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ABSTRACT

A risk-averse entrepreneur with access to a profitable venture needs to raise funds
from investors. She cannot indefinitely commit her human capital to the venture,
which limits the firm’s debt capacity, distorts investment and compensation, and
constrains the entrepreneur’s risk sharing. This puts dynamic liquidity and state-
contingent risk allocation at the center of corporate financial management. The firm
balances mean-variance investment efficiency and the preservation of financial slack.
We show that in general the entrepreneur’s net worth is overexposed to idiosyncratic
risk and underexposed to systematic risk. These distortions are greater the closer the
firm is to exhausting its debt capacity.

CONSIDER A RISK-AVERSE ENTREPRENEUR WHO has access to a profitable venture
with an initial capital stock K0. This entrepreneur needs to raise start-up
funds and on occasion additional working capital from investors. In a first-best
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Modigliani-Miller environment, the entrepreneur would be able to diversify
away her idiosyncratic risk, fully pledge the market value of her venture,
and raise funds from investors against a promised competitive risk-adjusted
return. However, if the entrepreneur is essential to the venture and cannot
irrevocably dedicate her human capital to the firm, the promised return
may not be credible. We show that this inalienability of the entrepreneur’s
human capital, or what is also commonly referred to as key-man risk, has
critical implications not only for the firm’s financing capacity, investment,
and compensation, but also for its liquidity and risk management policy. The
larger is a firm’s liquidity or the larger is its borrowing capacity, the greater
is its ability to retain talent by making credible compensation promises. In
addition, by managing the firm’s exposures to idiosyncratic and aggregate
risk, the firm can reduce both the cost of retaining talent and the cost of
financing.

In sum, our paper offers a new theory of corporate liquidity and risk man-
agement based on the inalienability of risky human capital. Even when there
are no capital market frictions, corporations add value by optimally managing
risk and liquidity because doing so allows them to reduce the cost of key-man
risk to investors. This rationale for corporate risk and liquidity management
is particularly relevant for technology firms where key-man risk is acute.

The main building blocks of our model are as follows. The entrepreneur
has constant relative risk-averse (CRRA) preferences and seeks to smooth
consumption. The firm’s operations are exposed to both idiosyncratic and
aggregate risk. The firm’s capital is illiquid and is exposed to stochastic
depreciation. It can be accumulated through investments that are subject to
adjustment costs. The entrepreneur faces risk with respect to both the firm’s
performance and her outside options. To retain the entrepreneur, the firm
optimally compensates her by smoothing her consumption and limiting her
risk exposure. To be able to do so, however, the firm must manage its liquidity
and risk allocation. The firm’s optimized balance sheet is composed of illiquid
capital, K, and cash or marketable securities, S, on the asset side, and equity
and a line of credit (when S is negative), with a limit that depends on the
entrepreneur’s outside option, on the liability side.

The solution to this problem has the following key elements. The en-
trepreneur manages the firm’s risk by choosing optimal loadings on the
idiosyncratic and market risk factors. The firm’s liquidity is augmented
through retained earnings from operations and through returns from its port-
folio of marketable securities, including its hedging and insurance positions.
The scaled state variable is the firm’s liquidity-to-capital ratio s = S/K. When
liquidity is abundant (s is large), the firm is essentially unconstrained and
can choose its policies to maximize its market value (or equivalently the
entrepreneur’s net worth). The firm’s investment policy then approaches the
Hayashi (1982) risk-adjusted first-best benchmark, and its consumption and
asset allocations approach the generalized Merton (1971) consumption and
mean-variance portfolio rules. In particular, the entrepreneur is completely
insulated from idiosyncratic risk.
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In contrast, when the firm exhausts its credit limit, its single objective is to
ensure that the entrepreneur gets at least as much as her outside option, which
is achieved by optimally preserving liquidity s and eliminating the volatility of
s at the endogenously determined debt limit s. As one would expect, preserving
liquidity requires cutting investment and consumption, engaging in asset
sales, and lowering the systematic risk exposure of the entrepreneur’s net
worth. More surprisingly, preserving financial slack also involves retaining
some exposure to idiosyncratic risk. That is, relative to the first-best, the en-
trepreneur’s net worth is overexposed to idiosyncratic risk and underexposed
to systematic risk, as this helps reduce (or even eliminate) the volatility of s.

In short, the risk management problem of the firm boils down to a compro-
mise between achieving mean-variance efficiency for the entrepreneur’s net
worth and preserving the firm’s financial slack. The latter is the dominant
consideration when liquidity s is low.

The first model to explore the corporate finance consequences of inalien-
able human capital is Hart and Moore’s (1994). They consider an optimal
financial contract between an entrepreneur and outside investors to finance
a single project with a finite horizon and no cash-flow uncertainty. Both the
entrepreneur and investors are assumed to have linear utility functions. They
argue that the inalienability of the entrepreneur’s human capital implies that
debt is an optimal financial contract.

We generalize the Hart and Moore (1994) model in several important
directions. Our first generalization is to consider an infinitely lived firm, with
ongoing investment subject to adjustment costs, and an entrepreneur with a
strictly concave utility function. While the firm’s financing constraint is always
binding in Hart and Moore (1994), in our model the financing constraint
is generically nonbinding; because it is optimal to smooth investment and
consumption, the firm does not want to run through its stock of liquidity in
one go. This naturally gives rise to a theory of liquidity management even
when there is no uncertainty. We describe this special case in Section VII.
Our second generalization is to introduce both idiosyncratic and aggregate
risk, which leads to a theory of corporate risk management that links classical
intertemporal asset pricing and portfolio choice theory with corporate liquidity
demand. Investors set the market price of risk, which the entrepreneur takes
as given in determining the firm’s optimal risk exposures and how they
should vary with the firm’s stock of liquidity. By generalizing the Hart and
Moore (1994) model to include ongoing investment, consumption smoothing,
uncertainty, and risk aversion for both the entrepreneur and investors, we are
able to show that inalienability of human capital gives rise to not only a theory
of debt capacity, but also a dynamic theory of liquidity and risk management
that is fundamentally connected to the entrepreneur’s optimal compensation.

The objective of corporate risk management in our analysis is not achieving
an optimal risk-return profile for investors, they can do that on their own, but
rather offering optimal risk-return profiles to risk-averse, underdiversified key
employees (the entrepreneur in our setting) with inalienable human capital
constraint. In our setup the firm is, in effect, both the employer and the asset
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manager for its key employees. This perspective on corporate risk management
is consistent with Duchin et al. (2017), who find that nonfinancial firms invest
40% of their liquid savings in risky financial assets. They find that the less
constrained firms invest more in the market portfolio, which is consistent with
our predictions. In addition, when firms are severely financially constrained,
we show that they cut compensation, reduce corporate investment, engage
in asset sales, and reduce hedging positions, with the primary objective of
surviving by honoring liabilities and retaining key employees. These latter
predictions are in line with the findings of Rampini, Sufi, and Viswanathan
(2014), Brown and Matsa (2016), and Donangelo (2014).

The objective of corporate liquidity management in our model is not
avoiding costly external financing, but rather compensation smoothing, which
requires maintaining liquidity buffers in low productivity states. This motive
generally outweighs the countervailing investment financing motive of Froot,
Scharfstein, and Stein (1993), which prescribes building liquidity buffers in
high productivity states, where investment opportunities are good. If the firm
finds itself in the low productivity state, we show that it is optimal for the
entrepreneur to take a pay cut, consistent with the evidence on executive com-
pensation and corporate cash holdings (e.g., Ganor (2013)). It is possible for the
firm to impose a pay cut because in a low productivity state the entrepreneur’s
outside options are also worth less. It is also optimal to sell insurance in a
low productivity state to generate valuable liquidity. The optimality of selling
insurance when productivity is low is not driven by risk-shifting incentives
as in Jensen and Meckling (1976), but rather by the firm’s need to replenish
liquidity. Asset sales in response to a negative productivity shock (also optimal
in our setting) are commonly emphasized (Campello et al. (2011)). But our
analysis further explains why it is also optimal to sell insurance and cut pay
in response to low productivity shocks.

Our theory is particularly relevant for human capital–intensive, high-tech
firms. These firms often hold substantial cash and employee stock-option
pools. We explain why these pools may be necessary to make future compen-
sation promises credible and thereby retain highly valued employees. When
stock options vest and are exercised, companies generally engage in stock
repurchases to avoid excessive stock dilution. But such repurchase programs
require funding, which partly explains why these companies hold such large
liquidity buffers.

We show that the firm’s optimal liquidity and risk management problem
can also be reformulated as a dual optimal-contracting problem between a
well-diversified risk-averse investor and an entrepreneur with inalienable
human capital. In the contracting formulation, the state variables are the
certainty-equivalent wealth W that the investor promises to the entrepreneur
and the firm’s capital stock K. Analogous to our primal formulation, the ratio
w = W/K is the scaled state variable that describes how constrained the firm is.

As Table I summarizes, this dual contracting problem is equivalent to the
entrepreneur’s liquidity and risk management problem: s = −p(w), where
p(w) is the investor’s scaled value in the contracting problem, and w = m(s),
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Table I
Equivalence: Primal Optimization and Dual Contracting Problems

Primal Dual
Optimization Contracting

State variable s w

Value function m(s) p(w)

where m(s) is the entrepreneur’s scaled certainty-equivalent wealth in the
liquidity and risk management problem. A key observation here is that the
credit constraint s ≥ s is the outcome of an optimal financial contracting
problem under the entrepreneur inalienability constraint for w ≥ w.

Ai and Li (2015) consider a closely related contracting problem. They char-
acterize optimal CEO compensation and corporate investment under limited
commitment, but they do not consider the implementation of the contract
through corporate liquidity and risk management policies. Their formulation
differs from ours in two other important respects. First, they assume that
investors are risk-neutral, so that they cannot make a meaningful distinction
between idiosyncratic and aggregate risk. Second, their limited commitment
assumption does not take the form of a constraint on the inalienability of
human capital. In their setup, the entrepreneur is assumed to abscond with
the firm’s capital, and when she does so she can only continue operating under
autarky. In our setup, in contrast, the entrepreneur is free to leave and there-
fore can offer her human capital to another firm under an optimal contract.
Ai and Li’s (2015) limited commitment assumption leads to substantially
different predictions. First, autarky is such a severe punishment (because the
entrepreneur is then fully exposed to the firm’s operating risk) that the limited
commitment constraint barely binds and may not result in any distortions in
investment and consumption. Even with a relatively low risk aversion coeffi-
cient for an entrepreneur the first-best outcome is attainable. Second, for low
risk aversion, the dynamics of the entrepreneur’s consumption are such that
consumption is constant as long as the limited commitment constraint does
not bind and adjusts up only when the constraint is binding. In our model, in
contrast, the inalienability of human capital constraint distorts consumption,
investment, and risk exposures even for high coefficients of risk aversion for
the entrepreneur. Moreover, these policies respond smoothly to changes in the
firm’s liquidity. We provide a detailed discussion of the difference between the
autarky and the recontracting assumptions in Section F.

Rampini and Viswanathan (2010, 2013) develop a limited commitment–
based theory of risk management that focuses on the trade-off between ex-
ploiting current versus future investment opportunities. If the firm invests
today, it may exhaust its debt capacity and thereby forgo future investment op-
portunities. If instead the firm forgoes investment and hoards its cash, it is in a
position to be able to exploit potentially more profitable investment opportuni-
ties in the future. The difference between our theory and theirs is mainly due to
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our assumptions of risk aversion for the entrepreneur and investors, our model-
ing of limited commitment in the form of risky inalienable human capital, and
our assumption of physical capital illiquidity via q theory of investment. We
focus on a different aspect of corporate liquidity and risk management, namely,
the management of risky human capital and key-man risk. In particular, we
emphasize the benefits of risk management to help smooth the consumption of
the firm’s stakeholders (entrepreneur, managers, and key employees).

Berk, Stanton, and Zechner (2010) analyze a model in which the firm trades
off the tax benefits of debt and the cost of underinsuring risk-averse employees.
Building on Merton’s intertemporal portfolio choice framework, Wang, Wang,
and Yang (2012) study a risk-averse entrepreneur’s optimal consumption-
savings, portfolio choice, and capital accumulation decisions when facing
uninsurable capital and productivity risks. Unlike Wang, Wang, and Yang
(2012), our model features optimal liquidity and risk management policies
that arise endogenously from an underlying financial contracting problem.

Our theory has elements in common with the literature on contracting
under limited commitment following Harris and Holmström (1982). Harris
and Holmström (1982) analyze a model of optimal insurance for a risk-averse
worker who is unable to commit to a long-term contract. Lustig, Syverson, and
Nieuwerburgh (2011) build on Harris and Holmström (1982) by incorporating
organizational capital. Eisfeldt and Papanikolaou (2013) consider the asset
pricing implications of limited commitment and organizational capital risk.

In terms of methodology, our paper builds on previous studies of the dynamic
contracting in continuous time including Holmström and Milgrom (1987),
Schaettler and Sung (1993), and Sannikov (2008), among others. Our model
is closely related to the dynamic corporate security design literature in the
vein of DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin, and Rochet
(2007), and DeMarzo and Fishman (2007b).1 As in DeMarzo and Sannikov
(2006), Biais et al. (2010), and DeMarzo, Fishman, He, and Wang (2012),
our continuous-time formulation allows us to provide sharper closed-form
solutions for consumption, investment, liquidity, and risk management
policies, up to an ordinary differential equation (ODE) for investors’ scaled
value p(w). These papers also focus on the implementation of the optimal
contracting solution via corporate liquidity (cash and credit line) and (inside
and outside) equity. Two key differences are (1) risk aversion and (2) sys-
tematic and idiosyncratic risk, which together lead to a theory of the firm’s
off-balance-sheet (zero-NPV) futures and insurance positions in addition
to the “marketable securities” entry on corporate balance sheets. A third
difference is that these papers focus on dynamic moral hazard, while we
focus on the inalienability of risky human capital. A fourth difference is our

1 See also Biais, Mariotti, Rochet, and Villeneuve (2010) and Piskorski and Tchistyi (2010),
among others. Biais, Mariotti, and Rochet (2013) and Sannikov (2013) provide recent surveys
of this literature. For static security design models, see Townsend (1979) and Gale and Hellwig
(1985), Innes (1990), and Holmström and Tirole (1997).
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generalization of the q-theory of investment to settings with inalienable human
capital.2

Our theory is also related to the liquidity asset pricing theory of Holmström
and Tirole (2001). We significantly advance their agenda of developing an
asset pricing/portfolio choice theory based on corporate liquidity. They consider
a three-period model with risk-neutral agents, where firms are financially
constrained and therefore have higher value when they hold more liquidity.
Their assumptions of risk-neutrality and no consumption smoothing limit the
integration of asset pricing and corporate finance theories.

There is also an extensive macroeconomics literature on limited commit-
ment.3 Green (1987), Thomas and Worrall (1990), Marcet and Marimon
(1992), Kehoe and Levine (1993), and Kocherlakota (1996) are important early
contributions on optimal contracting under limited commitment. Alvarez
and Jermann (2000) extend welfare theorems to economies with limited
commitment. Our entrepreneur’s optimization problem is related to the
agent’s dynamic optimization problem in Alvarez and Jermann (2000) and
Chien and Lustig (2010) by allowing for recontracting after default. While
their focus is on optimal consumption allocation, we focus on consumption,
liquidity, and risk allocation, as well as on corporate investment.

Albuquerque and Hopenhayn (2004), Quadrini (2004), Clementi and Hopen-
hayn (2006), and Lorenzoni and Walentin (2004) characterize financing and
investment decisions under limited commitment or asymmetric information.
Kehoe and Perri (2002) and Albuquerque (2003) analyze the implications
of limited commitment for international business cycles and foreign direct
investment. Miao and Zhang (2015) develop a duality-based solution method
for limited commitment problems.

Our analysis also contributes to the executive compensation literature
(see Frydman and Jenter (2010) and Edmans and Gabaix (2016) for recent
surveys). Our model brings out an important positive link between (1)
executive compensation and (2) corporate liquidity and risk management, and
helps explain why companies typically cut compensation and investment, and
reduce risk exposures when liquidity is tight. DeMarzo and Sannikov (2006),
Biais, Mariotti, Plantin, and Rochet (2007), and DeMarzo, Fishman, He, and
Wang (2012) also provide financial implementation with cash and/or a credit
line and link to executive compensation.4

Finally, our paper is related to the voluminous economics literature on
human capital that builds on Ben-Porath (1967) and Becker (1975).

The remainder of our paper is organized as follows. In Section I, we introduce
our model. In Section II, we present the first-best solution. In Section III,
we present the solution for our model with inalienable human capital. In

2 DeMarzo and Fishman (2007a), Biais, Mariotti, Rochet, and Villeneuve (2010), and DeMarzo,
Fishman, He, and Wang (2012) incorporate investment into dynamic agency models.

3 See Ljungqvist and Sargent (2004), Part V, for a textbook treatment of limited commit-
ment models.

4 See Stulz (1984, 1996), Smith and Stulz (1985), and Tufano (1996) for early work on the link
between corporate hedging and executive compensation.
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Section IV, we present the optimal contracting problem that is dual to the op-
timal liquidity and risk management problem of Section II. Section V provides
quantitative analysis. Section VI generalizes the baseline model of Section II to
allow for persistent productivity shocks. Section VII relates the deterministic
formulation of our model to Hart and Moore (1994). In Section VIII, we analyze
the two-sided limited-commitment model. Section IX concludes.

I. The Model

We consider an intertemporal optimization problem faced by a risk-averse
entrepreneur who cannot irrevocably promise to operate the firm indefinitely
under all circumstances. This inalienability problem for the entrepreneur
results in endogenous financial constraints that distort her consumption,
savings, investment, and exposures to systematic and idiosyncratic risks.
To best highlight the central economic mechanism arising from the inalien-
ability of human capital, we abstract from all other financial frictions from
the model and assume that financial markets are competitive and that all
state-contingent claims can be traded frictionlessly.

A. Production Technology and Preferences

Production and Capital Accumulation. The firm’s capital stock K evolves
according to a controlled geometric Brownian motion (GBM) process,

dKt = (It − δK Kt)dt + σK Kt

(√
1 − ρ2dZh,t + ρdZm,t

)
, (1)

where I is the firm’s rate of gross investment, δK ≥ 0 is the expected rate of
depreciation, and σK is the volatility of the capital depreciation shock.5 With-
out loss of generality, we decompose risk into two orthogonal components: an
idiosyncratic shock represented by the standard Brownian motion Zh and a sys-
tematic shock represented by the standard Brownian motion Zm.6 The param-
eter ρ measures the correlation between the firm’s capital risk and systematic
risk, so that the firm’s systematic volatility is equal to ρσK and its idiosyncratic
volatility is given by

νK = σK

√
1 − ρ2 . (2)

The capital stock includes both physical capital and intangible capital (such as
patents, know-how, brand value, and organizational capital).

As in Hart and Moore (1994), production requires combining the en-
trepreneur’s inalienable human capital and the firm’s physical assets. If either

5 Stochastic capital accumulation processes have been widely used in corporate finance, asset
pricing, and macroeconomics. Cox, Ingersoll, and Ross (1985), Jones and Manuelli (2005), Al-
buquerque and Wang (2008), and Brunnermeier and Sannikov (2014) are examples in general
equilibrium with agency and financial constraints.

6 The subscripts h and m for the two standard Brownian motions refer to idiosyncratic hedgeable
risk and systematic market risk.
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the entrepreneur’s human capital or the firm’s physical capital is missing, no
output is produced and no value creation is possible. In other words, value is
created by matching the entrepreneur’s human capital and the firm’s physical
capital stock. The entrepreneur’s human capital is captured by the parameter
A. Human capital is more valuable when it is deployed on a larger capital stock
Kt. More specifically, we assume that the firm’s output produced by the match
is given by AKt. This formulation captures the idea that the value-added of the
entrepreneur’s human capital is risky to the extent that the firm’s capital Kt is
risky. In Section VI, we generalize our model to introduce shocks to productivity
A. An important simplifying assumption throughout our analysis is that the
entrepreneur’s human capital is always best matched with the firm’s physical
capital stock, so that there is no separation under the optimal contract.7

Investment involves an adjustment cost as in the standard q-theory of
investment, so that the firm’s free cash flow (net of capital costs but before
consumption) is given by

Yt = AKt − It − G(It, Kt), (3)

where the price of the investment good is normalized to one and G(I, K) is
the standard adjustment cost function. Note that Yt can take negative values,
which simply means that additional financing may be needed to close the gap
between contemporaneous revenue, AKt, and total investment costs.

We further assume that the adjustment cost G(I, K) is homogeneous of
degree one in I and K (a common assumption in the q-theory of investment)
and express G(I, K) as

G(I, K) = g(i)K, (4)

where i = I/K denotes the investment-capital ratio and g(i) is increasing and
convex in i. As Hayashi (1982) has shown, this homogeneity property implies
that Tobin’s average and marginal q are equal in the first-best benchmark.8 As
we will show, however, under inalienability of human capital an endogenous
wedge between Tobin’s average and marginal q will emerge.9

Preferences. The infinitely lived entrepreneur has a standard concave utility
function over positive consumption flows {Ct; t ≥ 0} as given by

Jt = Et

[∫ ∞

t
ζe−ζ (v−t)U (Cv)dv

]
, (5)

7 Note that since there is no separation in equilibrium, we do not have to specify the firm’s
second-best use of its physical capital.

8 Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment
costs, though they do not explicitly link their results to marginal or average q. Abel and Eberly
(1994) extend Hayashi (1982) to a stochastic environment and a more general specification of
adjustment costs.

9 An endogenous wedge between Tobin’s average and marginal q also arises in cash-based models
such as Bolton, Chen, and Wang (2011) and optimal contracting models such as DeMarzo, Fishman,
He, and Wang (2012).
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where ζ > 0 is the entrepreneur’s subjective discount rate, Et[·] is the time-t
conditional expectation, and U (C) takes the standard CRRA utility form

U (C) = C1−γ

1 − γ
, (6)

with γ > 0 denoting the coefficient of relative risk aversion. We normalize the
flow payoff with ζ in (5), so that the utility flow is given by ζU (C).10

B. Complete Financial Markets

We assume that financial markets are perfectly competitive and complete.
By using essentially the same argument as in the Black-Merton-Scholes
option pricing framework, we can dynamically complete markets with three
long-lived assets (Harrison and Kreps (1979) and Duffie and Huang (1985)).
Specifically, given that the firm’s production is subject to two shocks, Zh
and Zm, financial markets are dynamically complete if the following three
nonredundant financial assets can be dynamically and frictionlessly traded:

(1) A risk-free asset that pays interest at a constant risk-free rate r.
(2) A hedging contract that is perfectly correlated with the idiosyncratic

shock Zh. There is no upfront cost to enter this hedging contract as the risk
involved is purely idiosyncratic and thus the counterparty earns no risk
premium. The transaction at inception is therefore off the balance sheet. The
instantaneous payoff for each unit of the contract is νKdZh,t.

(3) A stock market portfolio: The incremental return dRm,t of this asset is

dRm,t = μmdt + σmdZm,t , (7)

where μm and σm are constant drift and volatility parameters. As this risky
asset is subject only to the systematic shock, we refer to it as the market
portfolio.

Dynamic and frictionless trading with these three securities implies that the
following unique stochastic discount factor (SDF) exists (e.g., Duffie (2001)):

dMt

Mt
= −rdt − ηdZm,t , (8)

where M0 = 1 and η is the Sharpe ratio of the market portfolio as given by

η = μm − r
σm

. (9)

10 This normalization is convenient in contracting models (see Sannikov (2008)). We can gen-
eralize these preferences to allow for a coefficient of relative risk aversion that is different from
the inverse of the elasticity of intertemporal substitution as in Epstein and Zin (1989). Indeed,
as Epstein-Zin preferences are homothetic, allowing for such preferences in our model will not
increase the dimensionality of the optimization problem. Details are available upon request.
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The SDF M follows a geometric Brownian motion (GBM) where the drift is equal
to the negative risk-free rate, as required under no-arbitrage. By definition the
SDF is exposed only to the systematic shock Zm. Fully diversified investors
demand a risk premium only for their exposures to systematic shocks.

Dynamic Trading. Let {St; t ≥ 0} denote the entrepreneur’s liquid wealth
process. When St > 0, the entrepreneur’s savings are positive and when
St < 0, she is a borrower. The entrepreneur continuously allocates St between
the risk-free asset and the stock market portfolio 	m,t, whose return is given
by (7). Moreover, the entrepreneur chooses a pure idiosyncratic-risk hedging
position 	h,t. Her liquid wealth St thus evolves according to

dSt = (rSt + Yt − Ct)dt + 	h,tνKdZh,t + 	m,t[(μm − r)dt + σmdZm,t] . (10)

The first term in (10), rSt + Yt − Ct, is simply the sum of the interest income
rSt and net operating cash flows, Yt − Ct. The second term, 	h,tνKdZh,t, is the
exposure to the idiosyncratic shock Zh, which earns no risk premium. The third
term, 	m,t[(μm − r)dt + σmdZm,t], is the excess payoff from the market portfolio.

In the absence of any risk exposure, rSt + Yt − Ct is simply the rate at which
the entrepreneur saves as in standard permanent-income models. However,
in general, saving all liquid wealth S at the risk-free rate is suboptimal. By
dynamically engaging in risk taking and risk management, through the risk
exposures 	h and 	m, the entrepreneur will do better.

Next, we use dynamic programming to characterize the firm’s liquidity and
risk management policies.

C. Dynamic Programming

Let J(K, S) denote the entrepreneur’s value function. The entrepreneur’s
liquid wealth S and illiquid productive capital K play different roles and
accordingly both serve as natural state variables. By the standard dynamic
programming argument, the solution for J(K, S) in the interior region is
characterized by the following Hamilton-Jacobi-Bellman (HJB) equation:

ζ J(K, S) = max
C,I,	h,	m

ζU (C) + (rS + 	m(μm − r) + AK − I − G(I, K) − C)

× JS(K, S) + (I − δK K)JK(K, S) + σ 2
K K2

2
JKK(K, S)

+ (
ν2

K	h + ρσKσm	m
)
KJKS(K, S) + (νK	h)2 + (σm	m)2

2
JSS(K, S). (11)

The first term on the right side of (11) represents the entrepreneur’s utility
over consumption. The second term is the product of the marginal value of
liquidity, JS(K, S), and the savings rate for S. The third term is the product
of net investment, (I − δK K), and the marginal value of capital JK(K, S)). The
last three terms (involving JKK(K, S), JKS(K, S), and JSS(K, S)) correspond to
the quadratic-variation and covariation effects of K and S.
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The entrepreneur chooses consumption C, investment I, idiosyncratic risk
hedge 	h, and market portfolio allocation 	m to maximize her lifetime utility.
With a concave utility function U (C), optimal consumption is determined by
the first-order condition (FOC)

ζU ′(C) = JS(K, S) , (12)

which equates the marginal utility of consumption ζU ′(C) with JS(K, S), the
marginal value of liquid wealth. The FOC for investment I,(

1 + GI(I, K)
)
JS(K, S) = JK(K, S) , (13)

is somewhat less obvious. It equates (1) the marginal cost of investing in illiquid
capital, given by the product of the marginal cost of investing (1 + GI) and the
marginal value of liquid savings JS(K, S), with (2) the entrepreneur’s marginal
value of investing in illiquid capital JK(K, S).

The optimal stock market portfolio allocation 	m satisfies the FOC

	m = − η

σm

JS(K, S)
JSS(K, S)

− ρσK

σm

KJKS(K, S)
JSS(K, S)

. (14)

The first term in (14) is in the spirit of Merton’s mean-variance demand and the
second term is the hedging demand with respect to the firm’s systematic risk
exposure. Similarly, the optimal hedge against idiosyncratic risk 	h is given by
the FOC

	h = − KJKS(K, S)
JSS(K, S)

. (15)

Note that the numerators in both (14) and (15) involve the cross partial,
JKS(K, S).

Equations (11) to (15) jointly characterize the interior solution of the firm’s
optimization problem.

The Entrepreneur’s Certainty-Equivalent Wealth M(K, S). A key step in our
derivation is to establish that the entrepreneur’s value function J(K, S) takes
the following form:11

J(K, S) = (bM(K, S))1−γ

1 − γ
, (16)

11 Our conjecture is guided by the twin observations that (1) the value function for the standard
Merton portfolio-choice problem (without illiquid assets) inherits the CRRA form of the agent’s
utility function U (·) and (2) the entrepreneur’s problem is homogeneous in K and S.
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where M(K, S) is the entrepreneur’s certainty-equivalent wealth and b is the
constant:12

b = ζ

[
1
γ

− 1
ζ

(
1 − γ

γ

)(
r + η2

2γ

)] γ

γ−1

. (17)

In words, M(K, S) is the dollar amount that the entrepreneur would demand
to permanently give up her productive human capital and retire as a Merton-
style consumer under complete markets. By linking the entrepreneur’s value
function J(K, S) to her certainty-equivalent wealth, M(K, S) we are able to
transform the entrepreneur’s payoff from the value function, J(K, S), to the
certainty-equivalent wealth, M(K, S).

This transformation is conceptually important, as it allows us to measure
payoffs in dollars and thus makes the economics of the entrepreneur’s problem
more intuitive. In particular, it is possible to determine the marginal value
of liquidity, MS(K, S), only after making the transformation from J(K, S) to
M(K, S). As we will show, the economics of the entrepreneur’s problem and
the solution to the entrepreneur’s liquidity and risk management problem are
closely linked to the marginal value of liquidity MS(K, S).

Reduction to One Dimension. An additional simplifying step is to exploit
the model’s homogeneity property to reduce the entrepreneur’s problem to one
dimension. Scaling the variables expressed in dollar units by Kt, we use lower
case letters to denote the following variables: consumption ct = Ct/Kt, invest-
ment it = It/Kt, liquidity st = St/Kt, idiosyncratic risk hedge φh,t = 	h,t/Kt, and
market portfolio position φm,t = 	m,t/Kt. We also express the entrepreneur’s
certainty-equivalent wealth M(Kt, St) as

M(Kt, St) = m(st) · Kt. (18)

Endogenous Risk Aversion γe. To interpret our solution, it is helpful to in-
troduce the following measure of endogenous relative risk aversion for the
entrepreneur, denoted by γe:

γe ≡ − JSS

JS
× M(K, S) = γ m′(s) − m(s)m′′(s)

m′(s)
, (19)

where the equality follows from the homogeneity property. What economic in-
sights does γe capture and why do we introduce γe? First, inalienability of
human capital results in a form of endogenous market incompleteness. There-
fore, the entrepreneur’s endogenous risk aversion is captured by the curvature
of her value function J(K, S) rather than by her utility function U (·). We can
characterize the entrepreneur’s coefficient of endogenous absolute risk aversion
using the standard definition via her value function: −JSS(K, S)/JS(K, S). But
how do we link this absolute risk aversion measure to a relative risk aversion

12 We infer the value of b from the solution of Merton’s (1971) closely related consumption and
portfolio choice problem under complete markets. Note also that for the special case in which γ = 1,
we have b = ζ exp[ 1

ζ
(r + η2

2 − ζ )].
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measure? We need to multiply absolute risk aversion, −JSS(K, S)/JS(K, S),
by an appropriate measure of the entrepreneur’s wealth. While there is no
well-defined market measure of the entrepreneur’s total wealth under inalien-
ability, the entrepreneur’s certainty-equivalent wealth M(K, S) is a natural
proxy. This motivates our definition of γe in (19).13 We will show that the in-
alienability of human capital causes the entrepreneur to be underdiversified
and hence in effect more risk-averse, so that γe(s) > γ .14 The second equality
in (19) confirms this result, as her certainty-equivalent wealth m(s) is concave
in s with m′(s) > 1, which we establish below.

Next, we characterize the evolution of s given the policy functions φh(s),
φm(s), c(s), and i(s).

Dynamics of the Liquidity Ratio {st : t ≥ 0}. Given policies c(s), i(s), φh(s), and
φm(s), we can express the dynamics for the liquidity ratio st using Ito’s formula
as

dst = d(St/Kt) = μs(st)dt + σ s
h(st)dZh,t + σ s

m(st)dZm,t , (20)

where the idiosyncratic volatility function for st, σ s
h(·), and the systematic

volatility function for st, σ s
m(·), are, respectively, given by

σ s
h(s) = (

φh(s) − s
)
νK, (21)

σ s
m(s) = φm(s)σm − ρσKs , (22)

and the drift function for st, μs(·), is given by

μs(st) = y(st) + φm(st)(μm − r) − c(st) + (r + δK − i(st))st − (νKσ s
h(st)

+ ρσKσ s
m(st)) , (23)

where yt = Yt/Kt is the scaled free cash flow (before consumption):

y(st) = A− i(st) − g(i(st)) . (24)

Below, we discuss the first-best solution in Section II and the inalienability
solution in Section III. A key difference between the two solutions is the
determination of the endogenous debt capacity, which corresponds to the left
boundary conditions. Inalienability causes debt capacity to be much lower
than the first-best level, which in turn causes policy functions to be nonlinear,
as we demonstrate in Section III.

II. First-Best Solution

In this section, we present the first-best closed-form solution and provide
a brief discussion of the key economic insights. Appendix A provides the

13 See Wang, Wang, and Yang (2012) for a similar definition in a different setting where markets
are exogenously incomplete.

14 We will establish that under the first-best, we have γe(s) = γ .
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proof. Under the first-best, markets are (dynamically) complete and the
entrepreneur’s certainty-equivalent wealth coincides with the mark-to-market
valuation of her net worth. Moreover, the entrepreneur’s consumption and
production decisions can be separated.15

Investment, Tobin’s q, CAPM β, and Gordon Growth Formula. The market
value of the firm’s capital stock is QFB

t = qFBKt, where qFB is the endogenously
determined Tobin average q. The FOC for investment implies

qFB = 1 + g′(iFB) , (25)

which equates Tobin’s q to the marginal cost of investing, 1 + g′(i). Adjustment
costs create a wedge between the value of installed capital and newly purchased
capital, so that qFB �= 1 in general.

Under the first-best, financing policies are irrelevant. Therefore, consider a
firm whose only asset is its capital stock. Then, this firm’s value is QFB

t . Tobin’s
average q, qFB, also satisfies the following present value formula

qFB = max
i

A− i − g(i)
rK − (i − δK)

, (26)

where rK is the expected rate of return for the firm whose only asset is its
capital stock:

rK = r + ρησK = r + βFB × (μm − r) . (27)

Because of the SDF given in (8) and our model’s homogeneity property, the
Capital Asset Pricing Model (CAPM) holds in our model for the firm whose
only asset is its capital stock, and βFB in (27) is the CAPM β for this firm:

βFB = ρσK

σm
. (28)

Equation (26) is the Gordon growth formula with an endogenously deter-
mined growth rate. The numerator is the scaled free cash flow y = A− i − g(i)
and the denominator is given by the difference between the cost of capital
rK and the free cash flow’s expected growth rate (iFB − δK). Equation (26)
shows that the production side of our model generalizes Hayashi (1982) to
situations in which a firm faces both idiosyncratic and systematic risk, and
where systematic risk commands a risk premium.

We can equivalently write formula (26) as follows:

qFB = max
i

A− i − g(i)
r − (i − δ)

, (29)

15 The first-best case can be solved either via dynamic programming as we do here or via the
Arrow-Debreu complete markets/Cox-Huang martingale approach. The intuition that consumption
and production decisions are independent is more transparent via the latter formulation. For
brevity, we omit this formulation in this paper. See Duffie (2001) for a textbook treatment.



1378 The Journal of Finance R©

where δ is the risk-adjusted depreciation rate

δ = δK + ρησK . (30)

Note that (29) is the Gordon growth formula under the risk-neutral measure.16

Having characterized investment and the value of capital, we next turn
to consumption and dynamic risk management. This part of our model is a
generalized version of Merton (1969).

Consumption, Hedging, and Portfolio Choices. Because markets are dynam-
ically complete, the entrepreneur’s total wealth, MFB

t , is equal to the sum of
wealth St and the market value of capital QFB

t :

MFB
t = St + QFB

t = (st + qFB)Kt = mFB(st)Kt . (31)

Scaled consumption is proportional to scaled net worth,

cFB(s) = χmFB(s) = χ (s + qFB) , (32)

where χ is Merton’s marginal propensity to consume (MPC) and is given by

χ = r + η2

2γ
+ γ −1

(
ζ − r − η2

2γ

)
. (33)

Because markets are complete and Modigliani-Miller conditions hold, the en-
trepreneur’s endogenous relative risk aversion, defined in equation (19), is
equal to γ .

The FOC for φFB
h (st) then yields

φFB
h (s) = −qFB . (34)

The entrepreneur completely neutralizes her idiosyncratic risk exposure (due
to her long position in the business venture) by going short and setting φFB

h (s) =
−qFB, leaving her net worth MFB with zero net exposure to idiosyncratic risk
Zh.

Similarly, the FOC for φFB
m (st) yields

φFB
m (s) = η

γ σm
mFB(s) − βFBqFB . (35)

The first term in (35) achieves the target mean-variance aggregate risk expo-
sure for her net worth MFB and the second term, −βFBqFB, fully offsets the
entrepreneur’s exposure to the aggregate shock through the firm’s operations.

16 By that we mean that δ is the capital depreciation rate under the risk-neutral measure: The
gap δ − δK is equal to the risk premium ρησK for capital shocks. The two Gordon growth formulas
(26) and (29) are equivalent: The CAPM implied by no arbitrage and the unique SDF given in (8)
connect the two formulas under the physical and the risk-neutral measures.
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Total Wealth and Debt Capacity. Total wealth, Mt, evolves according to the
following GBM process

dMFB
t = MFB

t

[(
r − χ + η2

γ

)
dt + η

γ
dZm,t

]
. (36)

The entrepreneur’s net worth has zero net exposure to the idiosyncratic shock
Zh,t under the first-best. The debt capacity under the first-best is qFB per unit
of capital, so that s ≥ −qFB and m(s) ≥ m(−qFB) = 0. Because the entrepreneur
has access to a credit line up to qFB per unit of capital at the risk-free rate r,
she can achieve first-best consumption smoothing and investment, attaining
the maximal value of capital at qFBKt and the maximal net worth mFB(s) given
in (31).

We next turn to the inalienability solution.

III. Inalienable Human Capital Solution

In this section, we simplify the policy functions, derive the ODE for m(s),
and characterize the debt capacity under inalienable human capital.

A. Optimal Policy Functions and the ODE for m(s)

Substituting the value function given by (16) into optimality conditions (12)
to (15) and using (18), we obtain the following policy functions in terms of the
liquidity ratio s.

Consumption Ct and Corporate Investment It. The consumption policy is
given by

c(s) = χm′(s)−1/γ m(s) , (37)

where χ = ζ
1
γ b

γ−1
γ , is the marginal propensity to consume (MPC) under the

first-best and is given by (33). Under inalienability, consumption is nonlinear
and depends on both the entrepreneur’s certainty equivalent wealth, m(s), and
the marginal value of wealth, m′(s). Note that the entrepreneur’s consumption
is increasing in liquidity s. This can be seen by differentiating c(s) with respect
to s and noting that m(s) is concave in s:

c′(s) = χ

[
m′(s)1− 1

γ − 1
γ

m′′(s)m′(s)−
(
1+ 1

γ

)
m(s)

]
> 0. (38)

In Section D, we illustrate how the inalienability of human capital constraint
can generate very large MPCs for the entrepreneur when the entrepreneur is
close to exhausting her borrowing capacity.

Similarly, investment i(s) is given by

1 + g′(i(s)) = m(s)
m′(s)

− s , (39)



1380 The Journal of Finance R©

which also depends on m(s) and m′(s). As one may expect, i(s) is increasing in
s. To see this, differentiating i(s) with respect to s yields

i′(s) = −1
θ

m(s)m′′(s)

m′(s)2 > 0. (40)

The positive investment-liquidity sensitivity again follows from the concavity
of m(s).

Idiosyncratic Risk Hedge 	h,t and Market Portfolio Allocation 	m,t. Simpli-
fying (14) and (15) gives the following optimal idiosyncratic risk hedge φh(s),

φh(s) = −
(

γ m(s)
γe(s)

− s
)

. (41)

As we show in Section V, φh(s) < 0 for all s. Because the entrepreneur is ex-
posed to idiosyncratic risk through the firm’s operations, she optimally reduces
this exposure by taking a short position in the hedging asset. However, un-
der inalienability, the hedging demand φh(s) does not completely eliminate the
entrepreneur’s exposure to idiosyncratic risk. Indeed, note that since γe(s) > γ

under inalienability, (41) implies that incomplete idiosyncratic risk hedging
is optimal.

The optimal market portfolio allocation φm(s) is given by

φm(s) = η

σm

m(s)
γe(s)

− ρσK

σm

(
γ m(s)
γe(s)

− s
)

= μm − r
σ 2

m

m(s)
γe(s)

− βFBφh(s) , (42)

where βFB is the CAPM beta for the market value of capital under the first-best
as given in (28), and γe(·) is the entrepreneur’s effective risk aversion as given
by (19). The first term in (42) is the mean-variance demand for the market
portfolio, which differs from the standard Merton model in two ways: (1) risk
aversion γ is replaced by the effective risk aversion γe(s) and (2) net worth is
replaced by certainty-equivalent wealth m(s).

The second term in (42) gives the hedging demand with respect to systematic
risk Zm. This systematic risk hedging demand term is proportional to the
idiosyncratic risk hedging demand, φh(s), where the proportionality coefficient
is βFB.

The optimal market portfolio allocation φm(s) balances achieving mean-
variance efficiency for the entrepreneur’s certainty-equivalent wealth, as
reflected in the first term in (42), and maximizing the firm’s financing capacity,
as reflected in the second term in (42). Overall, maximizing financing capacity
amounts to both increasing the idiosyncratic risk exposure, |φh(s)|, and
reducing the systematic risk exposure, |φm(s)|, away from the first-best as s
moves closer to s.

ODE for m(s). Substituting the policy functions for c(s), i(s), φh(s), and
φm(s) and the value function (16) into the HJB equation (11) and using the
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homogeneity property, we obtain the following ODE for m(s):

0 = m(s)
1 − γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [

rs + A− i(s) − g(i(s))
]
m′(s) + (i(s) − δ)(m(s)

− sm′(s)) +
(

γ σ 2
K

2
− ρησK

)
m(s)2m′′(s)
γe(s) m′(s)

+ η2m′(s)m(s)
2γe(s)

. (43)

B. Inalienable Human Capital and Endogenous Debt Capacity

The entrepreneur has the option to walk away at any time from her
current firm of size Kt, thereby leaving behind all her liabilities. Her next-best
alternative is to manage a firm of size αKt, where α ∈ (0, 1) is a constant. That
is, under this alternative, her talent creates less value, as α < 1. Therefore,
as long as the entrepreneur’s liabilities are not too large, the entrepreneur
prefers to stay with the firm.17

The inalienability of her human capital gives rise to an endogenous debt
capacity, denoted by St, that satisfies

J(Kt, St) = J(αKt, 0). (44)

That is, St equates the value to the entrepreneur of remaining with the firm,
J(Kt, St), and the value to the entrepreneur of the outside option J(αKt, 0)
associated with managing a smaller firm of size αKt and no liabilities. Given
that, it is never efficient for the entrepreneur to quit on the equilibrium path,
J(K, S) must satisfy the condition

J(Kt, St) ≥ J(Kt, St) . (45)

We can equivalently express the inalienability constraint given by (44) and (45)
as18

St ≥ St = S(Kt) , (46)

where S(Kt) defines the endogenous credit capacity as a function of the capital
stock Kt. When St < 0, the entrepreneur draws on a line of credit and services
her debt at the risk-free rate r up to S(Kt). Note that debt is risk-free because
(46) ensures that the entrepreneur does not walk away from the firm in an
attempt to evade her debt obligations.

Substituting the value function J(K, S) given in (44) and simplifying
the value-matching condition given in (44), we further obtain the following
condition for m(s) at s = s:

17 In practice, entrepreneurs can sometimes partially commit themselves and lower their outside
options by signing noncompete clauses. This possibility can be captured in our model by lowering
the parameter α, which relaxes the entrepreneur’s inalienability of human capital constraints.

18 See Appendix B for technical details.
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m(s) = αm(0) . (47)

Note that when α = 0, the entrepreneur has no outside option, so that m(s) = 0,
which corresponds to the first-best case. By optimally setting s = −qFB, we
attain the first-best outcome where the entrepreneur can potentially pledge
the entire market value of capital, qFB, which is equal to Tobin’s average q
under the first-best. At the other extreme, when α = 1, the entrepreneur’s
outside option is as good as her current employment. In that case, no long-term
contract can retain the entrepreneur, so the model has no solution. Therefore,
for the inalienability of human capital problem to have an interesting and
nondegenerate solution, it is necessary to require that 0 < α < 1. For these
values of α, (47) implies that m(s) > 0.19

We simplify the credit constraint given in (46) by expressing it in terms of
scaled liquidity s:

st ≥ s . (48)

As in the household buffer-stock savings literature (e.g., Deaton (1991)), the
risk-averse entrepreneur manages her liquid holdings s with the objective of
smoothing her consumption. Setting st = s for all t is too costly and suboptimal
in terms of consumption smoothing. Although the credit constraint (48) rarely
binds, it has to be satisfied with probability one. Only then can we ensure that
the entrepreneur always stays with the firm.

Given that {st : t ≥ 0} is a diffusion process and hence is continuous, to satisfy
the inalienability constraint (48), it is necessary that both the idiosyncratic
and the systematic volatility at s be equal to zero:

σ s
h(s) = 0 and σ s

m(s) = 0 . (49)

Otherwise, the probability of crossing a candidate debt limit of s to its left is
strictly positive, which violates the credit constraint (48). By substituting φh(s)
given by (41) and φm(s) given by (42) into the volatility functions (21) and (22),
we can equivalently express (49) as

m(s)
γe(s)

= 0 . (50)

In other words, at the endogenously determined s, either the entrepreneur’s
scaled certainty-equivalent wealth is zero, m(s) = 0, or the entrepreneur is
effectively infinitely risk-averse, γe(s) = ∞.20 With inalienable human capital,
we have m(s) > 0, so the volatility boundary conditions (50) can be satisfied
only if γe(s) = ∞, which is equivalent to

m′′(s) = −∞ . (51)

19 Otherwise m(0) = m(s) = 0, which does not make economic sense.
20 We verify that the drift μs(s) given in (23) is nonnegative at s, so that s is weakly increasing

at s.
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That is, the inalienability condition (47) implies that the curvature of m(s)
approaches infinity when the entrepreneur runs out of liquidity at the endoge-
nous boundary s = s. Preserving her long-term relationship with the firm at s
is then so valuable that the entrepreneur does not want to take the chance that
s crosses s, which implies that the entrepreneur is infinitely risk-averse to the
volatility in s.

Finally, when the entrepreneur is infinitely wealthy, she has no reason to
quit and hence

lim
s→∞ m(s) = mFB(s) = s + qFB . (52)

That is, the boundary condition at the right end of s under inalienability is the
first-best solution.

Summary. We summarize the solution under inalienability in the theorem
below.

THEOREM 1: When 0 < α < 1, the solution to the inalienability problem is such
that m(s) solves ODE (43) subject to the FOCs (37) for consumption c(s), (39)
for investment i(s), (41) for the idiosyncratic risk hedge φh(s), and (42) and (51)
at the endogenous left boundary s and (52) when s → ∞.

IV. Equivalent Optimal Contract

We consider next the long-term contracting problem between an infinitely
lived, fully diversified, risk-averse investor (the principal) and an infinitely
lived, financially constrained risk-averse entrepreneur ( the agent). The output
process Yt is publicly observable and verifiable. In addition, the entrepreneur
cannot privately save.21 The contract specifies an investment process {It; t ≥ 0}
and a compensation {Ct; t ≥ 0} process, both of which depend on the entire
history of idiosyncratic and aggregate shocks {Zh,t, Zm,t; t ≥ 0}.

Because the risk-averse investor is fully diversified and markets are com-
plete, the investor chooses investment {It; t ≥ 0} and compensation {Ct; t ≥ 0}
to maximize the risk-adjusted discounted value of free cash flows:

F(K0, V0) = max
C, I

E0

[∫ ∞

0
Mt(Yt − Ct)dt

]
, (53)

where K0 is the initial capital stock and V0 is the entrepreneur’s initial utility.
Given that the investor is fully diversified, we use the same SDF (M, which is
given in (8)), to evaluate the present value of cash flows (Yt − Ct). Note that it is
possible that Yt < Ct. The contracting problem is subject to the entrepreneur’s
inalienability constraint at all future dates t ≥ 0 and the participation

21 This is a standard assumption in the dynamic moral hazard literature (chapter 10 in Bolton
and Dewatripont (2005)). Di Tella and Sannikov (2016) develop a contracting model with hidden
savings for asset management.
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constraint at time 0. We denote by V (Kt) the entrepreneur’s endogenous out-
side utility payoff, so that the inalienability constraint at time t is given by

Vt ≥ V (Kt) , t ≥ 0, (54)

where Vt is the entrepreneur’s promised utility specified under the contract.

A. Recursive Formulation

We transform the optimal contracting problem into a recursive form in three
steps: (1) we define the entrepreneur’s promised utility V and the principal’s
value F(K, V ) in recursive form, (2) we map promised utility V into promised
certainty-equivalent wealth W , and (3) we simplify the contracting problem into
a one-dimensional problem. While Step 1 is standard in the recursive contract-
ing literature, Step 2 is less common but is essential as it allows us to connect
the contracting problem to the liquidity and risk management problem ana-
lyzed before. Derivations for results in this section are provided in Appendix B.

A.1. The Investor’s Value Function F(Kt, Vt)

Using the Martingale Representation Theorem, we show that the expected
change of the entrepreneur’s promised utility satisfies

Et
[
ζU (Ct)dt + dVt

] = ζ Vtdt , (55)

where ζU (Ct)dt is the utility of current compensation and dVt is the change
in promised utility. The realized change of the entrepreneur’s promised utility,
dV , implied by (55) can be written as the sum of (1) the expected change Et[dVt]
(the drift term), (2) a martingale term driven by the idiosyncratic shock, Zh,
and (3) a martingale term driven by the systematic shock, Zm:

dVt = ζ (Vt − U (Ct))dt + zh,tVtdZh,t + zm,tVtdZm,t , (56)

where {zh,t; t ≥ 0} and {zm,t; t ≥ 0}, respectively, control the idiosyncratic and
systematic volatilities of the entrepreneur’s promised utility V .

We can then write the investor’s value function F(Kt, Vt) in terms of (1) the
entrepreneur’s promised utility Vt and (2) the venture’s capital stock Kt. The
contracting problem specifies investment It, compensation Ct, idiosyncratic
risk exposure zh,t, and systematic risk exposure zm,t to maximize the investor’s
risk-adjusted present discounted value of free cash flows. The following HJB
equation for the investor’s value F(K, V ) holds:

rF(K, V ) = max
C, I, zh, zm

(Y − C) + (I − δK)FK + [ζ (V − U (C)) − zmηV ]FV

+ σ 2
K K2 FKK

2
+ (z2

h + z2
m)V 2 FV V

2
+ (zhνK + zmρσK)KVFV K . (57)
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A.2. From Promised Utility Vt to Promised Certainty-Equivalent Wealth Wt

To link the optimal contract to the optimal liquidity and risk management
policies derived in the preceding section, we need to express the entrepreneur’s
promised utility in dollars (units of consumption) rather than in utils. Let
W denote the promised (certainty-equivalent) wealth, the amount that the
entrepreneur would demand to permanently give up her productive human
capital, walk away from the long-term contracting relationship, and retire as
a Merton-style consumer under complete markets.

We show that Wt can be linked to the promised utility, Vt, via Vt = V (Wt),
where

V (Wt) = U (bWt) , (58)

U (·) is given in (6), and b is given in (17). Differentiating (58), we obtain
V ′(Wt) = bU ′(bWt) and V ′′(Wt) = b2U ′′(bWt). In addition, the following stochas-
tic differential equation for Wt holds:

dWt = 1
V ′(Wt)

[
ζ (Vt − U (Ct))dt + zh,tVtdZh,t + zm,tVtdZm,t

]
− (z2

h,t + z2
m,t)V

2
t V ′′(Wt)

2(V ′(Wt))3 dt

=
[

ζ (U (bWt) − U (Ct))
V ′(Wt)

− (x2
h,t + x2

m,t)K
2
t V ′′(Wt)

2V ′(Wt)

]
dt + xh,t Kt dZh,t + xm,t Kt dZm,t , (59)

where

xm,t = zm,t V (Wt)
Kt V ′(Wt)

and xh,t = zh,t V (Wt)
Kt V ′(Wt)

. (60)

Note that xh,t and xm,t are the idiosyncratic and systematic volatilities
of Wt (scaled by contemporaneous Kt). As will become clear, xm,t and xh,t
are closely tied to the firm’s optimal risk management policies φh,t and φm,t
analyzed earlier.

A.3. Reduction to One Dimension

We can reduce the contracting problem to one dimension, with the scaled
wealth wt = Wt/Kt as the unique state variable, by rewriting the investor’s
value F(Kt, Vt) as follows:

F(Kt, Vt) ≡ F(Kt,U (bWt)) = P(Kt, Wt) = p(wt) · Kt . (61)

It is then sufficient to solve for p(w) and characterize the scaled consump-
tion, investment, idiosyncratic risk hedge, and stock market allocation rules as
functions of w.
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A.4. The Principal’s Endogenous Risk Aversion γp

It is again helpful to introduce a measure of endogenous risk aversion for
the principal. Let γp denote the principal’s risk aversion under the contract:

γp,t ≡ Wt PWW (Kt, Wt)
PW (Kt, Wt)

= wt p′′(wt)
p′(wt)

> 0 . (62)

The identity gives the definition of γp, and the equality follows from the homo-
geneity property.22 As w is a liability for the investor, we have p′(w) < 0. This is
why, unlike in the standard definition of risk aversion, there is no minus sign
in (62).

Under the first-best, the investor’s value is linear in w, so that p′′(w) = 0
and the principal’s effective risk aversion γ FB

p (w) is zero for all w. Under
inalienability, we can show that the investor’s endogenous risk aversion
γp(w) > 0 since p(w) is decreasing and concave.

B. Optimal Policy Functions

B.1. Consumption Ct and Corporate Investment It

Substituting (61) into (B5) and (B6), we obtain the following consumption
and investment functions. Optimal consumption is Ct = c(wt)Kt, where c(w) is
given by

c(w) = χ
(−p′(w)

)1/γ
w , (63)

and again χ is the MPC under the first-best in (33). Under inalienability,
consumption depends on both w and the investor’s marginal value of liquidity
p′(w). Similarly, optimal investment is It = i(wt)Kt, where i(w) is given by the
FOC

1 + g′(i(w)) = p(w) − wp′(w) . (64)

The left side of (64) is the marginal cost of investing and the right side of (64)
is the marginal value of capital PK(K, W) = p(w) − wp′(w).

B.2. Idiosyncratic Risk Exposure xh(w) and Systematic Risk Exposure xm(w)

Substituting the principal’s endogenous coefficient of risk aversion γp(w) in
(62) into the optimal risk exposures in (B7) and (B8) and simplifying, we obtain
the following simple and economically transparent expressions for xh(wt) and
xm(wt). First, the idiosyncratic risk exposure is

xh(w) = γp(w)
γp(w) + γ

νKw . (65)

22 Here, the subscript p refers to the principal, while the subscript e in γe refers to the en-
trepreneur’s endogenous effective risk aversion in the liquidity and risk management problem
analyzed earlier.
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This equation is reminiscent of the classic coinsurance formula, which involves
the ratio between the principal’s endogenous risk aversion, γp(w), and the sum
of the two parties’ risk-aversion coefficients.

Second, the systematic risk exposure is

xm(w) = ηw

γp(w) + γ
+ ρσKw

γp(w)
γp(w) + γ

, (66)

where the first term is the mean-variance demand and the second term corre-
sponds to the systematic risk hedging demand.

Under the first-best, we have xFB
h (w) = 0 and xFB

m (w) = η w/γ , since
γ FB

p (w) = 0. The result xFB
h (w) = 0 means that the entrepreneur’s promised

net worth Wt has no net exposure to idiosyncratic risk Zh,t. The result
xFB

m (w) = η w/γ is the contracting version for the standard mean-variance
demand for the entrepreneur’s net worth W .

In contrast, under inalienability, optimal co-insurance involves the agent
taking on some idiosyncratic risk as well as reducing her market risk exposure
from the first-best level,23 as can be seen in the expressions for xh(w) in (65)
and xm(w) in (66).

C. Dynamics of Scaled Promised Wealth w

Applying Ito’s formula to wt = Wt/Kt, we obtain the following dynamics
for w:

dwt = d(Wt/Kt) = μw(wt)dt + σw
h (wt)dZh,t + σw

m(wt)dZm,t , (67)

where the idiosyncratic and systematic volatilities for w, σw
h (·) and σw

m(·), are
given by

σw
h (w) = −νK

γ w

γp(w) + γ
< 0 , (68)

σw
m(w) =

(
η

γ
− ρσK

)
γ w

γp(w) + γ
. (69)

Note that both σw
h (w) and σw

m(w) are proportional to w/(γp(w) + γ ). Finally, the
drift function μw(·) of wt is given by

μw(w) = ζ

1 − γ

(
w + c(w)

ζ p′(w)

)
− w(i(w) − δK)

+ γ (x2
h(w) + x2

m(w))
2w

− (νKσw
h (w) + ρσKσw

m(w)) . (70)

23 Note that the coinsurance weight γp(w)
γp(w)+γ

appears in (65) and (66).
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D. ODE for p(w)

Substituting F(K, V ) = p(w) · K into the HJB equation (57), solving for p(w),
and substituting for the policy functions c(w), i(w), xh(w), and xm(w), we obtain
the following ODE for the investor’s value p(w):

rp(w) = A− i(w) − g(i(w)) + χγ

1 − γ

(−p′(w)
)1/γ

w + (i(w) − δ)(p(w) − wp′(w))

+ ζ

1 − γ
wp′(w) +

(
γ σ 2

K

2
− ρησK

)
w2 p′′(w)
γp(w) + γ

− η2

2
wp′(w)

γp(w) + γ
, (71)

where i(w) is given by (64) and γp(w) is given by (62). Again, this ODE for p(w)
characterizes the interior solution for both the first-best and the inalienability
cases. The only difference between the two problems is reflected in the
inalienability constraint, which we turn to next.

E. Inalienability Constraint

The entrepreneur’s outside option at any time is to manage a new firm with
effective size αKt but with no legacy liabilities. Other than the size of the
capital stock K, the new firm’s production technology is identical to that of the
firm she has just abandoned. Let Ṽ (·) and W̃ (·) be the entrepreneur’s utility
and the corresponding certainty-equivalent wealth in this new firm, and
suppose as before that investors in the new firm make zero net profits under
competitive markets. Then from (61) we obtain the following condition:

F(αKt, Ṽ (αKt)) = P(αKt, W̃ (αKt)) = 0 . (72)

When the entrepreneur is indifferent between leaving her employer or not, we
have

W(Kt) = W̃(αKt) , (73)

where W (Kt) is the lowest possible value for the entrepreneur’s promised wealth
such that her inalienability constraint is satisfied. Equation (73) is equivalent
to

wt ≡ W(Kt)/Kt = W̃(αKt)/Kt = αW̃(αKt)/(αKt) = αw̃t , (74)

where the last equality follows from the assumption that the new firm’s capital
is a constant fraction α of the original firm’s contemporaneous capital stock.
The homogeneity property and the condition given in (72) together imply that
p(w̃) = 0. Thus, substituting wt = αw̃t into p(w̃t) = 0, we obtain the following
simple expression for the inalienability constraint (where 0 < α < 1):

p(w/α) = 0 . (75)

Note that inalienability implies that the entrepreneur’s minimum wealth must
be strictly positive, w > 0. For the first-best case, however, w = 0.
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In both the first-best and the inalienability cases, the volatility functions
σw

h (w) and σw
m(w)are equal to zero at w to ensure that w never crosses w to the

left (w ≥ w):

σw
h (w) = 0 and σw

m(w) = 0 . (76)

Equations (68) and (69) imply that the boundary conditions given in (76) are
equivalent to

γ w

γp(w) + γ
= 0 . (77)

Equation (77) holds when either w = 0 (in the first-best case) or γp(w) = ∞ (in
the case of inalienability), which is equivalent to

p′′(w) = −∞ . (78)

That is, inalienability causes the principal to be infinitely risk-averse with re-
spect to w at w! Even though the principal is well diversified, he is endogenously
infinitely risk-averse at w with respect to his investment with the entrepreneur.
As w approaches w, p(w) is strictly positive and reaches its maximum value
(recall that p(w) = −s > 0). Preserving his long-term relationship and invest-
ment with the entrepreneur at w is then so valuable that the investor does not
want to take the chance that w crosses w, which implies that the principal is
infinitely risk-averse to the volatility in w.

As for the primal liquidity and risk management problem, our contracting
analysis reveals that the boundary conditions under inalienability are funda-
mentally different from those in the case of the first-best: under inalienability
γp(w) = ∞, while under the first-best γp(w) = 0 for all w. The first-best solution
confirms the conventional wisdom for hedging, which calls for the complete
elimination of idiosyncratic risk exposures for the risk-averse entrepreneur.
This conventional wisdom applies only to a complete-markets, Arrow-Debreu
world. Under inalienability, this conventional wisdom no longer holds.

We summarize the contracting solution under inalienability in the theorem
below.

THEOREM 2: When 0 < α < 1, the optimal contract under inalienability is such
that p(w) solves ODE (71) subject to the FOCs (63) for c(w), (64) for idiosyncratic
risk exposure xh(w), and (66) for systematic risk exposure xm(w), as well as
the boundary conditions (75) and (78), and the drift function μw(w) being
nonnegative at w, so that w is weakly increasing at w with probability one.

Finally, to complete the characterization of the optimal contracting so-
lution, we set the entrepreneur’s initial reservation utility V ∗

0 such that
F(K0, V ∗

0 ) = 0 to be consistent with the general assumption that capital
markets are competitive.
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Table II
Comparison of Primal and Dual Optimization Problems

Primal Dual
Optimization Contracting

A. State variable s w

Drift μs(s) given in (23) μw(w) given in (70)
Idiosyncratic volatility σ s

h(s) given in (21) σw
h (w) given in (68)

Systematic volatility σ s
m(s) given in (22) σw

m (w) given in (69)
Admissible range s ≥ s w ≥ w

B. Value function m(s) p(w)
Interior region ODE given in (43) ODE given in (71)
Right limit lims→∞ m(s) = s + qFB limw→∞ p(w) = qFB − w

C. Policy rules
Compensation c(s) given in (37) c(w) given in (63)
Corporate investment i(s) given in (39) i(w) given in (64)
Idiosyncratic risk hedge φh(s) given in (41) xh(w) given in (65)
Systematic risk exposure φm(s) given in (42) xm(w) given in (66)

D. Inalienability case: 0 < α < 1
Inalienability constraint m(s) = αm(0) p(w/α) = 0
Curvature condition m′′(s) = −∞ p′′(w) = −∞

E. First-best case: α = 0
Borrowing limit s = −qFB w = 0

F. Equivalence

By equivalence, we mean that the resource allocations {Ct, It; t ≥ 0} under the
two problem formulations are identical for any path {Zh,Zm }. We demonstrate
this equivalence in Appendix (B.A.1) by verifying that the following holds:

s = −p(w) and w = m(s). (79)

The preceding equation implies that −p ◦ m(s) = s. In other words, the state
variable s in the primal liquidity and risk management problem is shown to
be equal to −p(w), the negative of the value function in the dual contract-
ing problem. Correspondingly, the scaled wealth function m(s) in the primal
problem is equal to w, the scaled promised wealth, the state variable in the
contracting problem.

Table II provides a detailed side-by-side comparison of the two problem
formulations along all three relevant dimensions of the model: (1) the state
variable, (2) the policy rules, and (3) the value functions for both the inalien-
ability and first-best cases. Panels A, B, and C offer a side-by-side mapping for
the state variable, value function, and policy rules under the two formulations.
The differences between the inalienability and first-best cases are driven
entirely by the conditions pinning down the firm’s borrowing capacity, as we
highlight in Panels D and E.

Panel D describes the conditions for the borrowing capacity in the inalien-
ability case (0 < α < 1). The entrepreneur’s inalienability of human capital
implies that m(s) = αm(0) in (47) and p(w/α) = 0 in (75) have to be satisfied
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at the respective free boundaries s and w in the two formulations. Given these
inalienability constraints, the volatility conditions can be satisfied only if the
curvatures of the value functions, m(s) and p(w), approach −∞ at the left
boundaries. We also verify that the drift conditions at the left boundaries hold.

Panel E summarizes the first-best case, where α = 0. The investor’s value
is given by the difference between the market value of capital, qFB, and the
promised wealth to the entrepreneur, wt: pFB(wt) = qFB − wt. Equivalently,
wt = mFB(st) = st + qFB. The first-best policy rules such as consumption and
investment under the two formulations are consistent. For consumption, we
have cFB(wt) = χwt = χmFB(st) = cFB(st). For investment, both formulations
yield the same constant investment-capital ratio, iFB. The optimal idiosyn-
cratic risk exposure xFB

h (w) = 0 shuts down the idiosyncratic risk exposure of
Wt, which is equivalent to setting the idiosyncratic risk hedge φFB

h (s) = −qFB in
the primal formulation, thus eliminating idiosyncratic risk for Mt. The optimal
systematic risk exposure xFB

m (w) = η w/γ , yields the aggregate volatility of
η/γ for Wt, which is consistent with the fact that φFB

m (s) given in (35) implies
an aggregate volatility of η/γ for Mt. Last but not least, the borrowing limits
in the two formulations are also consistent, in that wFB = 0 if and only if
sFB = −qFB: The condition that the lower boundary for w is zero is equivalent
to the property that at any time t the entrepreneur can borrow up to the entire
market value of capital qFBKt.

V. Quantitative Analysis

In this section, we present our main qualitative and quantitative results.
For simplicity, we choose the widely used quadratic adjustment cost function,
g(i) = θi2/2, for which we have explicit formulas for Tobin’s q and optimal i
under the first-best:24

qFB = 1 + θiFB and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (80)

Our model is parsimonious with 11 parameters. We set the entrepreneur’s
coefficient of relative risk aversion to γ = 2, the equity risk premium (μm − r)
to 6%, and the annual volatility of the market portfolio return to σm = 20%,
implying a Sharpe ratio of η = (μm − r)/σm = 30%. We set the annual risk-free
rate to r = 5% and the entrepreneur’s discount rate to ζ = r = 5%. These
parameter values are standard in the asset pricing literature.

For the production-side parameters, we take the estimates in Eberly, Rebelo,
and Vincent (2009) and set annual productivity A to 20% and annual volatility
of capital shocks to σK = 20%. We set the correlation between the market port-
folio return and the firm’s depreciation shock to ρ = 0.2, which implies that the
idiosyncratic volatility of the depreciation shock is νK = 19.6%. We fit the first-
best values of qFB and iFB to the sample averages by setting the adjustment
cost parameter to θ = 2 and the (expected) annual capital depreciation rate to

24 The necessary convergence condition is (r + δ)2 − 2 A−(r+δ)
θ

≥ 0 .
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Table III
Parameter Values

This table summarizes the parameter values for our baseline analysis in Section V. Whenever
applicable, parameter values are annualized.

Parameter Symbol Value

Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
Correlation ρ 20%
Excess market portfolio return μm − r 6%
Volatility of market portfolio σm 20%
The entrepreneur’s relative risk aversion γ 2
Capital depreciation rate δK 11%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Productivity parameter A 20%
Inalienability parameter α 80%

δK = 11%, both of which are in line with estimates in Hall (2004) and Riddick
and Whited (2009). These parameters imply that qFB = 1.264, iFB = 0.132,
and βFB = 0.2. Finally, we set the inalienability parameter to α = 0.8. The
parameter values for our baseline calculation are summarized in Table III.

A. Firm Value and Endogenous Debt Capacity

We begin by linking the value functions of the two optimization problems,
p(w) and m(s).

A.1. Liquidity Ratio s and Certainty-Equivalent Wealth m(s)

Panels A and C of Figure 1 plot m(s) and the marginal value of liquidity
m′(s), respectively. Under the first-best, the entrepreneur’s scaled net worth
is given simply by the sum of her financial wealth s and the market value of
the capital stock: mFB(s) = s + qFB = s + 1.264. Note that mFB(s) ≥ 0 implies
s ≥ −qFB, and hence the debt limit under the first-best is sFB = −qFB.

As one would expect, m(s) < mFB(s) = qFB + s due to inalienability. Moreover,
m(s) is increasing and concave. The higher liquidity s, the less constrained
is the entrepreneur, and thus m′(s) decreases. In the limit, as s → ∞, m(s)
approaches mFB(s) = qFB + s and m′(s) → 1. The equilibrium credit limit under
inalienability is s = −0.208, which means that the entrepreneur’s maximal
borrowing capacity is 20.8% of the contemporaneous capital stock K, which is
as little as one-sixth of the first-best debt capacity. The corresponding scaled
certainty-equivalent wealth is m(−0.208) = 0.959. When the endogenous
financial constraint binds at s = −0.208, the marginal certainty-equivalent
value of liquidity m′(s) is at its highest and is equal to m′(−0.208) = 1.394.
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Panel A. Scaled certainty-equivalent wealth: m(s) Panel B. Investor s scaled value: p(w)

Panel C. Marginal value of liquidity: m (s) Panel D. Marginal value: p (w)

Figure 1. Certainty-equivalent wealth m(s) and investor’s value p(w). The dotted lines
depict the first-best results: m(s) = qFB + s and m′(s) = 1 for s ≥ −qFB = −1.264, p(w) = qFB − w,
and p′(w) = −1 for w ≥ wFB = 0. The solid lines depict the inalienability case: m(s) is increasing
and concave, where s ≥ s = −0.21, and p(w) is decreasing and concave, where w ≥ w = 0.96. The
debt limit s is determined by m(s) = αm(0) and m′′(s) = −∞, and w is determined by p(w/α) = 0
and p′′(w) = −∞. (Color figure can be viewed at wileyonlinelibrary.com)

Figure 1 illustrates clearly that the first-best case and the inalienability case
are fundamentally different.25

A.2. Promised Wealth w and Investors’ Value p(w)

Panels B and D of Figure 1 plot p(w) and p′(w), respectively. Under the
first-best, compensation to the entrepreneur is simply a one-to-one transfer
from investors: pFB(w) = qFB − w = 1.264 − w. With inalienable human
capital, p(w) < qFB − w, and p(w) is decreasing and concave. As w increases,
the entrepreneur is less constrained. In the limit, as w → ∞, p(w) approaches
qFB − w and p′(w) → −1. The entrepreneur’s inability to fully commit not

25 The first-best case is degenerate because the entrepreneur’s indifference condition m(−qFB) =
0 implies zero volatility of s at s = −qFB. But this is not true for the inalienability case. Besides
the indifference condition m(s) = αm(0), we also need to provide incentives for the entrepreneur to
choose zero volatility for s at the credit limit s, which requires that the entrepreneur be endoge-
nously infinitely risk-averse at s, γe(s) = ∞, meaning that m′′(s) = −∞.
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to walk away ex post imposes a lower bound on w, w. For our parameter
values, w = 0.959. Note that w = 0.959 = m(s) = m(−0.208). This result is
no coincidence—it is implied by our equivalence result between the two
optimization problems. The entrepreneur receives at least 95.9% in promised
certainty-equivalent wealth for every unit of capital stock, which is strictly
greater than α = 0.8 since the capital stock generates strictly positive net
present value under the entrepreneur’s control.

Panels A and B of Figure 1 illustrate that (s, m(s)) is the “mirror image” of
(−p(w), w). To be precise, rotating Panel B counterclockwise 90 o (i.e., turning
the original x-axis for w into the new y-axis m(s)) and adding a minus sign to
the horizontal x-axis (i.e., setting −p(w) = s) yields Panel A. Panel C shows
that the entrepreneur’s marginal value of liquidity m′(s) is greater than one,
which means that the liquid asset is valued more than its face value by
the financially constrained entrepreneur. Panel D illustrates the same idea
viewed from the investor’s perspective: The marginal cost of compensating the
entrepreneur for the investor is less than one, −1 < p′(w) < 0, because com-
pensating the entrepreneur relaxes the investor’s financial constraint, which
is value-enhancing. Despite being fully diversified, the investor behaves in an
underdiversified manner due to the entrepreneur’s inalienability constraint.
This is reflected in the concavity of the investor’s value function p(w).

B. Idiosyncratic Risk Management

Panels A and B of Figure 2 plot the idiosyncratic risk hedging demand
φh(s) and xh(w) in the two formulations. Note that φh(s) and xh(w) control,
respectively, for the idiosyncratic volatilities of total liquid wealth S and
certainty-equivalent wealth W , as seen in (10) and (59). In Panels C and D
of Figure 2, we plot the idiosyncratic volatilities of scaled liquidity s, σ s

h(s),
and scaled wealth w, σw

h (w), which are directly linked to the risk management
policies φh(s) and xh(w). A key observation here is that the volatility of S is
different from the volatility of scaled liquidity, s = S/K. Equation (21), which
states σ s

h(st) = (φh(st) − st)νK, makes clear that σ s
h(st) is affected both by the

hedging position φh(st)νK, which drives changes in S, and by −stνK, through
the idiosyncratic risk exposure of K, which influences compensation through
the inalienability constraint. Proceeding in the same way for the contracting
formulation, we obtain the following expression linking xh(w) and σw

h (w):

σw
h (wt) = − γ

γp(wt)
xh(wt) . (81)

Consider now the first-best solution given by the dotted lines in Figure 2.
Panel A shows that the first-best idiosyncratic risk hedging demand is
constant: φh(st) = −qFB = −1.264. Panel B confirms this first-best result, as
xFB

h (wt) = 0 for all wt, which establishes the classic first-best result that optimal
hedging for a risk-averse entrepreneur involves zero net exposure to idiosyn-
cratic shocks. Stated equivalently, the first-best idiosyncratic risk hedging
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Figure 2. Idiosyncratic risk management policies, φh(s) and xh(w), and idiosyncratic
volatilities for s and w, σ s

h(s) and σw
h(w). The dotted lines depict the first-best results:

φFB
h (s) = −qFB = −1.264 and xFB

h (w) = 0. The solid lines depict the inalienability case: The en-
trepreneur hedges less than under the first-best, |φh(s)| < |φFB

h (s)| = qFB, and her idiosyncratic
risk exposure is thus positive, xh(w) > 0. (Color figure can be viewed at wileyonlinelibrary.com)

policy completely insulates the entrepreneur’s net worth MFB
t = St + qFBKt

from the idiosyncratic shock Zh, as one can see from the dynamics of M
given in (36).

Panels C and D reveal a less obvious but important insight for the first-best
case, namely, that complete idiosyncratic risk hedging of net worth implies
neither zero volatility for s nor zero volatility for w in general. Rather only
when the entrepreneur has fully exhausted her debt capacity, that is, st = −qFB

(equivalently wt = 0 ), are the volatility of scaled s and the volatility of w

equal to zero: σ s
h(st) = σw

h (wt) = 0. When st > −qFB (or wt > 0), the first-best
solution is such that |σ s

h(st)| and |σw
h (wt)| strictly increase with st = St/Kt and

wt = Wt/Kt, respectively, because of the effect of the idiosyncratic shock Zh on
the firm’s capital stock.

Consider next the inalienability case. Panels A and B clearly reveal that
the hedging policy under inalienability is different from that under the
first-best. Because the endogenous debt limit |s| = 0.208 (w = 0.959) under
inalienability is much tighter than the first-best limit, |sFB| = qFB = 1.264
(wFB = 0), the entrepreneur is severely constrained in her ability to hedge
away the idiosyncratic risk exposure of her certainty-equivalent wealth M.
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values. (Color figure can be viewed at wileyonlinelibrary.com)

A key optimality condition is that the entrepreneur has to honor her liabil-
ities with probability one, which requires that σ s

h(s) = 0 and σw
h (w) = 0. This

equilibrium condition of zero volatility together with the inalienability condi-
tions m(s) = αm(0) and p(w/α) = 0 imply endogenous infinite risk aversion at
s and w, meaning that γe(s) = ∞ and γp(w) = ∞ as shown in Figure 3.26

Zero idiosyncratic volatility for s at s (or equivalently, for w at w) is achieved
by setting the hedging position to φh(s) = s (or equivalently, xh(w) = νKw). These
expressions capture the following general insight about hedging key-man risk.
Suppose that the entrepreneur’s scaled liquidity is at its limit, st = s, and
consider the consequences of a positive idiosyncratic shock dZh,t. Among other
effects, such a shock increases the outside value of the entrepreneur’s human
capital and in turn the entrepreneur’s incentives to leave the firm.27 How can
the entrepreneur hedge against this risk and continue honoring her outstand-
ing debt liabilities? By setting φh(s) = s to the credit limit s, as we explain next.
Let Zh,t+� = Zh,t + √

� denote the outcome of a positive shock over a small time
increment �. We can calculate the resulting liquidity ratio st+� as follows:28

st+� ≡ St+�

Kt+�

≈ St + φh,t Kt νK
√

�

(1 + νK
√

�)Kt
= st + φh,tνK

√
�

(1 + νK
√

�)
, (82)

26 This result can be seen from Panels B and D in Figure 1, where the slopes of m′(s) and p′(w)
approach −∞ at s and w. Mathematically, this follows from the definition of γe given in (19), σ s

h(s)

given in (21), and m(s) = 0.207. Similar mathematical reasoning applies for γp = wp′′(w)
p′(w) in (62).

27 A negative shock has the opposite effect on the entrepreneur’s human capital and relaxes the
inalienability constraint. We therefore focus on the positive shock.

28 The (diffusion) risk term for any stochastic process locally dominates its drift effect as the
former is of order

√
� and the latter is of order �. We can thus drop the drift term in the limit for

this calculation.
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where the numerator uses (10) for dSt and the denominator uses (1) for dKt. To
ensure that the credit constraint is satisfied at t + �, we have to set st+� = st = s
in (82), which means that φh(s) = s < 0. Had the entrepreneur chosen a larger
hedging position, say |φh(s)| > |s|, or in the extreme scenario |φh(s)| = |φFB

h | =
qFB, we would have st+� < st = s < 0, which violates the equilibrium condition
s ≥ s. Following essentially the same argument for w = W/K, we can verify
that xh(w) = νKw > 0, which implies that the entrepreneur’s net worth W is
overexposed to idiosyncratic risk relative to the first-best.

To summarize, the hedging positions at s and w are set so as to exactly offset
the impact of the idiosyncratic shock Zh on Kt in st = St/Kt and wt = Wt/Kt
and thereby turn off the volatilities of s at s and w at w. These hedging
positions, however, significantly expose the entrepreneur’s net worth W to
idiosyncratic risk.

Turning now to the right end of the support for s and w, we observe that as
s → ∞ (w → ∞ ), the inalienability constraint becomes irrelevant. As a result,
the entrepreneur achieves perfect risk sharing: lims→∞ φh(s) = φFB

h = −qFB

and limw→∞ xh(w) = xFB
h = 0 .

With inalienability, the idiosyncratic risk hedge |φh(s)| = |s| at the debt
limit is much lower than when the entrepreneur is unconstrained. More
generally, when s moves away from the debt limit s, |φh(s)| effectively becomes
a “weighted average” of the first-best policy of maximizing net worth and the
zero-volatility policy for s at the debt limit, with an increasing weight put
on the first-best policy as s increases. Correspondingly, Panel B shows that
as the entrepreneur’s promised scaled certainty-equivalent wealth w increases,
the entrepreneur becomes less exposed to idiosyncratic risk, that is, xh(w) de-
creases with w and eventually approaches zero as w → ∞.29 To summarize, the
“key-man” risk management problem for the firm boils down to a compromise
between maximization of the entrepreneur’s net worth, which requires fully
insuring against idiosyncratic risk, and maximization of the firm’s financing
capacity, which involves reducing the volatility of scaled liquidity and hence
exposing the entrepreneur to idiosyncratic risk. This compromise can be
seen as a general principle of idiosyncratic risk management for financially
constrained firms that emerges from our analysis.30

29 There is a natural analogy here with the general principle in moral hazard theory that the
agent’s compensation trades off incentive and risk-sharing considerations. Following Holmström
(1979), this literature assumes that the agent’s utility function is separable in effort and wealth
(or consumption). In our framework, exerting effort is analogous to staying with the firm. With
this analogy, we note that our model does not assume the standard separability as the severity
of the agency problem depends on the distance of w to the debt limit w. We therefore obtain a
sharper result, namely, that the more severe is the agency problem, the less the agent is insured
against idiosyncratic risk. See Sannikov (2008) for a continuous-time version of the classical moral
hazard problem.

30 Rampini, Sufi, and Viswanathan (2014) provide empirical evidence showing that more finan-
cially constrained firms hedge less. However, our analysis implies that more constrained firms
have less volatile s.
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Figure 4. Systematic risk exposures, φm(s) and xm(w), and systematic volatilities for s
and w, σ s

m(s), and σw
m(w). The dotted lines depict the first-best results. The solid lines depict the

inalienability case: The entrepreneur’s systematic risk exposures are lower than under the first-
best, φm(s) < φFB

m (s) and xm(w) < xFB
m (w). (Color figure can be viewed at wileyonlinelibrary.com)

C. Optimal Equity Market Exposure

Panels A and B of Figure 4 plot the entrepreneur’s market portfolio alloca-
tion φm(s) and the entrepreneur’s systematic risk exposure xm(w) in the two
formulations. Recall that φm and xm control, respectively, for the systematic
volatilities of liquid wealth S and certainty-equivalent wealth W , as seen in
(10) and (59). Panels C and D of Figure 4 plot the systematic volatility of scaled
liquidity s, σ s

m(s), and of scaled w, σw
m(w).

We again show that the policies φm(s) and xm(w), plotted in Panels A and B,
are directly linked to the corresponding volatilities, σ s

m(s) and σw
m(w), plotted in

Panels C and D. Equation (22), which states σ s
m(st) = (φm(st) − βFBst)σm, makes

clear that σ s
m(st) is affected both by the market allocation term, φm(st)σm, and

by −stβ
FBσm = −stρσK, which comes from the systematic risk exposure of K.

Proceeding in the same way as for the contracting problem, we obtain the
following expression linking xm(w) and σw

m(w):

σw
m(wt) = xm(wt) − ρσKwt . (83)
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Again, the key observation is that the systematic volatility of W , which is equal
to xm(wt)Kt, is different from σw

m(wt), the systematic volatility for w = W/K.
Consider now the first-best solution given by the dotted lines in Figure 4.

Panels A and B plot the classic Merton (1969) portfolio allocation result, which
is linear in s and w. Panels C and D reveal a less emphasized insight, which
is nonetheless important for our risk management analysis, namely, that the
systematic volatilities for scaled s and w, σ s

m(st) and σw
m(wt), are also linear in s

and w, respectively. Only when the entrepreneur has fully exhausted her debt
capacity at st = −qFB (and wt = 0), do we have σ s

m(st) = σw
m(wt) = 0.

Consider next the case of inalienability. Panels A and B again reveal how
different the risk exposures are from the first-best. Recall that the debt
limit under inalienability |s| = 0.21 (and w = 0.96) is much tighter than
the first-best debt limit, |sFB| = qFB = 1.264 (and wFB = 0). As a result, the
entrepreneur is endogenously more risk-averse, γe(s) > γ , as shown in Panel A
of Figure 3, and m(s) is lower than the first-best level for all s. Equivalently, in
the contracting problem the principal is also endogenously more risk-averse,
γp(w) > 0, as shown in Panel B of Figure 3, and p(w) is lower than the first-best
level for all w. It follows that the entrepreneur allocates less of her net worth
to the stock market for any s, and equivalently the principal exposes the
agent to less systematic risk for any w. At the debt limit, in particular, the
endogenous risk aversion of both the entrepreneur and the principal approach
infinity, γe(s) = ∞ and γp(w) = ∞, so that the systematic volatilities for both s
and w approach zero: σ s

m(s) = σw
m(w) = 0.

It is important to note that zero systematic volatilities are achieved by
setting φm(s) = βFBs and xm(w) = ρσKw, as can be seen from (22) and (83).
Remarkably, while the mean-variance term vanishes at the debt limit, the
hedging term does not, because the entrepreneur still needs to immunize
herself from the systematic risk exposures of s and w that come from K.31

At the other end of the support, as s → ∞ (or equivalently as w → ∞) and
the inalienability constraint becomes irrelevant, the entrepreneur achieves
the first-best: lims→∞ φm(s) = φFB

m (s) and limw→∞ xm(w) = xFB
m (w) = ηw/γ . In

general, for any given s, |φm(s)| is a “weighted average” of the first-best policy
of maximizing net worth and the zero-volatility policy for s at the debt limit,
with an increasing weight being put on the first-best policy as s increases (the
same is true for xm(w) as w increases.)

In sum, the risk management problem for the firm boils down to a compro-
mise between achieving mean-variance efficiency for the entrepreneur’s net
worth and maximizing the firm’s financing capacity. To expand its financing
capacity, the firm must reduce the volatility of s when s is low, which in-
volves scaling back |φh(s)| and |φm(s)|. Overall, this strategy amounts to both
reducing the systematic risk exposure and increasing the idiosyncratic risk
exposure of the entrepreneur’s net worth. This last result can be seen more
directly from the risk exposures of the agent’s net worth under the optimal

31 Note that the zero systematic volatility condition for s (or equivalently for w) turns out to be
identical to the zero idiosyncratic volatility condition for s (or equivalently for w).
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Figure 5. Investment-capital ratio and its sensitivity. The dotted lines depict the first-best
results: qFB = 1.264 and iFB = 0.132. The solid lines depict the inalienability case: The firm always
underinvests and i(s) increases with s (equivalently, i(w) increases with w). (Color figure can be
viewed at wileyonlinelibrary.com)

contract. Indeed, the optimal contract requires that xm(w) < xFB
m (w) = η w/γ

and xh(w) > xFB
h (w) = 0, as can be seen from Panels B in Figures 2 and 4.

D. Investment and Compensation

D.1. Investment and its Sensitivity to Liquidity

Figure 5 plots corporate investment and its sensitivity. Panels A and C
plot i(s) and i′(s) for the primal problem, and Panels B and D plot i(w) and
i′(w) for the contracting problem, respectively. The dotted lines describe the
constant iFB = 0.132 under the first-best benchmark. Under inalienability,
the investment-capital ratio is always lower than iFB = 0.132, increasing from
−0.043 to iFB = 0.132 as s increases from s = −0.208 toward ∞, or equivalently
as w increases from w = 0.959 toward ∞, as can be seen in Panels A and B,
respectively. As the firm’s financial slack s (or equivalently w) increases, under-
investment distortions are reduced. Note also that a sufficiently constrained
firm optimally sells assets, it < 0, so as to replenish valuable liquidity.
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Figure 6. Consumption-capital ratio and the MPC. The dotted lines depict the first-best
results: cFB(s) = χm(s) = χw = cFB(w). The solid lines depict the inalienability case: The en-
trepreneur always underconsumes and c(s) is increasing and concave in s (equivalently, c(w) is
increasing and concave with w). (Color figure can be viewed at wileyonlinelibrary.com)

Finally, we note that in our model there is a debt overhang effect even
though debt is risk-free. The reason is that debt reduces valuable financial
slack and thus crowds out future investments.

D.2. Consumption and the MPC

The entrepreneur’s FOC for consumption is the standard condition: ζU ′(C) =
JS(K, S). Panels A and C of Figure 6 plot c(s) and the MPC c′(s). The dotted
lines in Panels A and C describe Merton’s linear consumption rule under the
first-best: cFB(s) = χ (s + qFB), where the constant MPC is χ = 6.13% and qFB =
1.264. Under inalienability the entrepreneur underconsumes: ct is lower than
cFB(s) in all circumstances. But the higher is the financial slack s, the higher
is the entrepreneur’s consumption. It is striking that financially constrained
entrepreneurs with s close to s = −0.208 have substantially larger MPCs than
suggested by Friedman’s permanent-income hypothesis. For example, when
s = −0.2, the MPC is c′(−0.2) = 19.6%, which is much higher than the MPC of
χ = 6.13% given by the standard permanent-income hypothesis. This predic-
tion is consistent with empirical evidence in Parker (1999) and Souleles (1999).
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The dual contracting problem yields the same insights as the entrepreneur’s
liquidity and risk management problem. Panels B and D of Figure 6 show
that c(w) is lower than the first-best consumption rule due to the inalienability
constraint, and c(w) is increasing and concave in w.

E. Comparative Statics with Respect to α

The value of α measures the degree of the inalienability of the entrepreneur’s
human capital. The higher is the value of α, the more inalienable is the en-
trepreneur’s human capital. Figure 7 compares our baseline solution (where
α = 0.8) with the case in which α = 0.4. When α decreases from 0.8 to 0.4,
the debt capacity increases significantly from 21% to 69% of the capital stock,
that is, s changes from −0.21 to −0.69. As a result, with less inalienable
human capital (lower α), m(s) increases, the marginal value of liquidity m′(s)
decreases, both the idiosyncratic and systematic risk positions |φh(s)| and
|φm(s)| increase, and both consumption and investment increase. Consistent
with these predictions, Jeffers (2018) finds that stronger labor-contract
enforcement through tighter noncompete clauses is associated with higher
investment at human capital–intensive firms.

F. Which Outside Option: Recontracting or Autarky?

When limited commitment is due to the inalienability of human capital, it is
natural to assume that the entrepreneur’s outside option is employment at an-
other firm, which involves recontracting.32 At the new firm, the entrepreneur
can combine her human capital with the new firm’s capital stock under a new
optimal contract. The point is that the mere decision to quit does not mean
that the entrepreneur has to hide and can no longer engage in any contracts.
In contrast, when limited commitment takes the form of absconsion, it is more
natural to assume that the entrepreneur has to continue in autarky.33 The
absconsion/autarky perspective is more common in the literature.

Why does it matter whether the outside option is autarky or recontracting?
We address this question below and show that even for reasonable coefficients
of relative risk aversion, autarky is such an unappealing and costly option for
the entrepreneur that the first-best allocation can be supported. That is, the au-
tarky outside option loses its bite in generating plausible economic predictions.

Autarky means that the entrepreneur is shut out of capital markets and
therefore has to divide operating revenues AKt into consumption and invest-
ment (including adjustment costs), so that AKt = Ct + It + Gt. As we show,

32 Unless, of course, the entrepreneur is prevented from working by a noncompete clause, which
we have ruled out. However, in general noncompete clauses are of finite duration and hence in
theory the employee still has options to recontract in the future.

33 Absconsion means “to hide away” or “to conceal” according to the Merriam-Webster Dictionary.
If the entrepreneur were openly seen to use the pilfered capital elsewhere, she would be at risk
of legal recovery and enforcement actions. To avoid these actions, she has to hide and therefore
cannot engage in any new contracts.
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Figure 7. Comparative statics with respect to α. The lower the value of α, the less inalienable
the entrepreneur’s human capital, the higher the debt capacity |s|, the less the firm underinvests
and undercompensates the entrepreneur, the higher the idiosyncratic risk hedging demand, and
the higher the entrepreneur’s exposure to the stock market. (Color figure can be viewed at wiley-
onlinelibrary.com)

autarky is a severe punishment even for an entrepreneur with moderate risk
aversion, as she is then fully exposed to the firm’s operating shocks and cannot
diversify them away. Ex ante limited commitment under these circumstances
may not result in much or any distortion in investment and consumption. We
illustrate this key insight in Panels A and B of Figure 8 by plotting m(s) and
m′(s) for both γ = 2 and γ = 5, when the outside option is autarky.
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Figure 8. Recontracting versus autarky. Panels A and B plot the autarky case for γ = 2 and
γ = 5. Panels C and D plot the recontracting case for γ = 2 and γ = 5. Under recontracting, the
solutions for γ = 2 and γ = 5 are similar. For example, s = −0.21 for γ = 2 and s = −0.20 for γ = 5.
However, under autarky, when γ = 5, the solution features the first-best and hence s = −qFB, but
when γ = 2, s = −0.76. (Color figure can be viewed at wileyonlinelibrary.com)

As risk aversion γ increases from 2 to 5, s changes from −0.756 to
−qFB = −1.264. Panel B further shows that when γ = 2, the marginal value
of liquidity m′(s) decreases from 1.544 to unity as s increases from s = −0.756
to ∞. In contrast, when γ = 5, the marginal value of liquidity equals unity
(m′(s) = 1) for all s (see the dashed line in Panel B), achieving the first-best.
That is, the first-best is attainable with γ = 5 under autarky because the
punishment is so severe. The limited commitment constraint never binds in
equilibrium under autarky when γ = 5. This reduces the empirical relevance
of the limited commitment model with autarky.

In contrast, under our recontracting formulation the first-best is far from
attainable. The reason is that the entrepreneur’s risk aversion has comparable
quantitative effects on her value function and her outside option value. Panels
C and D of Figure 8 report m(s) and m′(s) with γ = 2 and γ = 5 for our
recontracting formulation. We find that changes in risk aversion have almost
no effect on debt capacity: s barely changes, from −0.208 to −0.203, as we
increase γ from 2 to 5. Finally, observe that inalienability imposes a much
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tighter debt limit than under autarky. For example, even when γ = 2, the debt
capacity under recontracting is 0.208, which is less than one-third of the debt
capacity under autarky, 0.756.

F.1. Comparisons with Ai and Li (2015)

The reformulation of our model with autarky as the outside option is closely
related to the contracting problem analyzed by Ai and Li (2015). They consider
a contracting problem between an infinitely lived risk-neutral principal
and a risk-averse agent with CRRA preferences who is subject to a limited
commitment constraint with autarky as the outside option. The contracting
formulation of our model differs from Ai and Li (2015) in several other respects.
First, in our model both the principal and the entrepreneur are risk-averse
and are exposed to both aggregate and idiosyncratic shocks. Given that the pri-
ncipal is risk-neutral in Ai and Li (2015), the distinction between aggregate
and idiosyncratic shocks is not meaningful in their setup.34 As we have
shown, aggregate and idiosyncratic shocks have very different implications for
consumption, investment, portfolio choice, and risk management. Second, the
state variable that we choose to work with in our contracting problem is the en-
trepreneur’s promised certainty-equivalent wealth, while in Ai and Li (2015) it
is the agent’s promised utility. In other words, our units are dollars while Ai and
Li’s units are the agent’s utils. It is only by expressing the entrepreneur’s com-
pensation in dollars that we can interpret the entrepreneur’s future promised
compensation as a liquidity buffer and measure the extent to which the firm
is financially constrained via the investor’s marginal value of liquidity p′(w).

Third, the entrepreneur’s consumption in our problem is stochastic, while
in Ai and Li (2015) the agent’s consumption is deterministic for a given time
interval (t, t + s) over which the constraints do not bind. This result follows
from the following optimality condition

e−ζs
(

Ct+s

Ct

)−γ

= Mt+s

Mt
= exp

[
−
(

r + η2

2

)
s − η(Zm,t+s − Zm,t)

]
, (84)

which states that the entrepreneur’s marginal rate of substitution (under full
spanning) must equal the investors’ SDF. Simplifying (84) yields

Ct+s = Cte−(ζ−r)s/γ exp
[

1
γ

(
η2s
2

+ η(Zm,t+s − Zm,t)
)]

. (85)

In Ai and Li (2015), consumption is deterministic, Ct+τ = Cte−(ζ−r)τ/γ , as η = 0
in their model.35

34 In our model the principal uses the SDF Mt = e−rt exp(− η2

2 t − ηZm,t) , while in Ai and Li (2015)
the principal uses Mt = e−rt. That is, the market price of risk is η > 0 in our model and η = 0 in
their model.

35 With the additional assumption that ζ = r, consumption between t and t + τ is a submartin-
gale in our model, while it is constant in Ai and Li (2015).
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VI. Persistent Productivity Shocks

We further extend the model by introducing persistent productivity shocks.
The firm faces two conflicting forces in the presence of such shocks. First, as
Froot, Scharfstein, and Stein (1993) emphasize, the firm will want to have
sufficient funding capacity to take maximal advantage of the investment
opportunities that become available when productivity is high. To do so, the
firm may want to take hedging positions that allow it to transfer funds from
the low to the high productivity state. Second, the firm also wants to smooth
the entrepreneur’s compensation across productivity states, allowing the
entrepreneur to consume a higher share of earnings in the low than in the high
productivity state. To do so, the firm will need to ensure that it has sufficient
liquidity and funding capacity in the low productivity state. This may require
taking hedging positions such that funds are transferred from the high to the
low productivity state.

Which of these two forces dominates? We show that even for extreme
parameter values for the productivity shocks, the consumption/compensation
smoothing effect dominates. One reason is that, when productivity is high,
the firm’s endogenous credit limit is also high, so that transferring funds
from the low to the high productivity state is less important. In contrast, the
consumption smoothing benefits of transferring funds from the high to the low
productivity state are significant.

We model persistent productivity shocks {At; t ≥ 0} as a two-state Markov
switching process, At ∈ {AL, AH} with 0 < AL < AH . We denote by λt ∈ {λL, λH}
the transition intensity from one state to the other, with λL denoting the
intensity from state L to H, and λH the intensity from state H to L. The
counting process {Nt; t ≥ 0} (starting with N0 = 0) keeps track of the number
of times the firm has switched productivity {As : s ≤ t} up to time t. It increases
by one whenever the state switches from either H to L or from L to H:
dNt = Nt − Nt− = 1 if and only if At �= At−, and dNt = 0 otherwise.

In the presence of such shocks, the entrepreneur will want to purchase
or sell insurance against stochastic changes in productivity. We characterize
the optimal insurance policy against such shocks as well as how investment,
compensation, risk management, and debt capacity vary with productivity.
For brevity, we only consider the case in which productivity shocks are purely
idiosyncratic.36

A. Productivity Insurance Contract

Consider the following insurance contract offered at current time t−.
Over the time interval dt = (t−, t), the entrepreneur pays the unit insurance

36 We have analyzed more general situations that incorporate systematic productivity shocks.
Generalizing our model to allow for a systematic risk premium requires an application of the stan-
dard change of measure technique by choosing different transition intensities under the physical
measure and the risk-neutral measure. See, for example, Bolton, Chen, and Wang (2013). As one
may expect, the generalized liquidity and risk management problem in this section also has an
equivalent optimal contracting formulation.
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premium ξt−dt to the insurance counterparty in exchange for a unit payment
at time t if and only if At �= At− (i.e., dNt = 1). That is, the underlying event for
this insurance contract is the change in productivity. Under our assumptions of
perfectly competitive financial markets and idiosyncratic productivity shocks,
the actuarially fair insurance premium is given by the intensity of the change
in productivity state: ξt− = λt−.

Let �t− denote the number of units of insurance purchased by the en-
trepreneur at time t−. We refer to �t− as the insurance demand. If �t− < 0,
the firm sells insurance and collects insurance premia at the rate of λt−�t−.
Then, St evolves as follows:

dSt = (
rSt + Yt − Ct + 	m,t(μm − r) − λt−�t−

)
dt

+ 	h,tνKdZh,t + 	m,tσmdZm,t + �t−dNt . (86)

Note that the only differences between (86) and (10) are the insurance
premium payment λt−�t− and the contingent liability coverage �t−dNt.

The solution for the firm’s value is a pair of state-contingent value func-
tions J(K, S; AL) ≡ JL(K, S) and J(K, S; AH) ≡ JH(K, S), which solve two in-
terlinked HJB equations, one for each state.37 The HJB equation in state L is38

ζ JL(K, S) = max
C,I,	h,	m,�L

ζU (C) + (I − δK K)JL
K + σ 2

K K2

2
JL

KK

+
(
rS + 	m(μm − r) + ALK − I − G(I, K) − C − λL�L

)
JL

S

+
(
ν2

K	h + ρσKσm	m

)
KJL

KS + (νK	h)2 + (σm	m)2

2
JL

SS

+ λL[JH(K, S + �L) − JL(K, S)] . (87)

Two important features differentiate (87) from the HJB equation (11). First,
the drift term involving the marginal utility of liquidity JL

S now includes
the insurance payment −λL�L. Second, the last term in (87) captures the
adjustment of S by the amount �L and the corresponding change in the value
function following a productivity change from AL to AH .

The inalienability constraint must hold at all t for both productivity states,
so that

St ≥ S(Kt; At) , (88)

or equivalently,

st ≥ s(At) . (89)

37 For contracting models involving jumps and/or regime switching, see Biais, Mariotti, Rochet,
and Villeneuve (2010), Piskorski and Tchistyi (2010), and DeMarzo, Fishman, He, and Wang (2012),
among others.

38 In Appendix C, we provide the coupled equivalent HJB equation for J(K, S; AH ) ≡ JH (K, S)
in state H.
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Naturally, the firm’s time-t credit limit |s(At)| depends on its productivity At.
We use sH and sL to denote s(At) when At = AH and At = AL, respectively.

The entrepreneur determines her optimal insurance demand �L in state L
by differentiating (87) with respect to �L and setting �L to satisfy the FOC,

JL
S (K, S) = JH

S (K, S + �L) , (90)

provided that the solution �L to the above FOC satisfies the (state-contingent)
condition

S + �L ≥ SH
. (91)

Otherwise, the entrepreneur sets the insurance demand so that �L = SH − S,
in which case the firm will be at its maximum debt level SH when productivity
switches from AL to AH .39

B. Quantitative Analysis

We consider two sets of (annualized) parameter values. The first set is such
that AH = 0.25, AL = 0.14, and λL = λH = 0.2, with all other parameter values
as in Table III. The transition intensities (λH, λL) = (0.2, 0.2) imply that the
expected duration of each state is five years. The second set of parameter
values is identical to the first, except that AL = 0.05. That is, productivity in
the low state, AL, is much lower (0.05 instead of 0.14).

Figure 9 plots the entrepreneur’s insurance demand π H(s) as the solid line
and π L(s) as the dashed line. Panel A plots the insurance demand in both states
when productivity differences are (AH − AL)/AH = (0.25 − 0.14)/0.25 = 44%,
while Panel B plots the insurance demand when productivity differences are
very large, (AH − AL)/AH = (0.25 − 0.05)/0.25 = 80%. Remarkably, under both
sets of parameter values the firm optimally buys insurance in state H, π H(s) >

0, and sells insurance in state L, π L(s) < 0. This result is not obvious a priori,
for when productivity differences are large, the benefit of transferring liquidity
from state L to H and thereby taking better advantage of investment opportu-
nities when they arise could well be the dominant consideration for the firm’s
risk management. But this turns out not to be the case. Even when productivity
differences are as large as 80%, the dominant consideration is still to smooth
the entrepreneur’s consumption. Moreover, comparison of Panels A and B re-
veals that for the larger productivity differences, the insurance demand is also
larger, with π H(s) exceeding 0.2 everywhere in Panel B but remaining below
0.2 in Panel A, and π L(s) attaining values lower than −0.25 in Panel B (when
s + π L ≥ sH is not binding), always remaining larger than −0.2 in Panel A.40

Figure 10 shows that m(s), consumption c(s), investment i(s), and debt
capacity |s| are higher in state H than in state L, as one would expect.

39 An equivalent set of conditions characterizing �H is presented in Appendix C.
40 These results are robust and hold for other more extreme parameter values, which for brevity

we do not report.
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State H productivity is AH = 0.25 in both panels. In Panel A, state L productivity is AL = 0.14,
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ductivity is AL = 0.05, sH = −0.200, sL = −0.128, and π L(s) = sH − s when −0.128 < s < 0.023.
(Color figure can be viewed at wileyonlinelibrary.com)

Similarly, the size of the idiosyncratic risk hedging position as well as that
of stock market exposures, |φh(s)| and |φm(s)|, are higher in state H than in
state L. However, a somewhat subtle result is that marginal value of liquidity
schedules, m′(s), for state H and L cross.

VII. Deterministic Formulation as in Hart and Moore (1994)

Our contracting problem is also closely related to Hart and Moore’s (1994)
contracting problem under inalienability. Hart and Moore (1994) consider
a special case with a single deterministic project and linear preferences for
both the investor and the entrepreneur. They emphasize the idea that debt
financing is optimal when the entrepreneur’s human capital is inalienable.
Our more general framework reveals that the optimality of debt financing is
not a robust result. Instead, the robust ideas are that inalienability gives rise
to (1) an endogenous financing capacity and (2) an optimal corporate liquidity
and risk management problem.

To highlight the critical role of liquidity management, it is instructive to
consider the special case of our model in which there are no shocks, so that
σK = 0 and η = 0, as in Hart and Moore (1994). Although output and capital
accumulation become deterministic, this special case of our model is still more
general than Hart and Moore (1994) in two respects: (1) the entrepreneur
has a strictly concave utility function and therefore a strict preference for
smoothing consumption and (2) the firm’s operations are not fixed by a
one-time lump-sum investment, but rather can be adjusted over time through
capital accumulation (or decumulation). That is, our model can be viewed as
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a convex version of Hart and Moore (1994), as the additional controls in our
deterministic formulation are consumption and investment, both of which are
convex and characterized by FOCs.
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With σK = 0 and η = 0, the liquidity ratio st evolves at the rate of

μs(st) ≡ dst/dt = (r + δ − it)st + A− it − g(it) − ct , (92)

given a contract {ct, it; t ≥ 0}. To ensure that the entrepreneur stays with the
firm and the financing capacity is maximized, μs(s) = 0 has to hold. The ODE
given in (43) can be simplified to

0 = m(s)
1 − γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [

rs + A− i(s) − g(i(s))
]
m′(s)

+ (i(s) − δ)(m(s) − sm′(s)) , (93)

where χ = r + γ −1(ζ − r) and lims→∞ m(s) = qFB + s.
Under the first-best, with it = iFB and ct = cFB, the drift of s, μs

FB(st), is then

μs
FB(st) = (r + δ − iFB)(st + qFB) − cFB = −(iFB − δ + γ −1(ζ − r))mFB(st), (94)

where the first equality uses (29) and the second uses (32) and (33). It immedi-
ately follows that the first-best drift is negative, μs

FB(st) ≤ 0, if and only if the
following condition holds:

iFB ≥ δ − γ −1(ζ − r) . (95)

When does condition (95) hold? Under the auxiliary assumption that the en-
trepreneur’s discount rate ζ equals the interest rate r, (95) holds if and only if
the firm’s first-best net investment policy is positive: iFB ≥ δ. In other words,
condition (95) requires the firm to grow under the first-best policy, which is
the natural case to focus on. The alternative case is when (95) is not satisfied.
Then the firm’s size is decreasing over time even under the first-best policy. In
this latter case, the inalienability of human capital constraint is irrelevant and
the first-best outcome (optimal downsizing) is attained.41 We summarize this
discussion in the proposition below.

PROPOSITION 1: When (95) is satisfied, the drift of s equals zero at the endoge-
nous debt limit s: μs(s) = 0. When (95) is not satisfied, the first-best outcome
is obtained.

Figure 11 plots the solution when A = 0.185. Note that iFB = 0.136, which
is greater than δ = δK = 0.11. Hence, (95) is satisfied and the first-best is
unattainable. The firm underinvests and undercompensates the entrepreneur
relative to the first-best, since the marginal value of liquidity is greater than
one, m′(s) > 1. Liquidity st decreases over time and reaches s, the permanently
absorbing state. In our example, s = −0.249. Starting at s0 = 0, it takes

41 For example, when productivity A = 0.18 (together with σK = 0 and η = 0), qFB = 1.17 and
iFB = 0.0852. Because δ = 11% and r = ζ = 5%, it is immediate to see that (95) is violated and hence
μs

FB(st) > 0. That is, st increases over time even under first-best and thus her limited commitment
constraint never binds. Of course, the net worth s + qFB is positive, which implies s ≥ s, where
s = −qFB = −1.17 in this case.
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Figure 11. The deterministic case (σK = 0 and η = 0), where the firm is financially con-
strained. Productivity A = 0.185 and other parameter values are given in Table III. Under the
first-best, the firm’s debt capacity is −s = 0.25. The dotted lines depict the first-best results with
qFB = 1.271 and iFB = 0.136. (Color figure can be viewed at wileyonlinelibrary.com)

25.77 years to reach the absorbing state, where the borrowing constraint
binds permanently at s25.77 = s = −0.249. Similarly, due to the friction of
limited commitment, the marginal value of liquidity is greater than one,
m′(s) = m′(−0.249) = 1.038 > 1. Panels C and D show that the entrepreneur
reduces her consumption and investment smoothly even with no risk. Since
m′(s) > 1, the MPC is greater than that under the first-best case.

VIII. Two-Sided Limited Commitment

In our baseline model, the firm’s optimal policy requires that investors incur
losses with positive probability. As Figure 1 illustrates, investors make losses,
p(w) < 0, when w > 1.18. But investors’ ex ante commitment to continue
compensating the entrepreneur ex post even when doing so incurs large losses
for investors may not be credible. What if investors cannot commit to such
loss-making promises to the entrepreneur ex post? We next explore this issue
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and characterize the solution when neither the entrepreneur nor investors are
able to commit.

Suppose that investors can commit only to making losses ex post up to
a fixed fraction � of the total capital stock, so that p(wt) ≥ −� at all t. For
expositional simplicity we set � = 0. Then, the main difference relative to the
one-sided commitment problem analyzed so far is that there is also an upper
boundary s = −p(w) = 0. Note that under two-sided limited commitment with
� = 0, the firm will never be in the positive savings region. As a result, the
following new conditions hold at s = 0:

σ s
h(0) = σ s

m(0) = 0 . (96)

Using the same argument as for (49), we can express (96) as m′′(0) = −∞, and
we verify that μs(s) given in (23) is weakly negative at s = 0, so that s ≤ s = 0
with probability one.

Panel A of Figure 12 shows that investors’ lack of commitment significantly
destroys value. For example, at s = 0, under full commitment by investors,
m(0) = 1.198, which is 42% higher than m(0) = 0.843, the value under two-
sided limited commitment. With two-sided limited commitment, s lies between
s = −0.25 and s = 0, so that the entrepreneur has a larger credit limit of
|s| = 0.25 instead of |s| = 0.208, the debt capacity under one-sided limited
commitment. However, a firm with a larger debt capacity is not necessarily
less financially constrained, since investors’ limited-liability constraint limits
the entrepreneur’s self-insurance capacity.

Interestingly, the marginal value of liquidity under two-side limited com-
mitment is lower than unity, m′(s) < 1, which is quite different from the
one-sided case where m′(s) > 1. While an increase in liquidity mitigates the
entrepreneur’s inalienability, it makes the investor’s limited commitment
more likely to bind in the future, so the net effect of increasing s on m′(s) is
ambiguous. Value destruction arises from the direct effect of the entrepreneur’s
inability to hold liquid savings (s cannot be strictly positive) and from the
indirect effect of distorting consumption decisions and investment. Panel C
shows that the entrepreneur is undercompensated relative to the first-best.
Panel D shows that i(s) under two-sided limited commitment fundamentally
differs from that under one-sided limited commitment. For example, at s = 0,
i(0) = 0.331 under one-sided commitment, which is six times higher than
i(0) = 0.053 under two-sided limited commitment.

Compared with the first-best, the firm underinvests when s < −0.13 but
overinvests when −0.13 < s ≤ 0. Whether the firm underinvests or overinvests
depends on the net effects of the entrepreneur’s and investors’ limited commit-
ment constraints. For sufficiently low values of s (when the entrepreneur is
deep in debt), the entrepreneur’s constraint matters more and hence the firm
underinvests. When s is sufficiently close to zero, investors’ limited liability
constraint has a stronger influence on investment. To ensure that s ≤ 0, the
entrepreneur needs to transform liquid assets into illiquid capital even though
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Figure 12. Two-sided limited commitment. The endogenous upper boundary s = 0. Compared
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this may compromise investment efficiency. This mechanism causes the firm
to overinvest relative to the first-best.

Phrased in terms of the equivalent contracting problem, the intuition is
as follows. Given that the entrepreneur cares about her total compensation
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W = w · K and given that investors are constrained by their ability to promise
the entrepreneur w beyond an upper bound w (in this case, w = m(0) = 0.843),
investors reward the entrepreneur along the extensive margin, firm size K,
which allows the entrepreneur to accumulate more human capital and earn
higher compensation payoffs through overinvestment.

Panels E and F plot the idiosyncratic risk hedge φh(s) and the market
portfolio allocation φm(s). Neither φh(s) nor φm(s) is monotonic in s under
two-sided limited commitment. The reason is that the volatilities σ s

h(s) and
σ s

m(s) for s must be turned off at both s = −0.25 and s = 0 to prevent separation
by the entrepreneur and investors (see Panels G and H). This is achieved
by setting φh(s) = s = −0.25, φm(s) = βFBs = −0.05, and φh(0) = φm(0) = 0, as
implied by the volatility boundary conditions for σ s

h(s) and σ s
m(s) at s and s.

IX. Conclusion

Talent retention is a major challenge for many companies, especially for
technology companies. It is obviously a central issue for human resource
management. Less obviously, however, it also has implications for corporate
financial management, as our analysis underscores. We show how human
capital flight risk affects not only firms’ compensation policy, but also their
investment, financing capacity, liquidity, and risk management policies. More
liquidity and spare borrowing capacity buttress the firm’s future compensation
promises and allow the firm to retain talent in a more cost-efficient way.

Human capital flight risk provides a novel rationale for corporate risk
management policies. The firm’s goal in our analysis is not so much to improve
the risk exposure of investors, but to offer constrained-efficient risk exposures
to its employees, who have all their human capital tied up with the firm. Our
theory helps explain in particular why when retained earnings rise, firms
choose to invest an increasing fraction of these earnings in risky financial
assets (Duchin et al. (2017)).

In sum, the corporate risk management problem in our model boils down
to a compromise between (1) the maximization of key employees’ or the
entrepreneur’s net worth, which requires full insurance against idiosyncratic
risk as well as a mean-variance–efficient risk exposure to the stock market,
and (2) the maximization/preservation of the firm’s borrowing capacity, which
involves reducing the volatility of retained earnings per unit of capital. When
the firm is close to depleting its line of credit, the priority is to survive. From
a liquidity and risk management perspective, this means that the firm cuts
back on expenditures, reduces compensation, and sells insurance in order to
generate liquidity for survival. In contrast, when liquidity is plentiful, the firm
adapts its corporate policies so as to optimize the (mean-variance) preferences
of its key employees.

Although our framework is already quite rich, we impose a number of
strong assumptions that are worth relaxing in future work. For example, one
interesting direction would be to allow for equilibrium separation between
the entrepreneur and investors. This could arise when, after a productivity
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shock, the entrepreneur is no longer the best user of the firm’s capital stock.
Investors may then want to redeploy their capital to other more efficient uses,
and the entrepreneur may similarly find her human capital more productive
elsewhere. By allowing for equilibrium separation, our model could then be
applied to study questions such as the life-span of entrepreneurial firms,
managerial turnover, and how the choice of investment in firm-specific versus
general human capital is affected by the firm’s financial flexibility.

Initial submission: May 18, 2016; Accepted: December 11, 2017
Editors: Bruno Biais, Michael R. Roberts, and Kenneth J. Singleton

Appendix A: The Entrepreneur’s Optimization Problem

We conjecture that the entrepreneur’s value function J(K, S) takes the
form

J(K, S) = (bM(K, S))1−γ

1 − γ
= (bm(s)K)1−γ

1 − γ
, (A1)

where b is a constant that will be determined later. We then have

JS = b1−γ (m(s)K)−γ m′(s), (A2)

JK = b1−γ (m(s)K)−γ (m(s) − sm′(s)), (A3)

JSK = b1−γ (m(s)K)−1−γ
(−sm(s)m′′(s) − γ m′(s)(m(s) − sm′(s))

)
, (A4)

JSS = b1−γ (m(s)K)−1−γ
(
m(s)m′′(s) − γ m′(s)2), (A5)

JKK = b1−γ (m(s)K)−1−γ
(
s2m(s)m′′(s) − γ (m(s) − sm′(s))2). (A6)

Substituting these terms into the HJB equation (11) and simplifying, we ob-
tain

0 = max
c,i,φh,φm

ζm(s)

(
c

bm(s)

)1−γ

− 1

1 − γ
+ (i − δK)(m(s) − sm′(s))

+ (rs + φm(μm − r) + A− i − g(i) − c)m′(s) + σ 2
K

2

(
s2m′′(s) − γ (m(s) − sm′(s))2

m(s)

)
+ (

ν2
Kφh + ρσKσmφm

)(−sm′′(s) − γ m′(s)(m(s) − sm′(s))
m(s)

)
+ (νKφh)2 + (σmφm)2

2

(
m′′(s) − γ m′(s)2

m(s)

)
. (A7)
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The FOCs for consumption and investment in (12) and (13) then become

ζU ′(c) = b1−γ m(s)−γ m′(s), (A8)

1 + g′(i) = m(s)
m′(s)

− s . (A9)

From FOCs (15) and (14), we obtain (41) and (42).
Finally, substituting these policy functions for c(s), φh(s), and φm(s) into (A7),

we obtain the ODE for m(s):

0 = m(s)
1 − γ

[
γχm′(s)

γ−1
γ − ζ

]
+ [

rs + A− i(s) − g(i(s))
]
m′(s) + (i(s) − δ)(m(s) − sm′(s))

−
(

γ σ 2
K

2
− ρησK

)
m(s)2m′′(s)

m(s)m′′(s) − γ m′(s)2 + η2m′(s)2m(s)
2(γ m′(s)2 − m(s)m′′(s))

, (A10)

where χ is defined by

χ ≡ b
γ−1

γ ζ
1
γ . (A11)

Substituting γe given by (19) into (A10), we obtain the ODE given in (43).

A. First-Best

Under the first-best, the value function is given by mFB(s) = s + qFB.
Substituting this expression for mFB(s) into the ODE (A10), we obtain

0 = s + qFB

1 − γ

[
γχ − ζ

]+
[
rs + A− iFB − g(iFB)

]
+ (iFB − δ)qFB + η2(s + qFB)

2γ

=
(

γχ − ζ

1 − γ
+ η2

2γ
+ r

)
(s + qFB) +

[
A− iFB − g(iFB) − (r + δ − iFB)qFB

]
. (A12)

As (A12) must hold for all mFB(s) = s + qFB, we have

χ = r + η2

2γ
+ γ −1

(
ζ − r − η2

2γ

)
, (A13)

as given by (33), and

0 = A− iFB − g(iFB) − (r + δ − iFB)qFB, (A14)

so that (29) holds. In addition, using (A11), we obtain the expression (17) for
the coefficient b. Next, substituting m(s) = mFB(s) = s + qFB into (A8) and (A9)
gives the first-best consumption rule (32) and investment policy (25). To ensure
that the optimization problem is well posed, we require positive consumption
and a positive Tobin’s q, that is, χ > 0 and qFB > 0, which imply

Condition1 : r + η2

2γ
+ γ −1

(
ζ − r − η2

2γ

)
> 0 , (A15)
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Condition 2 : iFB < r + δ , (A16)

where iFB is the solution of (29). Substituting m(s) = mFB(s) = s + qFB into (41)
and (42), respectively, we obtain the first-best idiosyncratic risk hedge φFB

h (s)
given in (34) and the market portfolio allocation φFB

m (s) given in (35).
The expected return for QFB

t , μFB, satisfies the CAPM, where

μFB = A− iFB − g(iFB)
qFB +

(
iFB − δK

)
= r + δ − iFB +

(
iFB − δK

)
= r + βFB(μm − r) (A17)

and βFB is given by (28). The value of capital QFB
t follows a GBM process as

given by

dQFB
t = QFB

t [(iFB − δK)dt + (νKdZh,t + ρσKdZm,t)] , (A18)

with drift (iFB − δK), idiosyncratic volatility νK, and systematic volatility ρσK.
These coefficients are identical to those for {Kt : t ≥ 0}. Next, we apply Ito’s
formula to MFB

t = St + QFB
t = St + qFBKt and obtain the dynamics

dMFB
t = MFB

t

[(
r + η2

γ
− χ

)
dt + η

γ
dZm,t

]
. (A19)

B. Inalienable Human Capital

From the monotonicity property of J(K, S) in S, it follows that the condition
given in (45) reduces to St ≥ St = S(Kt) given in (46). Substituting the value
function (16) into (44), we obtain M(K, S) = M(αK, 0), which implies (47).
The boundary conditions given in (49) are necessary to ensure that the
entrepreneur will stay with the firm, which implies that

φh(s) = s and φm(s) = s βFB . (A20)

Applying (A20) to (41) and (42), we show that (49) is equivalent to lims→s m′′(s) =
−∞ as given in (51).

Appendix B: Equivalent Optimal Contract

A. Solution of the Contracting Problem

HJB Equation for F(K, V ). Using Ito’s formula, we have

d(Mt F(Kt, Vt)) = MtdF(Kt, Vt) + F(Kt, Vt)dMt+ < dMt, dF(Kt, Vt) >, (B1)
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where

dF(Kt, Vt) = FKdKt + FKK

2
< dKt, dKt > +FV dVt + FV V

2
< dVt, dVt >

+ FV K < dVt, dKt >=
[

(I − δK K)FK + σ 2
K K2 FKK

2
+ ζ

(
V − U (C)

)
FV

]
dt

+
[

(z2
h + z2

m)V 2 FV V

2
+ (zhνK + zmρσK)KVFV K

]
dt

+ V FV (zhdZh,t + zmdZm,t) + σK KFK

(√
1 − ρ2dZh,t + ρdZm,t

)
. (B2)

Using the SDF M given in (8) and the martingale representation

Et[d(Mt F(Kt, Vt))] + Mt(Yt − Ct)dt = 0 , (B3)

we obtain (57), which is the HJB equation for the optimal contracting problem.

A.1. Optimal Policy Functions and ODE for p(w)

Applying Ito’s formula to (61) and transforming (57) for F(K, V ) into the
HJB equation for P(K, W), we obtain

rP(K, W) = max
C,I,xh,xm

{
Y − C +

(
ζ (U (bW) − U (C))

bU ′(bW)
− xmηK

)
PW

+ (I − δK K − ρησK K)PK + σ 2
K K2

2
PKK

+ (x2
h + x2

m)K2

2
PWW bU ′(bW) − PW b2U ′′(bW)

bU ′(bW)

+ (xhνK + xmρσK)K2 PW K

}
. (B4)

The FOCs for C, I, xh, and xm are given by

U ′(bW) = −ζ

b
PW (K, W)U ′(C) , (B5)

1 + GI(I, K) = PK(K, W) , (B6)

xh = − νK PW K

PWW − PW bU ′′(bW)/U ′(bW)
, (B7)

xm = − ρσK PW K

PWW − PW bU ′′(bW)/U ′(bW)
+ ηPW

K[PWW − PW bU ′′(bW)/U ′(bW)]
. (B8)

By substituting P(K, W) = p(w)K into (B5) to (B8), we obtain the optimal
consumption, investment, and risk management policies given by (63) to (66),
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respectively. By substituting P(K, W) = p(w)K and the corresponding optimal
policies (63) to (66) into the PDE (B4), we find that the investor’s value p(w)
satisfies ODE (71).

A.2. Dynamics of the Entrepreneur’s Promised Scaled Wealth w

Using Ito’s formula, we have the following dynamics for W :

dWt = ∂W
∂V

dVt + 1
2

∂2W
∂V 2 < dVt, dVt >, (B9)

where we use < dVt, dVt > to denote the quadratic variation of V ,
∂W/∂V = 1/V ′(W), and ∂2W

∂V 2 = − V ′′(W )
(V ′(W ))3 . Substituting the dynamics of V

given by (56) into (B9) yields (59). Using the dynamics for W and K, and
applying Ito’s formula to wt = Wt/Kt, we can write the dynamic evolution of
the certainty-equivalent wealth w as given by (67).

B. Equivalence

The optimization problem for the entrepreneur is equivalent to the dynamic
optimal contracting problem for the investor in (53) if and only if the borrowing
limits, S(K), are such that

S(K) = −P(K, W ) , (B10)

where P(K, W ) is the investor’s value when the entrepreneur’s inalienability
constraint binds. We characterize the implementation solution by first solving
the investor’s problem in (57) and then imposing the constraint (B10).

The optimal contracting problem gives rise to the investor’s value function
F(K, V ), with the promised utility to the entrepreneur V as the key state
variable. The investor’s value F(K, V ) can be expressed in terms of the
entrepreneur’s promised certainty-equivalent wealth W , P(K, W). The opti-
mization problem for the entrepreneur gives rise to the entrepreneur’s value
function J(K, S), with S = −P(K, W) as the key state variable. Equivalently,
the entrepreneur’s objective is her certainty equivalent wealth M(K, S) and
the relevant state variable is her savings S = −P.

The following relations between s and w hold:

s = −p(w) and m(s) = w . (B11)

The standard chain rule implies

m′(s) = − 1
p′(w)

and m′′(s) = − p′′(w)
p′(w)3 . (B12)

Next, we demonstrate the equivalence between the two problems by showing
that by substituting s = −p(w) into the ODE for m(s), we obtain the ODE
for p(w), and vice versa. Substituting (B11) and (B12) into the ODE (43) for
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m(s), we obtain the ODE (71) for p(w). Substituting (B11) and (B12) into
consumption and investment policies (37) and (39) in the liquidity and risk
management problem, we obtain the optimal consumption and investment
policies (63) and (64) in the contracting problem. Substituting (B11) and (B12)
into (47) and (51), the boundary conditions for m(s), we obtain (75) and (78),
the boundary conditions for p(w).

C. Autarky as the Entrepreneur’s Outside Option

Let Ĵ(Kt) denote the entrepreneur’s value function under autarky defined as

Ĵ(Kt) = max
I

Et

[∫ ∞

t
ζe−ζ (v−t)U (Cv)dv

]
. (B13)

Under autarky, the entrepreneur’s consumption Ct satisfies output Yt, in
that

Ct = Yt = At Kt − It − G(It, Kt) . (B14)

The following proposition summarizes the main results.

PROPOSITION B1: Under autarky, the entrepreneur’s value function Ĵ(K) is
given by

Ĵ(K) = (bM̂(K))1−γ

1 − γ
, (B15)

where b is given by (17), M̂(K) is the certainty-equivalent wealth under autarky
given by

M̂(K) = m̂K , (B16)

m̂ = (ζ (1 + g′(̂i))(A− î − g( î) )−γ )
1

1−γ

b
, (B17)

and î is the optimal investment-capital ratio that solves the implicit equation

ζ = A− î − g(̂i)
1 + g′(̂i)

+ (̂i − δK)(1 − γ ) − σ 2
Kγ (1 − γ )

2
. (B18)

PROOF OF PROPOSITION B 1: The value function Ĵ(K) satisfies the HJB equation

ζ Ĵ = max
I

ζ
C1−γ

1 − γ
+ (I − δK K) ĴK + σ 2

K K2

2
ĴKK . (B19)

Using Ĵ(K) = (bM̂(K))1−γ

1−γ
and c = A− i − g(i), we have

ζ = max
i

ζ

(
A− i − g(i)

m̂b

)1−γ

+ (i − δK)(1 − γ ) − σ 2
Kγ (1 − γ )

2
. (B20)
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Using the FOC for i, we obtain (B17). Substituting (B17) into (B20), we obtain
î given by (B18). Note that the entrepreneur’s value function J(K, S) satisfies
the condition

J(Kt, St) ≥ Ĵ(Kt) , (B21)

which implies that M(Kt, St) ≥ M̂(Kt) and M(Kt, St) = M̂(Kt). By using the ho-
mogeneity property in K, we can also establish that the lower boundary s
satisfies m(s) = m̂. �

Appendix C: Persistent Productivity Shocks

By using the dynamics given in (86), we obtain the HJB equation for the
value function JL(K, S) in state L, which is given by (87), and the following
HJB equation for JH(K, S) in state H:

ζ JH(K, S) = max
C,I,	h,	m,�H

ζU (C) + (I − δK K)JH
K + σ 2

K K2

2
JH

KK

+
(
rS + 	m(μm − r) + AH K − I − G(I, K) − C − λH�H

)
JH

S

+ (
ν2

K	h + ρσKσm	m
)
KJH

KS + (νK	h)2 + (σm	m)2

2
JH

SS

+ λH[JL(K, S + �H) − JH(K, S)] . (C1)

We then obtain the following main results.

PROPOSITION C1: In the region s > sL, mL(s) satisfies the ODE

0 = max
iL, π L

mL(s)
1 − γ

[
γχmL′(s)

γ−1
γ − ζ

]
+
[
rs + AL − iL − g(iL) − λLπ L(s)

]
mL′(s)

−
(

γ σ 2
K

2
− ρησK

)
mL(s)2mL′′(s)

mL(s)mL′′(s) − γ mL′(s)2 + η2mL′(s)2mL(s)
2(γ mL′(s)2 − mL(s)mL′′(s))

+ (iL − δ)(mL(s) − smL′(s)) + λLmL(s)
1 − γ

((
mH(s + π L)

mL(s)

)1−γ

− 1

)
, (C2)

subject to the boundary conditions

lim
s→∞ mL(s) = qFB

L + s , mL(sL) = αmL(0) , and mL′′
(sL) = −∞ , (C3)

where qFB
L is provided below in Proposition C2. The insurance demand π L(s)

solves

dmH(s + π L)
ds

= dmL(s)
ds

(
mL(s)

mH(s + π L)

)−γ

, (C4)
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as long as π L(s) satisfies π L(s) ≥ sH − s . Otherwise, the entrepreneur sets
π L(s) = sH − s . We have another set of analogous equations and boundary
conditions for mH(s) and π H(s) in state H.

The following proposition summarizes the solutions for the first-best case.

PROPOSITION C2: Under the first-best, the firm’s value QFB
n (K) in state n = {H, L}

is proportional to K: QFB
n (K) = qFB

n K, where qFB
H and qFB

L jointly solve(
r + δ − iFB

L

)
qFB

L = AL − iFB
L − g

(
iFB
L

)
+ λL

(
qFB

H − qFB
L

)
, (C5)(

r + δ − iFB
H

)
qFB

H = AH − iFB
H − g

(
iFB
H

)
+ λH

(
qFB

L − qFB
H

)
, (C6)

and where iFB
L and iFB

H satisfy qFB
L = 1 + g′(iFB

L ) and qFB
H = 1 + g′(iFB

H ) .
The insurance demands in state L and H are given, respectively, by
π L = qFB

H − qFB
L and π H = qFB

L − qFB
H .

Appendix D: Monotonicity and Concavity of the Value Function

LEMMA D1: The value function J(K, S) is strictly increasing in S.

PROOF: To see that J(K, S) is strictly increasing in S, consider
S1,0 < S2,0, where Sj,0 ≥ sKj,0 for j = 1, 2. We set K1,0 = K2,0 = K0. Let
{C1,t, I1,t,	1,h,t,	1,m,t}∞t=0 be the optimal policy with the given initial condition
(K0, S1,0). Let Ĵ(K0, S2,0) be the value function associated with an alternative
policy {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0 to be described below subject to the initial
condition (K0, S2,0). Let {Kj,t, Sj,t}∞t=0 for j = 1, 2 denote the implied liquidity
and physical capital processes subject to the initial conditions (K0, Sj,0) for
any admissible policy including both the optimal and candidate policies. We
establish the following properties for {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0:

(1) S2,t ≥ sK2,t for all t ≥ 0;
(2) The value function, Ĵ(K0, S2,0), implied by this alternative policy is larger

than J(K0, S1,0).

To construct {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0, we first define another policy,
{C ′

t, I′
t ,	

′
h,t,	

′
m,t}∞t=0, as follows:

C ′
t = λC1,t, and I′

t = I1,t ,	′
h,t = 	1,h,t, 	′

m,t = 	1,m,t, for all t ≥ 0 , (D1)

where λ > 1 and {C1,t, I1,t,	1,h,t,	1,m,t}∞t=0 is the optimal policy defined earlier.
Let τ̂ be the stopping time such that S2,t = S1,t for the first time under the
policy {C ′

t, I′
t ,	

′
h,t,	

′
m,t}∞t=0 with the initial condition (K0, S2,0). We now define

{Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0 as follows:

Ĉ2,t =
{

C ′
t = λC1,t , for t ≤ τ̂ ,

C1,t , for t > τ̂ ,
(D2)
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and

Î2,t = I1,t , 	̂2,h,t = 	1,h,t, 	̂2,m,t = 	1,m,t, for all t ≥ 0 . (D3)

With this constructed policy {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0, the dynamics for S1,t
and S2,t when t ≤ τ̂ are given by

dS1,t = (rS1,t − C1,t)dt + Ytdt + 	1,h,tνKdZh,t

+ 	1,m,t[(μm − r)dt + σmdZm,t] , (D4)

dS2,t = (rS2,t − λC1,t)dt + Ytdt + 	1,h,tνKdZh,t

+ 	1,m,t[(μm − r)dt + σmdZm,t] . (D5)

Since S1,̂τ = S2,̂τ , and S1,t and S2,t have the same dynamics when t ≥ τ̂ , we have
S2,t = S1,t for all t ≥ τ̂ . In addition, K1,t = K2,t for all t ≥ 0 since K1,0 = K2,0 and
Î2,t ≡ I1,t for all t ≥ 0.

Condition 1 is satisfied under {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0 because S2,t ≥ S1,t ≥
sK1,t = sK2,t . Condition 2 is also satisfied under {Ĉ2,t, Î2,t, 	̂2,h,t, 	̂2,m,t}∞t=0
because λ > 1 implies

J(K0, S1,0) < E0

[∫ τ̂

0
ζe−ζ tU (λC1,t)dt +

∫ ∞

τ̂

ζe−ζ tU (C1,t)dt
]

= Ĵ(K0, S2,0) . (D6)

By definition, J(K0, S2,0) is the value function under the optimal policy with
the initial condition (K0, S2,0), and thus Ĵ(K0, S2,0) ≤ J(K0, S2,0) holds. We have
proven that J(K0, S1,0) < J(K0, S2,0). �

LEMMA D2: The value function J(K, S) is concave in S.

PROOF: We use the same notation as in the proof for Lemma 1 whenever
feasible. Let

Sλ
0 = λS1,0 + (1 − λ)S2,0 , (D7)

where 0 ≤ λ ≤ 1. Let Ĵ(K0, Sλ
0) be the value function associated with an alter-

native policy {Cλ
t , Iλ

t ,	λ
h,t,	

λ
m,t}∞t=0 to be described below subject to the initial

conditions for (Kλ
0 , Sλ

0), where Kλ
0 = K0 and Sλ

0 is given by (D7). Let {Kλ
t , Sλ

t }∞t=0
denote the implied liquidity and physical capital processes subject to the ini-
tial conditions (Kλ

0 , Sλ
0) for any admissible policy. We establish the following

properties implied by the policy {Cλ
t , Iλ

t ,	λ
h,t,	

λ
m,t}∞t=0:

(1) Sλ
t ≥ sKλ

t for all t ≥ 0.
(2) The value function Ĵ(K0, Sλ

0) is weakly larger than λJ(K0, S1,0) + (1 −
λ)J(K0, S2,0).



Optimal Contracting, Corporate Finance, and Valuation 1425

We construct the policy {Cλ
t , Iλ

t ,	λ
h,t,	

λ
m,t}∞t=0 as follows:

Cλ
t = λC1,t + (1 − λ)C2,t + [

λG(I1,t, K1,t) + (1 − λ)G(I2,t, K2,t) − G
(
Iλ
t , Kλ

t

)]
≥ λC1,t + (1 − λ)C2,t = Ĉλ

t , (D8)

Iλ
t = λI1,t + (1 − λ)I2,t , (D9)

	λ
h,t = λ	1,h,t + (1 − λ)	2,h,t , (D10)

	λ
m,t = λ	1,m,t + (1 − λ)	2,m,t . (D11)

Note that the convexity of the capital adjustment cost function G(I, K) gives
rise to the inequality in (D8). First, we show that Condition 1 is satisfied.
Equation (D9) implies that

dKλ
t = (

Iλ
t − δK Kλ

t

)
dt + σK Kλ

t

(√
1 − ρ2dZh,t + ρdZm,t

)
, (D12)

where Kλ
t = λK1,t + (1 − λ)K2,t. Similarly, (D8), (D10), and (D11) imply that

dSλ
t = (

rSλ
t + Y λ

t − Cλ
t

)
dt + 	λ

h,tνKdZh,t + 	λ
m,t[(μm − r)dt + σmdZm,t] , (D13)

where Y λ
t = AKλ

t − Iλ
t − G(Iλ

t , Kλ
t ). Therefore, we have Sλ

t = λS1,t + (1 − λ)S2,t
for all t ≥ 0. The constraints Sj,t ≥ sKj,t, and additivity imply
Sλ

t = λS1,t + (1 − λ)S2,t ≥ λsK1,t + (1 − λ)sK2,t = sKλ
t , which is Condition 1. �

Next, we use the monotonicity and concavity of the utility function U (·) to
prove Condition 2. The value function under the candidate policy satisfies

Ĵ(K0, Sλ
0) = E

[∫ ∞

0
ζe−ζ tU

(
Cλ

t

)]
dt ≥ λE

[∫ ∞

0
ζe−ζ tU

(
C1,t

)
dt
]

+ (1 − λ)E
[∫ ∞

0
ζe−ζ tU

(
C2,t

)
dt
]

= λJ(K0, S1,0) + (1 − λ)J(K0, S2,0) , (D14)

where J(K, S) is the value function under the optimal policy and the in-
equality follows from U (Cλ

t ) ≥ U (Ĉλ
t ) = U (λC1,t + (1 − λ)C2,t) ≥ λU (C1,t) + (1 −

λ)U (C2,t) . We have thus proved the concavity of the value function.
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