it is optimal for the firm to continue operations while 
retaining all of its earnings. When Y is below the solid blue line, which extends into the dotted 
liquidation-line, the firm is in the “liquidation region”. It is then best for the firm to abandon 
operations.

The dashed, payout-frontier is downward sloping over most of the region 0.9 < Y < 1.35, 
illustrating the basic tradeoff the firm faces: when the internal cash-flow generating machine is 
less productive it is worth building a larger retained earnings buffer.

Note, however, that there is a small non-monotonic segment of the payout boundary. This 
segment is explained by the fact that when Y is less than Z2/m2 = 1, the firm is making operating 
losses so that there are two competing forces at play: 1) building a larger liquidity buffer to 
be able to absorb these loses and ride them out, which causes a downward sloping liquidation 
boundary, and 2) avoiding throwing good money after bad, which encourages earlier liquidation 
to minimize operating losses. The latter force dominates when the firm’s operating performance 
is close to the solid, liquidation-boundary, and the former dominates when operating losses are 
relatively low.

Optimal policies in the growth phase are more intricate, as Fig. 7 illustrates. The firm faces 
more decisions in this phase, so that there are five policy regions in total in this phase.

1. When (W, Y) are high, with W ≥ I = 1, the firm invests by entirely funding the fixed invest-
ment cost out of internal funds, as is indicated by the Investment Only region.18

17 If its earnings fundamentals Y is even higher than the firm’s optimal investment boundary, the firm optimally imme-
diately invests, becoming a mature firm. Our analysis for the mature firm applies accordingly.
18 Note that when Y ≥ 1.29, the firm immediately exercises its growth option provided that W ≥ 1. This is in contrast to 
the investment policy displayed in Panel B of Fig. 2, when the firm has no cash carry costs. In that case the firm somewhat 
delays its investment as W approaches 1 from above. The reason is that the firm prefers to continue building up its cash 
buffer before investing, so as to continue with a higher cash (working capital) buffer after incurring the investment cost 
I = 1. When the firm faces cash carry costs this motive is essentially undone by its desire to save on these costs.
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Fig. 6. Liquidation and payout in the mature phase. Parameters used: r = 0.05, μ = −0.01, σ = 0.1, m2 = Z2 = 2, 
φ1 = 0.01, φ0 = 0.5, λ = 0.02. In the payout region, the firm optimally pays out a lump-sum dividend in order to 
reach the payout boundary. For example, a firm with (W, Y ) = (0.78, 1.14) chooses to pay out a one-time dividend in 
the amount of 0.18 to reach (0.6, 1.14) on the boundary. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

2. When Y takes intermediate values and W is high the firm does not invest but pays out some 
of its earnings, as indicated by the Payout region. In this region the operating asset is not 
sufficiently profitable to exercise the growth option. Given that the firm is not planning to 
immediately spend its internal funds on capital outlays, it prefers to pay out some of its 
liquidity buffer rather than pay the full cash carry cost λW .
Note that the payout boundary W(Y) has a somewhat complex shape. This is again explained 
by the fact that when the firm is making losses (Y < 1) the two competing forces described 
above are at play. In addition, when Y approaches the investment threshold Y = 1.29 from 
below and when W ≥ 1 the firm prefers to delay payout in anticipation of the future invest-
ment outlays and its greater need for internal funds.

3. For low values of Y it is optimal for the firm to abandon operations and disburse any accu-
mulated internal funds W , as is indicated by the Liquidation region.

4. For intermediate values of (Y, W) the firm is optimally in a business as usual mode and 
does not take any significant decisions, whether it is investment, abandonment, or external 
financing, as indicated by the Inaction region.

5. Finally, for values of (Y, W) such that Y is high but W < 1, it is optimal for the firm to 
invest even if it requires external financing to cover the investment outlays, as is shown by 
the Investment and Equity Issue region. In this situation the firm uses a combination of funds 
from internal sources and from a (costly) external equity issue.
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Fig. 7. Investment, liquidation and payout in the growth phase. Parameters used: r = 0.05, μ = −0.01, σ = 0.1, m1 =
Z1 = 1, m2 = Z2 = 2, φ1 = 0.01, φ0 = 0.5, I = 1, λ = 0.02.

Fig. 8. The effects of cash-carry cost λ on the investment hurdle Y (W).

The effects of cash-carry costs on investment. Fig. 8 illustrates the effects of cash-carry costs 
λ on investment. Panel A exhibits the shift in the investment threshold induced by a change in 
λ in the low-cash holding region (W < I ) where the firm has to raise some external equity to 
finance the investment cost I . Panel B plots the same relation in the medium-cash holding region 
(W > I ) where the firm has sufficient internal funds to finance its investment cost. In both panels, 
we find that the investment threshold is monotonically decreasing with the cash-carry cost λ. This 
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is intuitive: the higher the cash-carry cost λ, the sooner the firm invests, as the opportunity cost 
of holding cash is higher.

With internal financing of the investment (Panel B), the investment threshold also decreases 
with W for a given λ, as there is a diminishing marginal value of holding cash when the cash 
buffer is larger. However, when external financing is needed (Panel A), the investment threshold 
for a given λ is increasing in W , as the firm increasingly prefers to wait until it has accumulated 
sufficient internal funds to entirely cover the investment cost and thereby avoid costly external 
financing.

Overall, these results point to a simple and robust payout policy pattern: growth firms should 
only pay out retained earnings if their growth opportunities are unappealing; in contrast, mature 
firms should pay out retained earnings when their operating earnings are high, and should not 
when their earnings are low.

8. Sequential investment opportunities

To capture how future investment opportunities may influence a firm’s current investment and 
financing decisions, we next generalize our model to allow for two rounds of investment options. 
We refer to stage 0, when the firm has not yet exercised any investment option, as the start-up 
phase; stage 1, after the firm has made its first investment, as the growth phase; and, stage 2, 
after the firm has completed both investment rounds, as the mature phase.

This extension brings out one striking new effect: an acceleration of the first investment with 
the objective of building internal cash-flow generation capacity to relax financial constraints for 
the second round of investment. That is, we show that a firm may invest sooner than an otherwise 
unconstrained firm, in an effort to increase its capacity to generate cash.

The main change to the baseline model is the addition of a start-up phase in which the firm 
has no operating asset. In this phase the firm has two growth options. We denote the fixed cost 
of the nth growth option by In, with n ∈ {1, 2}. As before, the revenue process generated by the 
operating assets is given by mnYt and the operating cost by Zn. Once the firm has exercised its 
first growth option the model is identical to the baseline model. The mature and growth phases 
therefore inherit the same firm value, the same dynamics for liquidity, and the same abandonment 
decisions as in the baseline model.

In stage 0, the start-up phase, the firm’s liquidity Wt accumulates as follows:

dWt = rWtdt + dCt , Wt ≥ 0, (58)

where {Ct ; t ≥ 0} denotes as before the firm’s cumulative equity issues, and dC is the net equity 
raised. We denote by S(W, Y) the value of the firm in this start-up phase. As in the growth and 
mature phases, S(W, Y) satisfies the following conditions:

1. S(W, Y) ≥ W ,
2. S(W, Y) ≥ SF (W, Y) = supF0≥0 S(W + F0, Y) − F0 − �(F0),
3. S(W, Y) ≥ SI (W, Y) = supF0≥0 G(W + F0 − I1, Y) − F0 − �(F0).

In the interior operating region S(W, Y) satisfies L0S = 0, where L0 is the infinitesimal gen-
erator in the start-up phase:

L0S = rWSW + μYSY + σ 2Y 2SYY − rS . (59)

2
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Fig. 9. The optimal investment threshold Y 1(W) in the startup phase: The case with sequential growth options. Parameters 
used: r = 0.05, μ = −0.01, σ = 0.1, m1 = Z1 = 1, m2 = Z2 = 2, φ0 = 0.5, φ1 = 0.01, I1 = 0.5, I2 = 1.

Given that the analysis of the start-up phase proceeds along similar lines as the analysis of the 
baseline model, we only report the most striking novel result on the investment threshold policy 
Y 1(W) in the start-up phase (phase 0) when the firm has no asset in place at all.19

We set I1 = 0.5, at half the fixed investment cost for exercising of the second growth option. 
All the other parameter values are the same as for the solution in our baseline model. With these 
parameter values, the first-best investment threshold in the start-up phase is given by Y ∗

i,1 = 1.27.

Fig. 9 plots the optimal investment threshold Y 1(W) for the first investment option over the 
interval W ∈ [0, 2.5]. It shows that Y 1(W) is monotonically increasing in W in the region W <

I1 = 0.5, consistent with our earlier findings for the baseline model.
The striking new result is for W ≥ 0.5, when the firm invests more aggressively than under 

the first best: Y 1(W) < Y ∗
i,1 = 1.27. The firm accelerates the timing of its first growth option in 

order to access the internal funds generated by the operating asset. By over-investing in the first 
growth option, the firm gains overall because the benefit of relaxing the financial constraint for 
the second growth option outweighs the cost of accelerating the first growth option.

This result reflects a more general principle: other things equal, financially constrained firms 
prefer growth opportunities with front-loaded cash-flows. In the classical MM-based real options 
framework there is a basic equivalence between an option that pays the present discounted value 
as a lump sum and an option that pays a cash flow of equivalent present value over time. This is 

19 In this generalized model, we have two rounds of investment decisions. Therefore, we use Y 1(W) and Y 2(W) to 
denote the first and second growth-option exercise-thresholds, respectively. Similarly, we use Y ∗

i,1 and Y ∗
i,2 to denote the 

first-best exercise-thresholds for the first and second growth-option.
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not the case in our real-options model for a financially constrained firm as the over-investment 
result above illustrates. Our more general model can thus explain why in reality firms tend to 
prefer projects with front-loaded cash flows.

9. Conclusion

Our generalization of the classic real options framework of McDonald and Siegel (1986) to 
include financing considerations reveals the risks for corporations of overly relying on textbook 
real-options tools (that assume away financing costs) to guide their investment policies and to de-
termine the value of their real options. Although the classical real option framework can provide 
a satisfactory approximation for firms with adequate internal funds and with highly profitable 
operating assets, we have shown that it is highly misleading for moderately profitable firms, with 
low or even medium levels of internal funds. For the latter firms the value of growth options is 
not only substantially lower than the estimates produced by classical option pricing tools, but 
also the lack of internal funds to finance capital expenditures results in significant deviations in 
the optimal investment policy from that prescribed by the classical real options model.

Our general real options framework with financial constraints is particularly relevant for en-
trepreneurial firms, for which growth options represent the most significant part of their value, 
and for which external financing costs are highest and internal funds tightest. The reason why 
these firms face high external financing costs is that they have little collateral to offer and there-
fore have to rely mostly on external equity financing, for which information dilution costs à la 
Myers and Majluf (1984) are very high. As our analysis of sequential investment options indi-
cates, a strategy to relax financial constraints that some start-ups have adopted is to invest in an 
operating asset before the long-term viability of that asset could be ascertained, in an attempt to 
generate internal cash flows that could be useful towards financing future growth options.

Our analysis of payout policy also reveals how dividend and stock repurchase policies are tied 
to growth opportunities. In the presence of such opportunities it is optimal for the firm not to 
pay out retained earnings, as internal funds are better deployed towards funding the firm’s future 
capital expenditures. But once these opportunities have been seized, optimal payout policy flips: 
more profitable firms pay out more, exactly the opposite of the policy in the growth phase. The 
empirical literature on dividend policy (e.g. Fama and French, 2001) finds that growth firms do 
delay dividend payments and our analysis offers a simple explanation for this behavior.

Although the introduction of financial constraints in a real options model is a significant gener-
alization, our model falls short of accurately representing several aspects of financial constraints 
that firms face in reality. For example, we have assumed for simplicity that external financing 
costs are the same whether the firm is in the start-up, growth, or mature phase. In reality, chances 
are that external financing costs are lower for firms with a proven track record or for firms who 
have assets in place that can serve as collateral. We have also suppressed any possibility of debt 
financing, including allowing the firm access to a line of credit it could draw down when it faces 
a liquidity squeeze. Accordingly, extending our model to allow for a richer and more realistic 
description of external financing options is an obvious next step in developing this framework 
further.

Appendices

Appendix A provides some details for the First-Best solution. Appendix B and C provide 
proofs for the results for the general case with financial constraints in the mature phase and 
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the growth phase, respectively. Finally, Appendix D provides a sketch of our numerical solution 
procedure.

Appendix A. Technical details for the first-best solution

Below we report the explicit solutions for the first-best abandonment hurdle in the mature 
phase Y ∗

a,2, the first-best investment threshold Y ∗
i , and the first-best abandonment threshold Y ∗

a,1
in the growth phase. Sundaresan et al. (2015) provide derivational details for essentially the same 
first-best real-option problem. For brevity, we skip the derivations here.

The abandonment hurdle Y ∗
a,2 in the mature phase is given by:

Y ∗
a,2 = γ

γ − 1

r − μ

r

Z2

m2
, (A.1)

where the constant γ is given by:

γ = 1
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μ − σ 2

2

)
−

√(
μ − σ 2

2
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The investment threshold Y ∗
i and abandonment threshold Y ∗

a,1 in the growth phase jointly 
solve the following equations:
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and
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where the constant γ is given by (A.2) and the constant β is given by:

β = 1
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Appendix B. Proofs for the general case in the mature phase

B.1. Proof for Lemma 1

For any given time t , we can construct a control policy Â ∈A with Â = {(τ 2
L = t, τ 2

F > t, F2)}
such that the firm is liquidated immediately at time t . Under this policy, we have
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P(Wt ,Yt ; Â) = Wt .

Since P(Wt , Yt ) = supA∈A P(Wt , Yt ; A) ≥ P(Wt , Yt ; Â), it immediately follows that
P(W, Y) ≥ W .

B.2. Proof for Lemma 2

For any given time t , we can construct a control policy Â ∈ A with Â = {(τ 2
L > t, τ 2

F =
t, F2 ≥ 0)} such that the firm issues equity at time t and for any s ≥ t we assume that the firm 
takes the optimal liquidation and financing decisions, including financing timing and the choice 
of the optimal amount F2. Under the above policy, the (optimal) value function at time t is 
P(Wt− + F2, Yt−) − F2 − �(F2) where t− is the left limit of t . By the continuity of value 
function upon the equity issue, we have

P(Wt−, Yt−; Â) = P(Wt− + F2, Yt−) − F2 − �(F2) .

Since the time of the equity issue for τ 2
F = t may not be optimal, we have

sup
A∈A

P(Wt−, Yt−;A) ≥ sup
F2≥0

P(Wt−, Yt−; Â) = sup
F2≥0

P(Wt− + F2, Yt−) − F2 − �(F2) .

Recall that P(Wt−, Yt−) = supA∈A P(Wt−, Yt−; A), so that

P(Wt−, Yt−) ≥ sup
F2≥0

P(Wt− + F2, Yt−) − F2 − �(F2) .

B.3. Proof for Lemma 3

See details in the main text following Lemma 3.

B.4. Proof for Lemma 4

First, for sufficiently high W , i.e. W ≥ 
2, the firm is permanently financially unconstrained 
and hence Lemma 4 directly follows from Lemma 3.

Next, we consider the case when the firm is financially constrained, i.e., when Wt < 
2. By 
applying Lemma 1 and Lemma 2 to (13), we obtain

P(Wt ,Yt ) ≥Et

[
e−(τ2

U −t)P ∗(Wτ 2
U
,Yτ 2

U
)
]

≥ Et

[
e−(τ2

U −t)P (Wt ,Yτ 2
U
)
]

. (B.1)

Here, the first inequality follows from the fact that the first two terms in (13) are positive and 
the second inequality follows from Wτ 2

U
= 
2 > Wt and the result that the value function is 

monotonic in W , as stated in Proposition 1.
Consider a small time interval (t, t + �t) where �t > 0. As Yt → ∞, the firm abandons its 

operations or issues equity with zero probability. This is because Wt+�t > 
2, as Yt → ∞. One 
can check this result by using the dynamics of Wt , given in (5) to this case. That is, as Yt → ∞, 
τ 2
U → t with probability one. When τ 2

U → t , (B.1) boils down to

P(Wt ,Yt ) ≥ P ∗(Wt ,Yt ) ≥ P(Wt ,Yt ) . (B.2)

That is, P(Wt , Yt ) = P ∗(Wt , Yt ) if τ 2
U → t . Put differently, the firm achieves the first-best out-

come and hence P(W, Y) = P ∗(W, Y) = W + Q∗(Y ) when Y → ∞.
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B.5. Proof for Theorem 2

Verification. We establish that any piecewise C2 function which is a solution to equation (25)
associated to problem (13) is a majorant of the value function P .

Proposition 5. (Verification) Suppose we can find a positive function P̃ which is piecewise C2 on 
the region �2 with bounded first derivatives20 and such that for all (W, Y) ∈ �2,

L2P̃ ≤ 0, (B.3)

P̃ (W,Y ) ≥ W, (B.4)

P̃ (W,Y ) ≥ sup
F2≥0

P̃ (W + F2, Y ) − F2 − �(F2) , (B.5)

with boundary conditions P̃ (W, Y) = P ∗(W, Y) for W = 
2 or Y → ∞, then P̃ (W, Y) =
P(W, Y) for all (W, Y) ∈ �2.

Proof. We first show that P̃ (W, Y) ≥ P(W, Y). Notice that A is a control policy in problem 
(13), where A ∈ A and A is the set of all policies. Then, by definition, we have (14). If we can 
show that P̃ (W, Y) ≥ P(W, Y ; A) for any control policy A ∈A, then it follows that P̃ (W, Y) ≥
P(W, Y).

Using the generalized Ito’s formula (Dellacherie and Meyer (1980), Theorem VIII-25 and 
Remark c, p. 349), we can write:

e−r(τ2−t)P̃ (Wτ−, Yτ2−) = P̃ (Wt ,Yt ) +
τ2−∫
t

e−r(s−t)L2P̃ (Ws,Ys)ds

+
τ2−∫
t

e−r(s−t)P̃Y (Ws,Ys)σYsdBs .

Since P̃ satisfies (B.3), the second term of the right hand side is non-positive. Moreover, since 
the first derivative of P̃ is bounded, the third term is a square integrable martingale. Taking 
expectations, we then get:

Et

[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
≤ P̃ (Wt ,Yt ) .

Suppose that the firm issues equity N times from time 0 to time τ 2
L ∧ τ 2

U , and divide the 
time interval (0, τ 2

L ∧ τ 2
U) into N + 1 subperiods. We define τ 2

Fn
as the time of the n-th round of 

external financing, where 1 ≤ n ≤ N . During the last period (τ 2
FN

, τ 2
L ∧ τ 2

U) we then have:

P̃ (Wt ,Yt ) ≥ Et

[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
=Et

[
e−r(τ2−t)P̃ (Wτ2, Yτ2)Iτ2=τ2

L
+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2

U

]
≥ Et

[
e−r(τ2−t)Wτ2 Iτ2=τ2

L
+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2

U

]
= P(Wt ,Yt ;A) , (B.6)

20 In the sense of Definition 4.8, p. 271 in Karatzas and Shreve (1988).
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where we have used the condition (B.4) for the second inequality.
During the N -th external financing subperiod (τ 2

FN−1
, τ2) we have in turn:

P̃ (Wt ,Yt ) ≥ Et

[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
=Et

[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)Iτ2=τ2

FN

]
≥ Et

[
e−r(τ2−t) sup

F2≥0

[
P̃ (Wτ2− + F2, Yτ2−) − F2 − �(F2)

]
Iτ2=τ2

FN

]

=Et
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e−r(τ2−t) sup

F2≥0

[
Eτ 2

FN

[
P̃ (Wτ2− + F2, Yτ2−)

] − F2 − �(F2)

]
Iτ2=τ2

FN

]

≥ Et

[
e−r(τ2−t)

[
Eτ 2

FN

[
P(Wτ2− + F2, Yτ2−)

] − F2 − �(F2)

]
Iτ2=τ2

FN

]
= P(Wt ,Yt ;A) , (B.7)

where again we have used the condition (B.5) for the second inequality, and the third inequality 
is obtained from (B.6).

Following similar steps for earlier subperiods we obtain that P̃ (Wt , Yt ) ≥ P(Wt , Yt ; A). Since 
the policy A is arbitrarily chosen, we have

P̃ (W,Y ) ≥ max
A∈ A

P(W,Y ;A) = P(W,Y ) .

Finally, since the optimal strategies are attained, all the inequalities become equalities, so that:

P̃ (W,Y ) = P(W,Y ;A) = P(W,Y ) ,

when A = A∗, where

A∗ ∈A∗ = {arg max
A∈A

P(W,Y ;A)} .

B.6. Proof for Proposition 1

Proof for the Existence and Boundedness Property. It is immediate to observe that the closed-
form solution for P ∗(W, Y) with (W, Y) ∈ �2 is bounded under Assumptions 1-2. It follows that 
P(W, Y) is also bounded under Assumptions 1-2.

Lemma 1 shows that W ≤ P(W, Y). To see why P(W, Y) ≤ P ∗(W, Y), let P(1)(W, Y) be the 
value function if the firm is allowed to issue equity freely without paying any external financing 
cost in the first round of financing. We then have:

P(Wt ,Yt ) =Et

[
e−r(τ2−t)

[
P(Wτ2− + F2, Yτ2−) − F2 − �(F2)

]
Iτ2=τ2

F

+e−r(τ2−t)Wτ2 Iτ2=τ2
L

+e−r(τ2−t)P ∗(Wτ2, Yτ2)Iτ2=τ2
U

]
≤ Et

[
e−r(τ2−t)

[
P(Wτ2− + F2, Yτ2−) − F2

]
Iτ2=τ2

F
+ e−r(τ2−t)Wτ2 Iτ2=τ2

L

+e−r(τ2−t)P ∗(Wτ2, Yτ2)Iτ2=τ2
U

]
= P(1)(Wt , Yt ) . (B.8)
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Now, let P(2)(W, Y) be the value function if the firm has the opportunity to issue equity without 
any cost for the next two rounds. Then:

P(1)(Wt , Yt ) =Et

[
e−r(τ2−t)

[
P(Wτ2− + F2, Yτ2−) − F2

]
Iτ2=τ2

F
+ e−r(τ2−t)Wτ2 Iτ2=τ2

L

+e−r(τ2−t)P ∗(Wτ2, Yτ2)Iτ2=τ2
U

]
≤ Et

[
e−r(τ2−t)

[
P(1)(Wτ2− + F2, Yτ2−) − F

]
Iτ2=τ2

F
+ e−r(τ2−t)Wτ2 Iτ2=τ2

L

+e−r(τ2−t)P ∗(Wτ2, Yτ2)Iτ2=τ2
U

]
= P(2)(Wt , Yt ) . (B.9)

Repeating the same argument, we have

P(W,Y ) ≤ P(1)(W,Y ) ≤ P(2)(W,Y ) ≤ . . . P(∞)(W,Y ) ,

where P(∞)(W, Y) represents the value function for an infinite number of costless issues for 
given timing τ . In other words, P(∞)(W, Y) is the firm value when it is forever financial uncon-
strained for given timing τ , so that P(∞)(W, Y) ≤ P ∗(W, Y). It then follows that:

P(W,Y ) ≤ P ∗(W,Y ) .

Finally, we establish that P(W, Y) exists under Assumption 2. Note first that the set of poli-
cies A is non-empty. Indeed, one policy A ∈ A is to immediately liquidate the firm at time t , 
A = {(τ 2

F > t, τ 2
L = t, F2 = 0)}. The firm’s payoff under this policy is P(Wt, Yt ; A) = Wt . There-

fore, there exists at least one policy A∗ ∈ A such that P(Wt, Yt ; A∗) = maxA∈A P(Wt , Yt ; A). 
Note that P(Wt, Yt ) = maxA∈A P(Wt , Yt ; A), so that it exists and is given by P(Wt, Yt ) =
P(Wt , Yt ; A∗). �
Proof for the Monotonicity Property. First we show that P(W, Y) is strictly increasing in W . 
For simplicity, define Q(Wt, Yt ; A) = P(Wt , Yt ; A) − W , and notice (13)we have the

Q(Wt,Yt ;A) =Et

[
e−r(τ2−t) [−�(F2)]Iτ2=τ2

F
+ e−r(τ2−t)Q∗(Yτ2)Iτ2=τ2

U

]
, (B.10)

and

Q(Wt,Yt ) = sup
A∈A

Q(Wt,Yt ;A) . (B.11)

Obviously, P(W, Y) is strictly increasing in W if Q(W, Y) is increasing in W . Next, we prove 
Q(W, Y) is increasing in W .

Let W(1) > W(2), and A∗
1, A∗

2 be the optimal policies for the firm with initial wealth W(1) and 
W(2). Define A∗

2 = {τ 2,∗
L , τ 2,∗

F , F 2,∗
2 }, and define τ 2,∗

U as the time when the firm has accumulated 
sufficient liquidity to be permanently financially unconstrained.

For the firm with initial wealth W(1), a policy A1 can be constructed with the same external 
financing decisions, including the financing time and amount, and the same liquidation time as 
policy A∗

2. Observe next that the dynamics of liquidity are then such that W(1)
s ≥ W

(2)
s for s > t , 

path by path, if W(1)
t > W

(2)
t , which implies W(1)

τ ≥ W
(2)
τ = 
2 if τ2 = τ

2,∗.
2 2 U
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Under this policy A1 = A∗
2 we then have:

Q(W
(1)
t , Yt ;A∗

2) = Et

[
e−r(τ2−t)

[
−�(F

2,∗
2 )

]
I

τ2=τ
2,∗
F

+ e−r(τ2−t)Q(W(1)
τ2

, Yτ2)Iτ2=τ
2,∗
U

]
= Et

[
e−r(τ2−t)

[
−�(F

2,∗
2 )

]
I

τ2=τ
2,∗
F

+ e−r(τ2−t)Q∗(Yτ2)Iτ2=τ
2,∗
U

]
= Q(W

(2)
t , Yt ;A∗

2) = Q(W
(2)
t , Yt ) . (B.12)

Hence, we have

Q(W
(1)
t , Yt ) = Q(W

(1)
t , Yt ;A∗

1) ≥ Q(W
(1)
t , Yt ;A1) = Q(W

(1)
t , Yt ;A∗

2)

= Q(W
(2)
t , Yt ;A∗

2) = Q(W
(2)
t , Yt ) .

That is Q(W, Y) is increasing in W and P(W, Y) = Q(W, Y) + W is strictly increasing in W .
Second, we show that P(W, Y) is strictly increasing in Y for Y ≥ Y (W), where Y(W) denotes 

the liquidation boundary. That is P(W, Y (1)) > P(W, Y (2)) if Y (1) > Y (2) ≥ Y(W). We can use 
the same argument as for the monotonicity in W . Again, defining A∗

1 and A∗
2 as above, we 

can take A1 = A∗
2. Furthermore, let W(1) and W(2) denote the liquidity of the firm with initial 

earnings fundamentals Y (1) and Y (2) respectively. Observe next that the dynamics of liquidity are 
then such that W(1)

s > W
(2)
s for s > t , path by path, if W(1)

t = W
(2)
t . Also, Y (1)

t > Y
(2)
t ≥ Y (Wt)

implies that W(1)
τ2 ≥ W

(2)
τ2 if τ2 = min{τ 2,∗

L , τ 2,∗
U }.

Since P ∗(W, Y) is always strictly increasing in W and Y , the terminal payoff with initial 
earnings fundamentals Y (1) is always higher than with initial earnings fundamentals Y (2), path 
by path, under the same policy A∗

2, so that:

P(W,Y (1);A1) = P(W,Y (1);A∗
2) > P (W,Y (2);A∗

2) = P(W,Y (2)) .

Furthermore, P(W, Y (1)) = P(W, Y (1); A∗
1) ≥ P(W, Y (1); A1), so that:

P(W,Y (1)) > P (W,Y (2)) for Y (1) > Y (2) ≥ Y(W) . �
Proof for the Uniqueness Property. Let �P denote the interior region where L2P = 0:

�P = {(W,Y )|0 < W < 
2, Y (W) < Y < ∞} . (B.13)

Let �′
P denote the boundary of �P :

�′
P = {(W,Y )|W = {0,
2}, Y (W) ≤ Y < ∞} ∪ {(W,Y )|0 ≤ W ≤ 
2, Y = Y (W)} .

(B.14)

We first show that the solution is unique for a given region �P and then show that �P is unique. 
Finally, we show the solution is unique on the whole region �̂2 = �P ∪ �′

P .
Suppose by contradiction that for a given region �P where L2P = 0, there are two solutions 

P (1)(W, Y) and P (2)(W, Y) which satisfy:

0 = (rW + m2Y − Z2)P
(1)
W (W,Y ) + μYP

(1)
Y (W,Y ) + σ 2Y 2P

(1)
YY (W,Y )

2
− rP (1)(W,Y ) ,

and

0 = (rW + m2Y − Z2)P
(2)
W (W,Y ) + μYP

(2)
Y (W,Y ) + σ 2Y 2P

(2)
YY (W,Y ) − rP (2)(W,Y ),

2
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in the region �P . Let P̂ (W, Y) = P (1)(W, Y) − P (2)(W, Y). Then P̂ (W, Y) also satisfies

0 = (rW + m2Y − Z2)P̂W (W,Y ) + μYP̂Y (W,Y ) + σ 2Y 2P̂YY (W,Y )

2
− rP̂ (W,Y ) ,

in region �P . Let

(Ŵ , Ŷ ) ∈ arg max
(W,Y )∈�P ∪�′

P

P̂ (W,Y ) .

If (Ŵ , ̂Y ) ∈ �P , we have P̂W (Ŵ , ̂Y ) = 0, P̂Y (Ŵ , ̂Y ) = 0 and P̂YY (Ŵ , ̂Y ) ≤ 0.
Under Assumption 2, we also have:

rP̂ (Ŵ , Ŷ ) = σ 2Ŷ 2P̂YY (Ŵ , Ŷ )

2
≤ 0 .

Therefore, we have

P̂ (Ŵ , Ŷ ) ≤ 0 , if (Ŵ , Ŷ ) ∈ �P . (B.15)

Note that (W, Y(W)) ∈ �′
P , we have

max
(W,Y )∈�P ∪�′

P

P̂ (W,Y ) ≥ max
(W,Y )∈�′

P

P̂ (W,Y ) ≥ P (1)(W,Y (W)) − P (2)(W,Y (W))

= W − W = 0 .

That is

P̂ (Ŵ , Ŷ ) ≥ 0 , for (Ŵ , Ŷ ) ∈ �P ∪ �′
P . (B.16)

Combining (B.15) and (B.16), we have

P̂ (Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ �P . (B.17)

Next, we prove that P̂ (Ŵ , ̂Y ) ≡ 0 if (Ŵ , ̂Y ) ∈ �′
P . By using closed-form value functions on 

the boundaries: Y = Y(W) and W = 
2, we have

P̂ (Ŵ , Ŷ ) = 0, if (Ŵ , Ŷ ) ∈ {(W,Y )|W = 
2, Y (W) ≤ Y < ∞}
∪{(W,Y )|0 ≤ W ≤ 
2, Y = Y (W)} . (B.18)

Next we show P̂ (Ŵ , ̂Y ) = 0, if (Ŵ , ̂Y ) ∈ {(W, Y)|W = 0, Y (W) ≤ Y < ∞}. First, note 
that P̂W (Ŵ , ̂Y ) ≤ 0, P̂Y (Ŵ , ̂Y ) = 0 and P̂YY (Ŵ , ̂Y ) ≤ 0 if Ŵ = 0, and Z2

m2
≤ Ŷ < ∞. Therefore, 

we have rP̂ (0, ̂Y ) = (m2Ŷ − Z2)P̂W (W, Y) + σ 2Ŷ 2P̂YY (0,Ŷ )
2 ≤ 0 if Z2

m2
≤ Ŷ < ∞. Then using 

(B.16), we have

P̂ (0, Ŷ ) = 0 , if
Z2

m2
≤ Ŷ < ∞ . (B.19)

Finally, let F (1)
2 and F (2)

2 denote the optimal equity issues in that

P (1)(0, Ŷ ) = sup
F2>0

P (1)(F2, Ŷ ) − F2 − �(F2) and

P (2)(0, Ŷ ) = sup
F2>0

P (2)(F2, Ŷ ) − F2 − �(F2).

We thus have
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P̂ (0, Ŷ ) = P (1)(0, Ŷ ) − P (2)(0, Ŷ )

= (P (1)(F
(1)
2 , Ŷ ) − F

(1)
2 − �(F

(1)
2 )) − (P (2)(F

(2)
2 , Ŷ ) − F

(2)
2 − �(F

(2)
2 ))

≤ (P (1)(F
(1)
2 , Ŷ ) − F

(1)
2 − �(F

(1)
2 )) − (P (2)(F

(1)
2 , Ŷ ) − F

(1)
2 − �(F

(1)
2 ))

= P̂ (F
(1)
2 , Ŷ ) . (B.20)

This is obviously a contradiction unless P̂ (W, Y) ≡ 0. That is P̂ (0, ̂Y ) = 0 if Y(0) ≤ Ŷ < Z2
m2

. 
Together with (B.19) and (B.18), we conclude that

P̂ (Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ �′
P . (B.21)

Further by combining (B.17) and (B.21), we conclude

P̂ (Ŵ , Ŷ ) ≡ 0 for (W,Y ) ∈ �P ∪ �′
P . (B.22)

This implies that

P (1)(W,Y ) ≤ P (2)(W,Y ) for (W,Y ) ∈ �P ∪ �′
P . (B.23)

Since the entire analysis also holds if we switch P (1)(W, Y) with P (2)(W, Y), in that

P (2)(W,Y ) ≤ P (1)(W,Y ) for (W,Y ) ∈ �P ∪ �′
P , (B.24)

we thus conclude that

P (2)(W,Y ) ≡ P (1)(W,Y ) for (W,Y ) ∈ �P ∪ �′
P .

We next show that the region �P is unique, which is equivalent to showing that the boundary 
�′

P is unique. From the definition of �′
P , we only need to show that Y(W) is unique for 0 ≤ W ≤


2. Suppose that there are two liquidation boundaries Y (1)(W) and Y (2)(W), with Y (1)(W) ≥
Y (2)(W) for some W , and let P (1)(W, Y) and P (2)(W, Y) be the corresponding solutions. We 
then have:

W = P (1)(W,Y (1)(W)) ≥ P (2)(W,Y (1)(W)) ≥ W = P (2)(W,Y (2)(W)) ,

where the first inequality follows from the optimality of the liquidation decision and the second 
inequality is obtained from (15). It follows that P (2)(W, Y (1)(W)) = P (2)(W, Y (2)(W)). More-
over, the value function is increasing in both W and Y so that: Y (1)(W) = Y (2)(W). Finally, we 
show that the solution is unique on the remaining liquidation region �′

2 = �2 − (�P ∪ �′
P ). 

From the definition of the regions �P and �′
P , and total region �2, we have that

�′
2 = {(W,Y )|0 ≤ W ≤ 
2,0 ≤ Y < Y(W)} .

Since Y(W) is unique it follows that �′
2 is also unique. And in the liquidation region �′

2 the 
value function is P(W, Y) ≡ W . In sum, the solution of P(W, Y) in the region �2 is unique. �
B.7. Proof for Proposition 2

Proof for Monotonicity Property of Liquidation Boundary. Here, we want to show that the 
optimal liquidation boundary, Y(W), is decreasing in W in the mature phase. Let Y(W(1))

and Y(W(2)) denote the optimal liquidation boundary with liquidity W(1) and W(2), where 
W(1) < W(2). Recall that Q(W, Y) = P(W, Y) −W is increasing in W as shown in Proposition 1, 
we have 0 = Q(W(1), Y (W(1))) ≤ Q(W(2), Y (W(1))). In addition, P(W, Y) is strictly increasing 
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in Y before liquidation, as shown in Proposition 1, which implies that Q(W, Y) = P(W, Y) −W

is also strictly increasing in Y for Y ≥ Y(W). Hence, we have Y(W(1)) ≥ Y(W(2)), otherwise 
0 = Q(W(1), Y (W(1))) ≤ Q(W(2), Y (W(1))) < Q(W(2), Y (W(2))) = 0, which is a contradic-
tion. That is, Y(W(1)) ≥ Y (W(2)) if W(1) < W(2), which establishes that the optimal liquidation 
boundary is decreasing in W in the mature phase. �
Proof for Delaying Costly Equity Issuance. First, we need to show that the firm has to is-
sue equity if W = 0, for Y such that Y(0) < Y < Z2

m2
, to be able to continue operations. We 

assume that F ∗(0) is the optimal amount of equity issuance, which implies that P(0, Y) =
P(F ∗(0), Y) −F ∗(0) −�(F ∗(0)). This also implies that PW(0, Y) > 1 +�∗′(0)) = 1 +φ1, oth-
erwise F ∗(0) = 0 and the firm defaults immediately, which is a contradiction for Y(0) < Y < Z2

m2
. 

Denote M = F ∗(0), we have that PW(W, Y) > 1 +φ1 for 0 < W < M and PW(M, Y) = 1 +φ1, 
otherwise F ∗(0) is not the optimal amount of equity issuance.

To show that the firm will delay costly equity issuance until entirely exhausting its cash, we 
only need to show that P(W, Y) > supF2≥0 P(W + F2, Y) − F2 − �(F2) for W > 0. First, since 
PW(W, Y) ≤ 1 + φ1 for W ≥ M , the firm has no incentive to issue equity because P(W, Y) ≥
P(W + F2, Y) − F2 − φ1F2 > P(W + F2, Y) − F2 − �(F2) for W ≥ M . Next, we show that 
P(W, Y) > supF2≥0 P(W + F2, Y) − F2 − �(F2) for 0 < W < M . We define F ∗(W) as the 
optimal amount of equity issuance if the firm chooses equity issuance at W with 0 < W < M

for given Y , which implies that supF2≥0 P(W + F2, Y) − F − �(F2) = P(W + F ∗
2 (W), Y) −

F ∗
2 (W) − �(F ∗

2 (W)) and M = W + F ∗
2 (W). We then have

P(W,Y ) − (P (W + F ∗
2 (W),Y ) − F ∗

2 (W) − �(F ∗
2 (W)))

= P(W,Y ) − (P (M,Y ) − F ∗(W) − �(F ∗
2 (W)))

= P(W,Y ) − W − (P (M,Y ) − M − �(F ∗
2 (W)))

= Q(W,Y ) − Q(M,Y) + �(M − W) .

Recall that P(0, Y) = P(F ∗
2 (0), Y) − F ∗

2 (0) − �(F ∗
2 (0)) and M = F ∗

2 (0), and Q(0, Y) =
Q(F ∗

2 (0), Y) − �(F ∗
2 (0)) = Q(M, Y) − �(M), so that

P(W,Y ) − (P (W + F ∗
2 (W),Y ) − F ∗

2 (W) − �(F ∗
2 (W)))

= Q(W,Y ) − Q(0, Y ) + �(M − W) − �(M)

= Q(W,Y ) − Q(0, Y ) − φ1W

> φ1W − φ1W = 0 ,

where the above inequality follows from PW(W, Y) > 1 + φ1 for 0 < W < M , which implies 
that QW(W, Y) > φ1 for 0 < W < M . Finally, P(W, Y) − (P (W + F ∗

2 (W), Y) − F ∗
2 (W) −

�(F ∗
2 (W))) > 0 implies that the firm has no incentive to issue equity for 0 < W < M . In sum, 

we have shown that the firm has no incentive to issue equity for W > 0, which implies that the 
firm will delay costly equity issuance until entirely exhausting its cash. �
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Appendix C. Proofs for the general case in the growth phase

C.1. Proof for Lemma 5

For any given time t , we can construct a control policy Â ∈A with Â = {(τi > t, τ 1
L = t, τ 1

F >

t, F1)} such that the firm is liquidated immediately at time t in the growth phase. Under this 
policy, we have

G(Wt,Yt ; Â) = Wt .

Since G(Wt, Yt ) = supA∈A G(Wt, Yt ; A) ≥ G(Wt, Yt ; Â), it immediately follows that
G(W, Y) ≥ W . �
C.2. Proof for Lemma 6

For any given time t , we can construct a control policy Â ∈A with Â = {(τi > t, τ 1
L > t, τ 1

F =
t, F1 ≥ 0)} such that the firm issues equity at time t , and for any s ≥ t we assume that the firm 
takes the optimal investment, liquidation and financing decisions, including financing timing and 
the choice of the optimal amount F1. Following the above policy, the (optimal) value function at 
time t is G(Wt− + F1, Yt−) − F1 − �(F1). By the continuity of value function upon the equity 
issue, we have

G(Wt−, Yt−; Â) = G(Wt− + F1, Yt−) − F1 − �(F1) .

Since the time of equity issue for τ 1
F = t may be not optimal, we have

sup
A∈A

G(Wt−, Yt−;A) ≥ sup
F1≥0

G(Wt−, Yt−; Â) = sup
F1≥0

G(Wt− + F1, Yt−) − F1 − �(F1) .

Recall that G(Wt−, Yt−) = supA∈A G(Wt−, Yt−; A), so that we have G(Wt−, Yt−) ≥
supF1≥0 G(Wt− + F1, Yt−) − F1 − �(F1). �
C.3. Proof for Lemma 7

For any given time t , we can construct a control policy Â ∈A with Â = {(τi = t, τ 1
L > t, τ 1

F =
t, F1 ≥ 0)} such that the firm exercises its growth option and/or issues equity at time t , and for 
any s ≥ t it is in the mature phase. Following the above policy, the (optimal) value function at 
time t is P(Wt− + F1 − I, Yt−) − F1 − �(F1). By continuity of value function upon the equity 
issue, we have

G(Wt−, Yt−; Â) = P(Wt− + F1 − I,Yt−) − F1 − �(F1) .

Since the time of the equity issue τi = t may be not optimal, we have

sup
A∈A

G(Wt−, Yt−;A) ≥ sup
F1≥0

G(Wt−, Yt−; Â)

= sup
F1≥0

P(Wt− + F1 − I,Yt−) − F1 − �(F1) .

Recall that G(Wt−, Yt−) = supA∈A G(Wt−, Yt−; A), so that we have

G(Wt−, Yt−) ≥ sup
F1≥0

P(Wt− + F1 − I,Yt−) − F1 − �(F1). �
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C.4. Proof for Lemma 8

We assume that the current time is t , and that Y ∗
a,1 < Yt ≤ Y ∗

i , and denote τ ∗
L = inf{s|Ys ≤

Y ∗
a,1} and τ ∗

i = inf{s|Ys ≥ Y ∗
i }. Obviously, τ ∗

L is the optimal first-best liquidation time and τ∗
i

is the first-best optimal investment time. Note that 
1 = Z1−m1Ya,1
r

and Wt ≥ 
1 imply that 
the drift of W in the growth phase (rWs + m1Ys − Z1) is always positive for t ≤ s < τ , where 
τ = (τ ∗

L

∧
τ ∗
i ), which means that Ws ≥ Wt > 0 for t ≤ s < τ , and the firm will never use external 

financing by issuing equity before liquidation or exercising its growth option. In addition, we 
have that Ws ≥ Wt > I + 
2 since (rWs + m1Ys − Z1) ≥ 0 for t ≤ s < τ . Hence, we can 
construct a control policy Â ∈A such that Â = {(τi = τ ∗

i , τ 1
L = τ ∗

L, τ 1
F = ∞, F1 = 0)}.

From (29) we have

G(Wt,Yt ;A) =Et

[
e−r(τ∗

i −t)P (Wτ∗
i − − I,Yτ∗

i −)Iτ∗
L>τ∗

i
+ e−r(τ∗

L−t)Wτ∗
L
Iτ∗

L<τ∗
i

]
.

(C.1)

Note that Wτ∗
i − > I + 
2, therefore by Lemma (3) and Theorem 1 we have

P(Wτ∗
i − − I,Yτ∗

i −) = Wτ∗
i − − I + Q(Yτ∗

i −) = Wτ∗
i − + H ∗(Yτ∗

i −) = G∗(Wτ∗
i −, Yτ∗

i −) .

Note also that Yτ∗
L

= Y ∗
a,1, so that by Theorem 1 we have

Wτ∗
L

= Wτ∗
L

+ 0 = Wτ∗
L

+ H ∗(Yτ∗
L
) = G∗(Wτ∗

L
,Yτ∗

L
) .

Hence, we could rewrite (C.1) as

G(Wt,Yt ;A) =Et

[
e−r(τ∗

i −t)G∗(Wτ∗
i −, Yτ∗

i −)Iτ∗
L>τ∗

i
+ e−r(τ∗

L−t)G∗(Wτ∗
L
,Yτ∗

L
)Iτ∗

L<τ∗
i

]
=Et

[
e−r(τ−t)G∗(Wτ−, Yτ−)

]
= G∗(Wt ,Yt ) . (C.2)

Finally, since G(W, Y) = supA∈A G(W, Y ; A), we have G(W, Y) ≥ G∗(W, Y) for W ≥
max{
1, 
2 + I }. And, following the boundedness property of G(W, Y) as shown in Propo-
sition 3, we have G(W, Y) = G∗(W, Y) for W ≥ max{
1, 
2 + I }. �
C.5. Proof for Lemma 9

Assume that for any given time t , Wt ≥ 0, Yt → ∞, and that the firm always takes optimal de-
cisions. Consider a tiny time period (t, t +�t) with �t > 0. During this period the firm abandons 
or issues equity with zero probability, since Yt → ∞. Hence, we have Wt+�t > max{
1, 
2 +I }
with probability one when Yt → ∞, which implies that G(Wt+�t , Yt+�t ) = G∗(Wt+�t , Yt+�t )

with probability one, by Lemma 8. From (29) under optimal decisions we have

G(Wt,Yt ) =Et

[
e−r(t+�t−t)G(Wt+�t ,Yt+�t )

]
=Et

[
e−r�tG∗(Wt+�t ,Yt+�t )

]
.

Since Yt → ∞, the above equation holds for any � > 0, and by taking � → 0, we have

G(Wt,Yt ) = lim
�→0

Et

[
e−r�tG∗(Wt+�t ,Yt+�t )

] =Et

[
G∗(Wt ,Yt )

] = G∗(Wt ,Yt ) .
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C.6. Proof for Theorem 3

Verification. We establish that any piecewise-C2 function, which is a solution to the equation 
(40), associated to problem (29), is a majorant of the value function G.

Proposition 6. (Verification 2) Suppose that a positive function G̃ exists which is piecewise-C2

on the region �1 with bounded first derivatives and such that for all (W, Y) ∈ �1,

L1G̃ ≤ 0, (C.3)

G̃(W,Y ) ≥ W, (C.4)

G̃(W,Y ) ≥ sup
F1≥0

P(W + F1 − I,Y ) − F1 − �(F1) , (C.5)

G̃(W,Y ) ≥ sup
F1≥0

G̃(W + F1, Y ) − F1 − �(F1) , (C.6)

with boundary conditions G̃(W, Y) = G∗(W, Y) for W = max{
1, 
2 + I } or Y → ∞. Then 
G̃(W, Y) = G(W, Y) for all (W, Y) ∈ �1.

Proof. We first show that G̃(W, Y) ≥ G(W, Y). Notice that A is a control policy in problem 
(29), where A ∈ A the set of all policies. Then, by definition, we have (30). If we can show that 
G̃(W, Y) ≥ G(W, Y ; A) for any control policy A ∈A, then it follows that G̃(W, Y) ≥ G(W, Y).

Using the generalized Ito’s formula (Dellacherie and Meyer (1980), Theorem VIII-25 and 
Remark c, p. 349), we can write:

e−r(τ1−t)G̃(Wτ1−, Yτ−) = G̃(Wt ,Yt ) +
τ1−∫
t

e−r(s−t)L2G̃(Ws,Ys)ds

+
τ1−∫
t

e−r(s−t)G̃Y (Ws,Ys)σYsdBs .

Since G̃ satisfies (C.3), the second term of the right hand side is non-positive. Moreover, since 
the first derivative of G̃ is bounded, the third term is a square integrable martingale. Taking 
expectations, we then get:

Et

[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
≤ G̃(Wt ,Yt ) .

Suppose that the firm issues equity N times from time 0 to time τ 1
L ∧ τ 1

U , and divide the 
time interval (0, τ 1

L ∧ τ 1
U) into N + 1 subperiods. We define τ 1

Fn
as the time of the n-th round of 

external financing, where 1 ≤ n ≤ N . During the last period (τ 1
FN

, τ 1
L ∧ τ 1

U) we then have:

G̃(Wt ,Yt ) ≥ Et

[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
=Et

[
e−r(τ1−t)G̃(Wτ1 , Yτ1)Iτ1=τ1

L
+ e−r(τ1−t)G∗(Wτ1, Yτ1)Iτ1=τ1

U

]
≥ Et

[
e−r(τ1−t)Wτ1 Iτ1=τ1

L
+ e−r(τ1−t)G∗(Wτ1, Yτ1)Iτ1=τ1

U

]
= G(Wt,Yt ;A) , (C.7)
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where we have used the condition (C.4) for the second inequality.
During the N -th external financing subperiod (τ 1

FN−1
, τ1) we have in turn:

G̃(Wt ,Yt )

≥ Et

[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
=Et

[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)Iτ1=τ1

FN

]
≥ Et

[
e−r(τ1−t) sup

F1≥0

[
G̃(Wτ1− + F1, Yτ1−) − F1 − �(F1)

]
Iτ1=τ1

FN
<τi

+ e−r(τ1−t) sup
F1≥0

[
P(Wτ1− + F1 − I,Yτ1−) − F1 − �(F1)

]
Iτ1=τ1

FN
=τi

]

=Et

[
e−r(τ1−t) sup

F1≥0

[
Eτ 1

FN

[
G̃(Wτ1− + F1, Yτ1−)

] − F1 − �(F1)

]
Iτ1=τ1

FN
<τi

+ e−r(τ1−t) sup
F1≥0

[
Eτ 1

FN

[
P(Wτ1− + F1 − I,Yτ1−)

] − F1 − �(F1)

]
Iτ1=τ1

FN
=τi

]

≥ Et

[
e−r(τ1−t)

[
Eτ 1

FN

[
G(Wτ1− + F1, Yτ1−)

] − F1 − �(F1)

]
Iτ1=τ1

FN
<τi

+ e−r(τ1−t)

[
Eτ 1

FN

[
P(Wτ1− + F1 − I,Yτ1−)

] − F1 − �(F1)

]
Iτ1=τ1

FN
=τi

]
= G(Wt,Yt ;A) , (C.8)

where again we have used the condition (C.5) for the first term of the second inequality and the 
condition (C.6) for the second term of the second inequality, and the third inequality is obtained 
from (C.7).

Following similar steps as for earlier subperiods we obtain that G̃(Wt , Yt ) ≥ G(Wt, Yt ; A). 
Since the policy A is arbitrarily chosen, we have

G̃(W,Y ) ≥ max
A∈ A

G(W,Y ;A) = G(W,Y ) .

Finally, since the optimal strategies are attained, all the inequalities become equalities, so that:

G̃(W,Y ) = G(W,Y ;A) = G(W,Y ) ,

when A = A∗, where

A∗ ∈A∗ = {arg max
A∈A

G(W,Y ;A)} . �
C.7. Proof for Proposition 3

Proof for the Existence and Boundedness Property. It is immediate to observe that the closed-
form solution for G∗(W, Y) with (W, Y) ∈ �1 is bounded under Assumptions 1-3. It follows that 
G(W, Y) is also bounded under Assumptions 1-3.
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Lemma 5 shows that W ≤ G(W, Y). To see why G(W, Y) ≤ G∗(W, Y), let G(1)(W, Y) be the 
value function if the firm is allowed to issue equity freely, without paying any external financing 
cost in the first round of financing. We then have:

G(Wt,Yt ) =Et

[
e−r(τ1−t)

[
G(Wτ1− + F1, Yτ1−) − F1 − �(F1)

]
Iτ1=τ1

F <τi

+e−r(τ1−t)
[
P(Wτ1− + F1 − I,Yτ1−) − F1 − �(F1)

]
Iτ1=τ1

F =τi

+e−r(τ1−t)Wτ1 Iτ1=τ1
L

+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1
U

]
≤ Et

[
e−r(τ1−t)

[
G(Wτ1− + F1, Yτ1−) − F1

]
Iτ1=τ1

F <τi
+ e−r(τ1−t)Wτ1 Iτ1=τ1

L

+e−r(τ1−t)
[
P(Wτ1− + F1 − I,Yτ1−) − F1

]
Iτ1=τ1

F =τi

+e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1
U

]
= G(1)(Wt , Yt ) . (C.9)

Now, let G(2)(W, Y) be the value function if the firm has the opportunity to issue equity without 
any cost for the next two rounds. Then:

G(1)(Wt , Yt ) =Et

[
e−r(τ1−t)

[
G(Wτ1− + F1, Yτ1−) − F1

]
Iτ1=τ1

F <τi

+e−r(τ1−t)
[
P(Wτ1− + F1 − I,Yτ1−) − F1

]
Iτ1=τ1

F =τi

+e−r(τ1−t)Wτ1 Iτ1=τ1
L

+ e−r(τ1−t)G∗(Wτ1, Yτ1)Iτ1=τ1
U

]
≤ Et

[
e−r(τ1−t)

[
G(1)(Wτ1− + F1, Yτ1−) − F

]
Iτ1=τ1

F <τi

+e−r(τ1−t)
[
P(Wτ1− + F1 − I,Yτ1−) − F

]
Iτ1=τ1

F =τi

+e−r(τ1−t)Wτ1 Iτ1=τ1
L

+ e−r(τ1−t)G∗(Wτ1, Yτ1)Iτ1=τ1
U

]
= G(2)(Wt , Yt ) . (C.10)

Repeating the same argument, we have

G(W,Y ) ≤ G(1)(W,Y ) ≤ G(2)(W,Y ) ≤ · · · ≤ G(∞)(W,Y ) ,

where G(∞)(W, Y) represents the value function for an infinite number of costless issues. In 
other words, G(∞)(W, Y) is the firm’s value when it is forever financially unconstrained, so that 
G(∞)(W, Y) ≤ G∗(W, Y). It then follows that:

G(W,Y ) ≤ G∗(W,Y ) .

Finally, we establish that G(W, Y) exists under Assumption 2 and Assumption 3. Note first 
that the set of policies A is non-empty. Indeed, one policy A ∈ A is to immediately liquidate 
the firm at time t , A = {(τi > t, τ 1

F > t, τ 1
L = t, F1 = 0)}. The firm’s payoff under this policy is 

G(Wt, Yt ; A) = Wt . Therefore, there exists at least one policy A∗ ∈ A such that G(Wt, Yt ; A∗) =
maxA∈A G(Wt, Yt ; A). Note that G(Wt, Yt ) = maxA∈A G(Wt, Yt ; A), so that it exists and is 
given by G(Wt, Yt ) = G(Wt, Yt ; A∗). �
Proof for the Monotonicity Property. First we show that G(W, Y) is strictly increasing in W . 
For simplicity, define H(Wt, Yt ; A) = G(Wt, Yt ; A) − W , and from (29) we have
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H(Wt ,Yt ;A) =Et

[
e−r(τ1−t)

[
Q(Wτ1− + F1 − I,Yτ1−) − �(F1)

]
Iτ1=τi

+e−r(τ1−t)H ∗(Yτ1)Iτ1=τ1
U

+ e−r(τ1−t)
[
H(Wτ1− + F1, Yτ1−) − �(F1)

]
Iτ1=τ1

F

]
,

and

H(Wt,Yt ) = sup
A∈A

H(Wt,Yt ;A) .

Obviously, G(W, Y) is strictly increasing in W if H(W, Y) is increasing in W . Next, we prove 
that H(W, Y) is increasing in W .

For the firm with initial wealth W(1), a policy A1 can be constructed with the same investment, 
the same financing time, and the same liquidation time as policy A∗

2, where the financing amount 

is given by F 1
1 = F

2,∗
1 +W

(2)
s− −W

(1)
s− at the time of financing. Observe next that the dynamics of 

liquidity are then such that W(1)
s ≥ W

(2)
s for s > t , path by path, if W(1)

t > W
(2)
t , which implies 

that W(1)
τ1 ≥ W

(2)
τ1 = max{
1, 
2 + I } if τ1 = τ

2,∗
U . In addition, we have W(1)

s = W
(2)
s and F 1

1 =
F

2,∗
1 for s > τ1 = min{τ 2,∗

i , τ 1,∗
F }, and F 1

1 ≤ F
2,∗
1 for t < s ≤ τ1 = min{τ 2,∗

i , τ 2,∗
F }.

Under this policy A1 we then have:

H(W
(1)
t , Yt ;A1) =Et

[
e−r(τ1−t)

[
Q(W

(1)
τ1− + F 1

1 − I,Yτ1−) − �(F 1
1 )

]
I

τ1=τ
2,∗
i

+e−r(τ1−t)H ∗(Yτ1)Iτ1=τ
2,∗
U

+e−r(τ1−t)
[
H(W

(1)
τ1− + F 1

1 , Yτ1−) − �(F 1
1 )

]
I

τ1=τ
2,∗
F

]
≥ Et

[
e−r(τ1−t)

[
Q(W

(2)
τ1− + F

2,∗
1 − I,Yτ1−) − �(F

2,∗
1 )

]
I

τ1=τ
2,∗
i

+e−r(τ1−t)H ∗(Yτ1)Iτ1=τ
2,∗
U

+e−r(τ1−t)
[
H(W

(2)
τ1− + F

2,∗
1 , Yτ1−) − �(F

2,∗
1 )

]
I

τ1=τ
2,∗
F

]
= H(W

(2)
t , Yt ;A∗

2) = H(W
(2)
t , Yt ) . (C.11)

Hence, we have

H(W
(1)
t , Yt ) = H(W

(1)
t , Yt ;A∗

1) ≥ H(W
(1)
t , Yt ;A1) ≥ H(W

(2)
t , Yt ;A∗

2) = H(W
(2)
t , Yt ) .

That is, H(W, Y) is increasing in W and G(W, Y) = H(W, Y) + W is strictly increasing in W .
Second, we show that G(W, Y) is strictly increasing in Y for Y ≥ Y (W). Note that G(W, Y)

is strictly increasing in Y for Y ≥ Y (W) since the firm exercises its growth option immediately 
and P(W, Y) is strictly increasing in Y as shown in Proposition 1. Therefore, we need to show 
that G(W, Y (1)) > G(W, Y (2)) if Y(W) > Y(1) > Y (2) ≥ Y (W). We can use the same argument 
as for the monotonicity in W . Again, we define the policies A1, A∗

1 and A∗
2 as above, and let 

A1 = A∗
2. Furthermore, we let W(1) and W(2) denote the liquidity of the firm with initial earnings 

fundamentals Y (1) and Y (2) respectively. Observe next that the dynamics of liquidity are then 
such that W(1)

s > W
(2)
s for t < s, path by path, if W(1)

t = W
(2)
t . This further implies that W(1)

s >

W
(2)
s for s = τ1 = min{τ 2,∗

i , τ 2,∗
L , τ 2,∗

U }.
Since G∗(W, Y) is always strictly increasing in W and Y , the terminal payoff with initial 

earnings fundamentals Y (1) is always higher than with initial earnings fundamentals Y (2), path 
by path, under the same policy A∗, so that:
2
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G(W,Y (1);A1) = G(W,Y (1);A∗
2) > G(W,Y (2);A∗

2) = G(W,Y (2)) .

Furthermore, G(W, Y (1)) = G(W, Y (1); A∗
1) ≥ G(W, Y (1); A1), so that:

G(W,Y (1)) > G(W,Y (2)) for Y (W) > Y (1) > Y (2) ≥ Y (W) .

Finally, since G(W, Y) is strictly increasing in Y for Y ≥ Y(W), we have that G(W, Y) is 
strictly increasing in Y for Y ≥ Y (W). �
Proof for the Uniqueness Property. Let �G denote the interior region where L1G = 0:

�G = {(W,Y )|0 < W < max{
1,
2 + I }, Y (W) < Y < Y } . (C.12)

Let �′
G denote the boundary of �G:

�′
G = {(W,Y )|W = {0,max{
1,
2 + I }}, Y (W) ≤ Y < Y(W)}

∪{(W,Y )|0 ≤ W ≤ max{
1,
2 + I }, Y = {Y(W),Y (W)}} .

We first show that the solution is unique for a given region �G and then show that �G is unique. 
Finally, we show that the solution is unique on the whole region �̂1 = �G ∪ �′

G.
Suppose by contradiction that for a given region �G where L1G = 0, there are two solutions 

G(1)(W, Y) and G(2)(W, Y) which satisfy:

0 = (rW + m1Y − Z1)G
(1)
W (W,Y ) + μYG

(1)
Y (W,Y ) + σ 2Y 2G

(1)
YY (W,Y )

2
− rG(1)(W,Y ) ,

and

0 = (rW + m1Y − Z1)G
(2)
W (W,Y ) + μYG

(2)
Y (W,Y ) + σ 2Y 2G

(2)
YY (W,Y )

2
− rG(2)(W,Y ),

in the region �G. Let Ĝ(W, Y) = G(1)(W, Y) − G(2)(W, Y). Then Ĝ(W, Y) also satisfies

0 = (rW + m1Y − Z1)ĜW (W,Y ) + μYĜY (W,Y ) + σ 2Y 2ĜYY (W,Y )

2
− rĜ(W,Y ) ,

in region �G. Let

(Ŵ , Ŷ ) ∈ arg max
(W,Y )∈�G∪�′

G

Ĝ(W,Y ) .

If (Ŵ , ̂Y ) ∈ �G, we have that ĜW (Ŵ , ̂Y ) = 0, ĜY (Ŵ , ̂Y ) = 0, and ĜYY (Ŵ , ̂Y) ≤ 0.
Under Assumption 2, we also have:

rĜ(Ŵ , Ŷ ) = σ 2Ŷ 2ĜYY (Ŵ , Ŷ )

2
≤ 0 .

Therefore,

Ĝ(Ŵ , Ŷ ) ≤ 0 , if (Ŵ , Ŷ ) ∈ �G . (C.13)

Note that (W, Y(W)) ∈ �′
G, so that

max
(W,Y )∈�G∪�′

G

Ĝ(W,Y ) ≥ max
(W,Y )∈�′

G

Ĝ(W,Y ) ≥ G(1)(W,Y (W)) − G(2)(W,Y (W))

= W − W = 0. (C.14)

That is
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Ĝ(Ŵ , Ŷ ) ≥ 0 , for (Ŵ , Ŷ ) ∈ �G ∪ �′
G . (C.15)

Combining (C.13) and (C.15), we have

Ĝ(Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ �G . (C.16)

Next, we prove that Ĝ(Ŵ , ̂Y ) ≡ 0 if (Ŵ , ̂Y ) ∈ �′
G. By using the value functions at the bound-

aries: Y = {Y (W), Y (W)} and W = max{
1, 
2 + I }, we have

Ĝ(Ŵ , Ŷ ) = 0 , (C.17)

if (Ŵ , ̂Y ) ∈ {(W, Y)|W = max{
1, 
2 + I }, Y (W) ≤ Y < Y(W)} ∪ {(W, Y)|0 ≤ W ≤
max{
1, 
2 + I }, Y = {Y (W), Y (W)}}.

Next we show that Ĝ(Ŵ , ̂Y) = 0, if (Ŵ , ̂Y ) ∈ {(W, Y)|W = 0, Y (W) ≤ Y < Y(W)}. 
First, note that ĜW (Ŵ , ̂Y) ≤ 0, ĜY (Ŵ , ̂Y ) = 0 and ĜYY (Ŵ , ̂Y ) ≤ 0 if Ŵ = 0, and Z1

m1
≤

Ŷ < Y (W). Therefore, we have rP̂ (0, ̂Y ) = (m1Ŷ − Z1)ĜW (W, Y) + σ 2Ŷ 2ĜYY (0,Ŷ )
2 ≤ 0 if 

Z1
m1

≤ Ŷ < Y (W). Then from (C.15), we obtain that

Ĝ(0, Ŷ ) = 0 , if
Z1

m1
≤ Ŷ < Y (W) . (C.18)

Finally, let F
(1)
1 and F

(2)
1 denote the optimal equity issues in that G(1)(0, ̂Y ) =

supF1>0 G(1)(F1, ̂Y ) − F1 − �(F1) and G(2)(0, ̂Y ) = supF1>0 G(2)(F1, ̂Y ) − F1 − �(F1). We 
then have

Ĝ(0, Ŷ ) = G(1)(0, Ŷ ) − G(2)(0, Ŷ )

= (G(1)(F
(1)
1 , Ŷ ) − F

(1)
1 − �(F

(1)
1 )) − (G(2)(F

(2)
1 , Ŷ ) − F

(2)
1 − �(F

(2)
1 ))

≤ (G(1)(F
(1)
1 , Ŷ ) − F

(1)
1 − �(F

(1)
1 )) − (G(2)(F

(1)
1 , Ŷ ) − F

(1)
1 − �(F

(1)
1 ))

= Ĝ(F
(1)
1 , Ŷ ) . (C.19)

This is obviously a contradiction unless Ĝ(W, Y) ≡ 0. That is Ĝ(0, ̂Y ) = 0 if Y(0) ≤ Ŷ < Z1
m1

. 
Together with (C.18) and (C.17), we therefore conclude that

Ĝ(Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ �′
G . (C.20)

Further, by combining (C.16) and (C.20), we conclude that

Ĝ(Ŵ , Ŷ ) ≡ 0 for (W,Y ) ∈ �G ∪ �′
G . (C.21)

This, in turn, implies that

G(1)(W,Y ) ≤ G(2)(W,Y ) for (W,Y ) ∈ �G ∪ �′
G . (C.22)

Since the entire argument also holds if we switch G(1)(W, Y) with G(2)(W, Y), in that

G(2)(W,Y ) ≤ G(1)(W,Y ) for (W,Y ) ∈ �G ∪ �′
G , (C.23)

we conclude that

G(2)(W,Y ) ≡ G(1)(W,Y ) for (W,Y ) ∈ �G ∪ �′
G .

We next show that the region �G is unique, which is equivalent to showing that the boundary 
�′ is unique. From the definition of �′ , we only need to show that Y(W) is unique and Y(W)
G G
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is unique, for 0 ≤ W ≤ 
2. First, suppose that there are two liquidation boundaries Y(1)(W)

and Y (2)(W), with Y (1)(W) ≥ Y (2)(W) for some W , and let G(1)(W, Y) and G(2)(W, Y) be the 
corresponding solutions. We then have:

W = G(1)(W,Y (1)(W)) ≥ G(2)(W,Y (1)(W)) ≥ W = G(2)(W,Y (2)(W)) ,

where the first inequality follows from the optimality of the liquidation decision, and the second 
inequality is obtained from (31). It follows that G(2)(W, Y (1)(W)) = G(2)(W, Y (2)(W)). More-
over, the value function is increasing in both W and Y so that: Y (1)(W) = Y (2)(W).

Suppose next that there are two investment boundaries Y
(1)

(W) and Y
(2)

(W), with Y
(1)

(W) >

Y
(2)

(W) for some W , and let G(1)(W, Y) and G(2)(W, Y) be the corresponding solutions. It fol-

lows that G(1)(W, Y
(2)

(W)) > supF1
P(W + F1 − I, Y

(2)
(W)) since Y

(2)
(W) is not the optimal 

investment boundary for G(1)(W, Y). We then have:

G(1)(W,Y
(1)

(W)) > G(1)(W,Y
(2)

(W)) > sup
F1

P(W + F1 − I,Y
(2)

(W))

= G(2)(W,Y
(2)

(W)) , (C.24)

where the first inequality follows from the monotonicity property shown in Proposition 3. Since 

Y
(2)

(W) is the optimal investment boundary for G(2)(W, Y), we have G(2)(W, Y
(2)

(W)) >

G(1)(W, Y
(2)

(W)), which is conflicting with (C.24). Hence, we have that Y
(1)

(W) = Y
(2)

(W)

for all W .
Finally, we show that the solution is unique on the remaining liquidation/investment region 

�′
1 = �1 − (�G ∪ �′

G). From the definition of the regions �G and �′
G, and total region �1, we 

have that

�′
1 = {(W,Y )|0 ≤ W ≤ max{
1,
2 + I },0 ≤ Y < Y(W)}

∪{(W,Y )|0 ≤ W ≤ max{
1,
2 + I }, Y (W) < Y } . (C.25)

Since both of Y(W) and Y(W) are unique it follows that �′
1 is also unique. In the liquidation 

region the value function is G(W, Y) ≡ W , and in the investment region the value function is 
G(W, Y) ≡ supF1≥0 P(W + F1 − I, Y), so that the solution for P(W + F1 − I, Y) is unique as 
shown in Proposition 1. Hence, the solution for G(W, Y) is unique in �′

1. In sum, the solution 
for G(W, Y) in the region �1 is unique. �
C.8. Proof for Proposition 4

Proof for the Monotonicity Property of the Liquidation Boundary. Here, we want to 
show the optimal liquidation boundary, Y(W), is decreasing in W in the growth phase. Let 
Y (W(1)) and Y(W(2)) denote the optimal liquidation boundary with respectively liquidity W(1)

and W(2), where W(1) < W(2). Recall that H(W, Y) = G(W, Y) − W is increasing in W as 
shown in Proposition 3. We therefore have 0 = H(W(1), Y (W(1))) ≤ H(W(2), Y (W(1))). In 
addition, G(W, Y) is strictly increasing in Y before liquidation as shown in Proposition 3. 
This implies that H(W, Y) = G(W, Y) − W is also strictly increasing in Y for Y ≥ Y (W). 
Hence, we have Y(W(1)) ≥ Y (W(2)), otherwise 0 = H(W(1), Y (W(1))) ≤ H(W(2), Y(W(1))) <
H(W(2), Y (W(2))) = 0, a contradiction. That is, we have established that Y(W(1)) ≥ Y(W(2))

if W(1) < W(2), which shows that the optimal liquidation boundary is decreasing in W in the 
growth phase. �
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Proof for Delaying Costly Equity Issuance. First, we need to show that the firm has to issue 
equity if W = 0 for given Y , where Y(0) < Y < Z1

m1
, to continue operations. We assume that 

F ∗
1 (0) is the optimal amount of equity issuance, so that G(0, Y) = G(F ∗

1 (0), Y) − F ∗
1 (0) −

�(F ∗
1 (0)). This implies that GW(0, Y) > 1 +�∗′(0)) = 1 +φ1, for otherwise F ∗

1 (0) = 0 and the 
firm defaults immediately, which is a contradiction with Y(0) < Y < Z1

m1
. Next, denoting M =

F ∗
1 (0), we have that GW(W, Y) > 1 + φ1 for 0 < W < M and GW(M, Y) = 1 + φ1. Otherwise, 

F ∗
1 (0) is not the optimal amount of equity issuance.

To show that the firm will delay costly equity issuance until entirely exhausting its cash, we 
only need to show that G(W, Y) > supF1≥0 G(W + F1, Y) − F1 − �(F1) for W > 0. First, since 
GW(W, Y) ≤ 1 + φ1 for W ≥ M , the firm has no incentive to issue equity because G(W, Y) ≥
G(W + F1, Y) − F1 − φ1F1 > G(W + F1, Y) − F1 − �(F1) for W ≥ M . Second, we show that 
G(W, Y) > supF1≥0 G(W + F1, Y) − F1 − �(F1) for 0 < W < M . Let F ∗

1 (W) be the optimal 
amount of equity issuance if the firm chooses equity issuance at some W such that 0 < W < M

for given Y . This means that supF1≥0 G(W + F1, Y) − F1 − �(F1) = G(W + F ∗
1 (W), Y) −

F ∗
1 (W) − �(F ∗

1 (W)) and M = W + F ∗
1 (W). We then have

G(W,Y ) − (G(W + F ∗
1 (W),Y ) − F ∗

1 (W) − �(F ∗
1 (W)))

= G(W,Y ) − (G(M,Y ) − F ∗
1 (W) − �(F ∗

1 (W)))

= G(W,Y ) − W − (G(M,Y ) − M − �(F ∗
1 (W)))

= H(W,Y ) − H(M,Y ) + �(M − W) . (C.26)

Recall that G(0, Y) = G(F ∗
1 (0), Y) − F ∗

1 (0) − �(F ∗
1 (0)) and M = F ∗

1 (0), so that H(0, Y) =
H(F ∗

1 (0), Y) − �(F ∗
1 (0)) = H(M, Y) − �(M), and

G(W,Y ) − (G(W + F ∗
1 (W),Y ) − F ∗

1 (W) − �(F ∗
1 (W)))

= H(W,Y ) − H(0, Y ) + �(M − W) − �(M)

= H(W,Y ) − H(0, Y ) − φ1W

> φ1W − φ1W = 0 ,

where the above inequality follows from GW(W, Y) > 1 + φ1 for 0 < W < M , which implies 
that HW(W, Y) > φ1 for 0 < W < M . Finally, G(W, Y) − (G(W + F ∗(W), Y) − F ∗(W) −
�(F ∗(W))) > 0 implies that the firm has no incentive to issue equity for 0 < W < M and that 
the firm will delay costly equity issuance until entirely exhausting its cash. �
Proof for the behavior of the investment threshold when W → I . If PW(0, Y (I)) ≤ φ1, the 
firm delays costly equity issuance as shown in Proposition 2, so that P(0, Y (I)) > P(F1, Y (I)) −
F1 −φ1F1 > P(F1, Y (I)) −F1 −�(F1) for any 0 < F1 ≤ M where PW(M, Y (I)) = φ1. Hence, 
we have G(I, Y(I)) = supF1≥0 P(F1, Y (I)) − F1 − �(F1) = P(0, Y (I)) if PW(0, Y (I)) ≤ φ1. 
That is, the firm directly uses its internal liquidity to finance the investment cost I if the marginal 
value of internal liquidity is lower than the external financing cost.

Denote Y(I−) = limW→I Y (W). Now we show that Y(I−) = ∞. First, we have Y(I−) ≥
Y (I), otherwise if Y(I−) < Y(I) for given Y(I−) we have

lim
W→I

G(W,Y (I−)) = lim
W→I

sup
F1>0

P(W + F1 − I,Y (I−)) − F1 − �(F1)

= sup P(I + F1 − I,Y (I−)) − F1 − �(F1) < G(I,Y (I−)) ,

F1>0
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where the second equality follows from the continuity of G(W, Y), and the inequality from 
Y (I−) < Y(I) and the fact that supF P (W + F1 − I, Y(I−)) − F1 − �(F1) < G(W, Y) if 
Y < Y(W). Hence, we have that Y(I−) ≥ Y (I).

Now, assume that Y(I) ≤ Y (I−) < ∞, then we have

lim
W→I

G(W,Y (I−)) = lim
W→I

sup
F1>0

P(W + F1 − I,Y (I−)) − F1 − �(F1)

= sup
F1>0

P(I + F1 − I,Y (I−)) − F1 − �(F1)

= lim
F1→0

P(F1, Y (I−)) − F1 − �(F1)

= P(0, Y (I−)) − φ0 = G(I,Y (I−)) − φ0 .

The above result violates the continuity of G(W, Y) in W if Y (I) ≤ Y (I−) < ∞. In sum, we 
have Y(I−) → ∞ if PW(0, Y (I)) ≤ φ1, so that the investment threshold tends to infinity when 
W → I if PW(0, Y (I)) ≤ φ1. �
Appendix D. Solution algorithm

First, we note that solving the following problem

max{L2P, max{ sup
F2≥0

P(W + F2, Y ) − F2 − �(F2),W } − P(W,Y )} = 0 , (D.1)

in the region (W ≥ 0, Y ≥ 0) is equivalent to solving the following penalty equation:

L2P + q max{W − P,0} = 0 , (D.2)

in the region [0, 
2] × [0, Ymax] where the approximate boundary Ymax and the penalty factor q

are sufficiently high. The following boundary conditions are associated with (D.2):

1. When the firm has no savings, i.e., W = 0:

P(0, Y ) = max{sup P(F2, Y ) − φ0 − (1 + φ1)F2,0}, if Y <
Z2

m2
, (D.3)

L2P + q max{W − P,0} = 0 if Y ≥ Z2

m2
.

2. When the firm’s liquidity is sufficiently high, i.e., W = 
2:

P(W,Y ) = W, if Y < Y ∗
2,a ,

P (W,Y ) = Q∗(Y ) + W, if Y ≥ Y ∗
2,a.

3. When the firm’s earnings is at the origin, Y = 0, a permanently absorbing state, it is imme-
diate to see that P = W .

4. When the firm’s earnings is sufficiently high, i.e., Y = Ymax , the firm’s can finance 
its operations in an unconstrained way with probability one. Therefore, P(W, Ymax) =
P ∗(W, Ymax) = Q∗(Ymax) + W .

We use the finite-difference method to solve the penalty equation (D.2). That is, we divide 
the interval [0, 
2] via Nw equally spaced points {(i − 1)�w}Nw , where �w = 
2/(Nw − 1), 
i=1
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and divide the interval [0, Ymax] via Ny equally spaced points {(j − 1)�y}Ny

j=1, where �y =
Ymax/(Ny − 1). We then solve the penalty equation L2Pi,j + q max{Wi − Pi,j , 0} = 0 by us-
ing Newton-SOR iterative method, by setting Wi = (i − 1)�w , Yj = (j − 1)�y , and Pi,j =
P(Wi, Yj ). Under Assumption 2 and Assumption (3), the value function is well defined and the 
numerical procedure converges.
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