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We develop a dynamic asset pricing model of cryptocurrencies/tokens that allow users to
conduct peer-to-peer transactions on digital platforms. The equilibrium price of tokens
is determined by aggregating heterogeneous users’ transactional demand, rather than
discounting cash flows as is done in standard valuations models. Endogenous platform
adoption builds on user network externality and exhibits an S-curve: it starts slow, becomes
volatile, and eventually tapers off. The introduction of tokens lowers users’ transaction
costs on the platform by allowing users to capitalize on platform growth. The resultant
intertemporal feedback between user adoption and token price accelerates adoption and
dampens user-base volatility. (JEL E42, G12, L86)
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Blockchain-based applications and cryptocurrencies have recently taken a
center stage among technological breakthroughs in FinTech. The global market
capitalization of cryptocurrencies has grown to hundreds of billions of U.S.
dollars. Nevertheless, academics, practitioners, and regulators have divergent
views on how cryptocurrencies derive value.

In this paper, we provide a fundamentals-based dynamic valuation model for
cryptocurrencies and platform tokens (generically referred to as tokens). We
focus on the endogenous formation of a digital marketplace or network (“the
platform”) where its native cryptocurrency or token settles transactions and
derives its value from underlying economic activities on the platform. We focus
on platform-specific tokens rather than cryptocurrencies as a general-purpose
medium of exchange. In contrast to financial assets whose values depend
on cash flows, tokens derive value by enabling users to conduct economic
transactions on the digital platform, making them a hybrid of money and
investable assets.

Our model captures two key features shared by a majority of tokens. First,
they are the means of payment on platforms that support specific economic
transactions. For example, Filecoin is a digital marketplace that allows users
to exchange data storage space for its tokens (FIL). Another example is basic
attention token (BAT): advertisers use BATs to pay for their ads, publishers
receive BATs for hosting these ads, and web browser users are rewarded BATs
for viewing these ads. Second, user adoption exhibits network effects. In both
examples, the more users the platform has, the easier it is for any user to find
a transaction counterparty, and the more useful the tokens are. Our model also
applies to tokens used on centralized platforms, such as those being developed
by platform businesses.1

Consequently, the market price of tokens and the platform user base (i.e.,
the total number of platform users) naturally arise as two key endogenous
variables in our model. Our equilibrium token pricing formula exhibits three
desirable features. First, token value depends on the platform’s productivity,
which captures the platform’s functionality and other related factors (e.g.,
technology and regulatory environment). Second, the user base enters positively
into the pricing formula, capturing the positive network externality of user
adoption. Third, user heterogeneity matters for both platform adoption and
token pricing.

Moreover, we clarify the roles of tokens in platform adoption by comparing
token-based platforms and platforms that settle transactions with the numeraire
consumption goods. Using the numeraire goods as means of payment incurs
a carry cost, the forgone return from investing in financial assets. In contrast,
introducing tokens encourages early adoption of productive platforms, because
agents expect token price appreciation and, thus, effectively face a lower carry

1 Examples include online social networks (e.g., QQ coins on Tencent’s messaging platform) and online games
(e.g., Linden dollar for Second Life and WoW Gold for World of Warcraft).
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cost when using tokens for transactions. The expectation of future token price
change also stabilizes user adoption in the presence of platform productivity
shocks.

Specifically, we consider a continuous-time economy with a continuum of
agents who differ in their transaction needs (i.e., types) on the platform. We
broadly interpret transactions as including value transfers (e.g., Filecoin and
BAT) and smart contracting (e.g., Ethereum). Accordingly, we model an agent’s
utility flow from platform transactions as a function of platform productivity
that evolves exogenously, her type, the user base, and the real (numeraire good)
value of the agent’s token holdings (“real token balance”). Importantly, this
flow utility increases with the user base, capturing the network effects. We
characterize the Markov equilibrium with platform productivity being the state
variable. The model has two key endogenous variables, the user base and token
price.

In our model, agents make a two-step decision on (1) whether to adopt by
paying a participation cost to become a platform user, and, if so, (2) the real
token balance. The token market clears by equating the agents’ demand and
the fixed supply. A key insight of our model is that users’ adoption decision
exhibits not only static complementarity through the flow utility of platform
transactions but also an intertemporal complementarity via the carry cost of
holding tokens that depends on the endogenous variation of token price.

Holding tokens as means of payment incurs a carry cost that is the forgone
return from investing in financial assets. However, on a promising platform with
a positive productivity drift, such cost is partly offset by the expected token price
appreciation. Given a fixed supply of tokens, the prospective growth of user
base driven by productivity growth leads agents to expect more users in the
future and thus a stronger demand for tokens, which implies an increase of
token price. As such, even though users forgo the financial assets’ returns by
holding tokens to transact, they are compensated by the expected appreciation
of tokens.

The introduction of tokens also stabilizes the user base, making it less
sensitive to platform productivity shocks. Consider a platform with growing
yet stochastic productivity. A negative productivity shock reduces users’
transactional utility and thus lowers the user base. This negative effect
is mitigated by an increase in the expected token price appreciation. A
lower current level of adoption implies a larger expected token price
appreciation because more users can be brought onto the platform in the future.
Consequently, the effective token carry cost declines, encouraging adoption.
Similarly, a positive productivity shock directly increases adoption, but its effect
is dampened because the pool of potential newcomers shrinks and the expected
token price appreciation declines, resulting in a greater effective carry cost.

In the Markov equilibrium, our tokenized economy features an S-curve of
user adoption: as the platform productivity grows, the user base slowly expands,
and then expansion speeds up, before eventually tapering off near full adoption.
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We show that the user base is larger and more stable than that of a tokenless
platform that has the same productivity process but uses the numeraire goods
as means of payment.

We derive an equilibrium token pricing formula that incorporates endogenous
network effects in an otherwise canonical Gordon growth formula. Token
valuation boils down to solving an ordinary differential equation subject to
intuitive boundary conditions. Just as tokens affect the user-base dynamics,
endogenous adoption is critical for understanding major asset pricing issues
surrounding tokens.

First, the network effects imply a large cross-sectional variation in token price
among platforms in the early stages of adoption. Second, adoption externality
amplifies the impact of productivity shocks on token price, creating “excess
volatility” (e.g., Shiller 1981). The amplification is even stronger when we
allow the productivity drift to increase with the user base. This is a form of
community bootstrapping that practitioners emphasize. Finally, by allowing
the productivity beta (systematic risk) to increase with adoption, our model
generates an initial rise of token price followed by a decline and eventual
stabilization, broadly consistent with the observed “bubbly” price dynamics.
These results are in line with evidence in the literature (e.g., Liu and Tsyvinski
2018; Shams 2019).

In sum, our model features rich interactions between financial markets
and the real economy: the financial side operates through the endogenous
determination of token prices, whereas the real side manifests itself in the user
adoption. By trading in the token market, users profit from platform growth and
effectively bear a reduced carry cost of conducting transacting.2 For payment
platforms, the prominent adoption problem in platform economics (e.g., Rochet
and Tirole 2006) is naturally connected with the carry cost in the classical
models of money as a transaction medium (e.g., Baumol 1952; Tobin 1956).
Compared with traditional user subsidies, we demonstrate the advantages of
tokens in accelerating and smoothing adoption. This new solution is often based
on blockchains: decentralized consensus allows the token supply to be credibly
fixed and, thus, anchors the token price to users’ demand.3

Among early economic studies on blockchain games and consensus
generation mechanisms, Biais et al. (2019) and Saleh (2020) analyze
mining/minting games in Proof-of-Work- and Proof-of-Stake-based public
blockchains; Easley et al. (2019), Huberman, Leshno, and Moallemi (2019), and
Cong, He, and Li (2020) study the market structure and industrial organization
of miners; Cong and He (2018) examine the impact of decentralized consensus

2 Our model has complete information. Tokens capitalize on the otherwise nontradable growth of the platform’s
user base and thereby accelerate adoption under network effects. This is distinct from the informational effects
of financial markets that feed back into real activities (see Bond, Edmans, and Goldstein 2012).

3 As pointed out by Hinzen, John, and Saleh (2020), decentralized consensus often comes at the cost of payment
delays for proof-of-work blockchains. Computer scientists and economists are actively studying alternative
protocols (e.g., Fanti, Kogan, and Viswanath 2019; Saleh 2020).
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on industrial organization; and Cao, Cong, and Yang (2018) and Cao et al.
(2020) analyze blockchain architecture for financial reporting without using
tokens. We differ by focusing on token users’ trade-off and the resultant
dynamic interaction between platform adoption and token pricing that apply to
both centralized and decentralized platforms.

We also connect platform economics and asset pricing by demonstrating
that the token price is anchored to the platform-specific convenience
yield (transactional value). Our treatment of convenience yield is related
to Krishnamurthy and Vissing-Jorgensen (2012) and earlier studies. Our
contribution is to incorporate user network effects in the convenience yield and
study the implications on platform adoption and token pricing. We emphasize
agent heterogeneity and its asset pricing implications. Instead of balance
sheet crises (e.g., Brunnermeier and Sannikov 2014; He and Krishnamurthy
2011, 2013), we model the heterogeneity of platform users and the resultant
endogenous growth of user base. In our model, platform users expect profits
from selling tokens to future users. This mechanism is related to, but different
from, that in Harrison and Kreps (1978) and Scheinkman and Xiong (2003), as
the expected capital gain in our model is due to the growth of user base rather
than heterogeneous beliefs.

We do not analyze the implications of blockchain technology on general
purpose currencies and monetary policies (e.g., Balvers and McDonald 2017;
Raskin and Yermack 2018; Garratt and Wallace 2018; Schilling and Uhlig
2019). Instead, we focus on the endogenous interaction between token pricing
and user adoption on platforms that serve niche markets with time-varying
productivity. Therefore, token pricing is anchored to the platform’s productivity
and the popularity of specific economic transactions it supports, such as
advertisement (BAT) and digital storage (Filecoin).

Among contemporary theories featuring token valuation in static settings,
Sockin and Xiong (2020) study tokens as indivisible membership certificates for
agents to match and trade with each other; Li and Mann (2020) argue that initial
token offering allows agents to coordinate by costly signaling through token
acquisition; Pagnotta and Buraschi (2018) study Bitcoin pricing on exogenous
user networks; Catalini and Gans (2019) examine developers’ pricing of tokens
to fund projects and aggregate information; Chod and Lyandres (2018) contrast
security token offerings with traditional financing.4 Our paper is the first to
clarify the role of tokens in capitalizing the endogenous platform growth,
and thereby, reducing agents’ effective carry cost of holding the transaction
medium.5 Empirically, besides the corroborating evidence in Liu and Tsyvinski

4 Tokens in our model facilitate transactions. They should be distinguished from security tokens that represent
claims on issuers’ cash flows or rights to redeem products and/or services (e.g., Slice and Siafund tokens).

5 The carry cost prominently features in classical models of money demand (e.g., Baumol 1952; Tobin 1956) and
recent literature of cash management (e.g., Alvarez and Lippi 2013; Bolton, Chen, and Wang 2011; Décamps
et al. 2011; Li 2018; Lucas and Nicolini 2015).
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(2018) and Shams (2019), the findings in Liu, Sheng, and Wang (2020) that
technological fundamentals affect cryptocurrency valuations are consistent
with our model too.

In dynamic settings, Athey et al. (2016) emphasize the role of learning in
agents’ decisions to use Bitcoin absent stochastic platform productivity and
user network externality; Biais et al. (2018) emphasize the fundamental value
of Bitcoin from transactional benefits; Fanti, Kogan, and Viswanath (2019)
provide a valuation framework for Proof-of-Stake (PoS) payment systems;
and Goldstein, Gupta, and Sverchkov (2019) study initial token offerings
that allow monopolistic platforms to credibly commit to long-run competitive
pricing of services. We differ by studying the joint determination of user
adoption and token valuation in a framework that highlights user heterogeneity,
network externalities, and, most importantly, intertemporal feedback effects.
Moreover, our model is applicable to platforms owned by trusted third parties
and permissioned blockchains as well as permissionless blockchains. Cong,
Li, and Wang (2020) builds on the framework in this paper but focuses
on platform financing, endogenous productivity growth, and dynamic token
allocation among founding entrepreneurs, users, and resource contributors.

1. A Model of Platform Economy

Consider a continuous-time economy where a continuum of agents of unit
measure conduct peer-to-peer transactions on a blockchain platform or a general
digital marketplace.

1.1 Platform and agents
The platform is characterized by At , the productivity that evolves according to
a geometric Brownian motion:

dAt

At
= μ̂Adt +σAdẐAt , (1)

where ẐAt is a standard Brownian motion under the physical measure and μ̂A

and σA are constant parameters. We interpret At broadly. A positive shock to
At can reflect technological advances, favorable regulatory changes, growing
users’ interests, and increasing variety of activities feasible on the platform.

1.1.1 Preferences for platform transactions. The platform allows agents to
conduct transactions that are settled via a medium of exchange. We consider two
cases for the medium of exchange: the generic good, which is the numeraire,
and the local platform currency (token). We first lay out the common features
and then compare these two cases.

We use xi,t to denote the value of agent i’s holdings of medium of exchange
in units of the numeraire good. Conditioning on participating on the platform,
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a platform user i derives a utility flow from her holdings of the medium of
exchange, xi,t ,

dvi,t =
(
xi,t
)1−α (

NtAte
ui
)α
dt−φdt−xi,t rdt . (2)

Next, we explain the three terms in (2) and later discuss agents’ participation
decision.

The first term,
x1−α
i,t

(
NtAte

ui
)α
dt, (3)

is the transactional benefits of xi,t , whereNt is the platform user base, ui is the
agent’s type,At measures platform productivity, andα∈ (0,1) is a constant.6 Let
Ut denote the set of participating agents (with xi,t >0), so formally,Nt ∈ [0,1] is
the measure of Ut . We choose this specification of utility flow with the following
considerations. First, the utility flow increases in Nt . It captures the positive
user network effect, as it is easier to find a transaction counterparty in a larger
community. Second, the marginal utility decreases with xi,t , captured by α>0.
The exponents of xi,t andNtAteui sum to one for analytical convenience. Third,
agents’ transaction needs (or types), ui , are heterogeneous.7 LetG(u) and g(u)
denote the cross-sectional cumulative distribution function and density function
of ui , respectively. Both are continuously differentiable over the finite support
[U,U ].

To realize the transaction benefits given in (3), the agent needs to incur a
flow cost φ per unit of time for platform participation corresponding to the
second term in (2). For example, transacting on the platform requires effort and
attention. At any time t , agents may choose not to participate and then collect
no utility. Naturally, agents with sufficiently high ui choose to join the platform,
while agents with sufficiently low ui do not participate.

In addition to φ, the agent has to incur an opportunity cost of rxi,t per
unit of time to realize the transactional benefits in (3). This cost is similar to
those induced by the cash-in-advance constraints in monetary models where the
opportunity costs of conducting transactions is the forgone interest payments on
the money balance (e.g., Galí 2015; Walsh 2003). It also resembles the carry cost
of cash holdings in corporate finance models that emphasize external financing
frictions (e.g., Bolton, Chen, and Wang 2011; Li 2018).

1.1.2 Valuing utilities from platform transactions. Because we consider
a dynamic economy of infinite horizon, the valuation of flow utilities from
platform activities requires a stochastic discount factor (SDF). For tractability,

6 Appendix A provides a theoretical foundation for this reduced-form flow utility.

7 For payment blockchains (e.g., Ripple), a high value of ui can reflect agent i’s urge to conduct an international
remittance. For smart-contracting blockchains (e.g., Ethereum), ui captures the productivity of agent i’s project
that is being financed. For decentralized computation (e.g., Dfinity) and data storage (e.g., Filecoin) applications,
ui corresponds to users’ need for secure and fast access to computing power and data.
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we consider the following widely used specification of SDF, which we denote
by �:

d�t

�t

=−rdt−ηdẐ�t , (4)

where r is the risk-free rate and η is the price of risk for systematic shock
Ẑ�t under the physical measure.8 The SDF is typically linked to agents’
consumption dynamics, so by specifying an exogenous SDF, we assume that
agents’ utility from platform activities constitutes only a small part of their
total utility. This echoes the models of an individual firm’s valuation where an
exogenous SDF is directly parameterized (chap. 7, Campbell 2017).

Let ρ denote the instantaneous correlation between the SDF shock and the
platform productivity shock At . A positive ρ implies a positive beta. Indeed,
the usefulness and quality of a particular platform evolves with the economy, as
agents discover new ways to utilize the technology, which in turn depends on
the progress of complementary technologies. Macroeconomic and regulatory
events may also affect the usage of a platform.

It is more convenient to solve our model via the change-of-measure technique
widely used in the derivatives pricing literature (Duffie 2001). By Girsanov’s
theorem, we know that under the risk-neutral measure, the Brownian motion
driving the SDF is Z�t that satisfies

dZ�t =dẐ�t +ηdt. (5)

Therefore, under the risk-neutral measure, At follows

dAt

At
= μ̂Adt +σAdẐAt =

(
μ̂A−ηρσA)dt +σAdZAt ≡μAdt +σAdZAt . (6)

Let yi,t denote agent i’s (undiscounted) cumulative payoff from platform
activities, which depends on dvi,t (the transactional benefits defined in (2)) and
may differ on platforms with and without token as a medium of exchange as
will be specified shortly. Let Ê and E denote the expectation under the physical
and risk-neutral measure, respectively. Agent i maximizes her life-time payoff,

Ê

[∫ ∞

0

�t

�0
dyi,t

]
=E

[∫ ∞

0
e−rt dyi,t

]
. (7)

This equality follows from the change-of-measure technique. Throughout the
remainder of our paper, we conduct our analysis under the risk-neutral measure,
unless stated otherwise.

8 The standard no-arbitrage argument implies that the drift of the SDF has to equal the negative interest rate. See
Duffie (2001) for a textbook treatment.
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1.2 Tokenless and tokenized economies
1.2.1 Tokenless economy. On platforms with transactions settled by the
numeraire good, agent i’s utility flow only depends on whether she chooses
to be a platform user, and if she does, the transactional benefits of holding xi,t
units of goods as means of payment:

dyi,t = max {0,max
xi,t

dvi,t } (8)

= max

{
0,max

xi,t

[(
xi,t
)1−α (

NtAte
ui
)α−φ−rxi,t

]}
dt . (9)

Here, the inner “max” operator gives the conditional demand xi,t if
participating and the outer “max” operator reflects agent i’s option to leave
the platform and obtain zero profit.

This tokenless model is analogous to the standard models of money holdings
(e.g., Ljungqvist and Sargent 2004), given that the real value of money balance,
xi,t , generates a flow utility via

(
xi,t
)1−α

(NtAteui )
αdt but induces a cost

of forgone interests via xi,t rdt . Our novel modeling ingredient is the user
network effect—the positive externality of agents’ adoption decision—which
is a defining feature of digital platforms.

1.2.2 Tokenized economy. In what follows, we introduce a native
(crypto)currency on the platform, that is, the token. To conduct transactions
on the platform, we require users to use tokens.9

The value of agent i’s token holdings, xi,t , satisfies the following identity:

xi,t =Ptki,t , (10)

wherePt is the token price in terms of the numeraire good and ki,t is the units of
tokens. The real (numeraire) value, xi,t =Ptki,t , rather than the token units, ki,t ,
appears in the transactional benefits because the transaction utility depends on
the numeraire value of goods and services that are transacted as in the standard
monetary economic models.

Without loss of generality, we write the equilibrium token price process as
follows under the risk-neutral measure:

dPt = μ̃tdt + σ̃t dZ
A
t (11)

= Ptμ
P
t dt +Ptσ

P
t dZ

A
t . (12)

Here, μ̃t and σ̃t can be any admissible stochastic processes. (12) is a rewriting
of (11), where

μ̃t =Pt μ
P
t and σ̃t =Pt σ

P
t , (13)

and μPt and σPt can follow any admissible processes.

9 In Appendix D, we generalize our model to incorporate agents’ endogenous decisions on whether to use the
numeraire good or token as a medium of exchange and show that our results are robust.

9
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We choose to work withμPt and σPt rather than μ̃t and σ̃t , because the former
set of notations is more convenient especially when we analyze our model’s
asset pricing predictions, such as the expected token return and token return
volatility. But we could have used μ̃t and σ̃t to obtain the same solution.10

Conditional on participating on the platform, agent i derives a total payoff
that includes the transactional benefits of token holdings, that is, dvi,t , and also
the investment payoff due to endogenous token price change:

dvi,t +ki,tEt [dPt ] . (14)

By substituting ki,t =xi,t /Pt into (14), we rewrite the total payoff:

dvi,t +xi,t
Et [dPt ]

Pt
. (15)

Using the definition μPt dt≡E[dPt ]/Pt , we can write the total payoff as

dyi,t = max

{
0,max

xi,t

[
dvi,t +xi,tμ

P
t dt
]}
, (16)

where the outer max accounts for agent i’ option to leave the platform and
achieve zero profit. In contrast to (8) of the tokenless economy that contains only
dvi,t (the transactional benefits), token introduces an additional term xi,tμ

P
t dt

due to the endogenous price variation.
By substituting (2) into (16), we express dyi,t explicitly as follows:

dyi,t = max

{
0,max

xi,t

[(
xi,t
)1−α (

NtAte
ui
)α−φ−(r−μPt )xi,t]}dt. (17)

Introducing tokens changes the unit carry cost for holding the transaction
medium from rdt to

(
r−μPt

)
dt . Agents must hold a medium of exchange ( the

numeraire good in the tokenless economy, or token in the tokenized economy)
for dt to conduct transactions.11 During this holding period, in addition to
incurring the opportunity cost of forgone interests, agents in the tokenized
economy are exposed to the endogenous variation of token price. This feature
is absent in our tokenless economy.

1.2.3 Markov equilibrium. We study a Markov equilibrium with At , the
platform productivity, as the state variable whose dynamics generate the
rational-expectation agents’ information filtration. To focus on the dynamics

10 Proposition B1 in Appendix B shows that Pt >0 in equilibrium. Therefore, since Pt >0, we can uniquely infer(
μPt ,σ

P
t

)
from (μ̃t ,σ̃t ) or infer (μ̃t ,σ̃t ) from

(
μPt ,σ

P
t

)
, so these two sets of notations are equivalent.

11 In blockchain-based systems, the holding period naturally arises because forging the ledger of transactions takes
time. For example, consensus on the Bitcoin blockchain requires 10–11 minutes. This confirmation period is
necessary for the finality of transactions as shown by Chiu and Koeppl (2017).

10
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of user adoption and demand, we fix the token supply to a constant M .12 The
market-clearing condition is

M =
∫
i∈[0,1]

ki,t di, (18)

where for those who do not participate, ki,t =0.

Definition 1. A Markov equilibrium with state variable At is described by
agents’ decisions and equilibrium token price such that the token market-
clearing condition given by (18) holds and agents optimally decide to participate
(or not) and choose token holdings.

2. Solution: Tokenless Economy

In our tokenless economy, the numeraire good is the medium of exchange.
Conditional on joining the platform (i.e., xi,t >0), the agent chooses xi,t to
maximize (2), which implies:

(1−α)

(
NtAte

ui

xi,t

)α
=r , (19)

the marginal benefit from transaction is equal to the carry cost of forgone
interests on xi,t . Rearranging the optimality condition, we have

x∗
i,t =NtAte

ui,t

(
1−α
r

)1/α

(20)

and the maximized profit from participating on platform is then:

dvi,t =

[
NtAte

ui α

(
1−α
r

) 1−α
α

−φ
]
dt . (21)

An agent participates only when dvi,t given in (21) is positive. That is, agent
i participates if and only if ui≥uNTt , where uNTt is the endogenous threshold
given by:

uNTt =−ln
(
NNT
t

)
+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r

)
. (22)

Here, the superscript “NT ” refers to the equilibrium value of the “no-token”
(tokenless) economy. Given the distribution of ui , G(ui), the user base is thus
given by:

NNT
t =1−G(uNTt )

(23)

(22) and (23) jointly determine uNTt and NNT
t as functions of At .

12 This captures the majority real-world applications. More generally, blockchain technology allows supply to be
based on explicit rules. This can be accommodated in the model by adding in exogenous token inflation or
deflation rates that are orthogonal to the endogenous adoption and token demand dynamics.

11
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Proposition 1 (Tokenless Equilibrium). In the Markov equilibrium with At
being the state variable, the user base NNT

t and user type threshold uNTt
solve (22) and (23). Additionally, the user base, NNT

t , increases in At if
the cross-sectional distribution of agent type, G(u), has an increasing hazard
rate.

3. Solution: Tokenized Economy

Now consider a tokenized platform. As platform productivity At is the state
variable, all endogenous variables are functions of At in equilibrium. For
example, Pt =P (At ). By applying Itô’s lemma to Pt =P (At ), we obtain:

dPt =dP (At )=

[
P ′ (At )AtμA+

1

2
P ′′ (At )

(
Atσ

A
)2]
dt +P ′ (At )AtσAdZAt .

(24)
By matching the coefficients of dt and dZAt to (12), we obtain μPt and σPt as
functions of At :

μPt =μP (At )=
P ′ (At )
P (At )

Atμ
A+

1

2

P ′′ (At )
P (At )

(
Atσ

A
)2
. (25)

and

σPt =σP (At )=
P ′ (At )
P (At )

Atσ
A. (26)

With tokens, agent i’s decision on the real balance of medium of exchange,
inside the inner max operator in (17), is similar to (19) of the tokenless economy,
but with tokens, the effective carry cost is now r−μPt and the optimality
condition agents’ token balance is:

(1−α)

(
NtAte

ui

x∗
i,t

)α
=r−μP (At ), (27)

where the marginal benefit of transaction is equal to the carry cost.
Rearranging the equation, we have

x∗
i,t =NtAte

ui

(
1−α

r−μP (At )

) 1
α

. (28)

the maximized profit from participating on platform is then

max
xi,t

{
dvi,t +xi,tEt

[dPt ]

Pt

}
=

[
NtAte

ui α

(
1−α

r−μP (At )

) 1−α
α

−φ
]
dt . (29)

Substituting x∗
i,t given in (28) into (17), we obtain the following user-type

cutoff threshold:

ut =−ln(Nt )+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α

r−μP (At )

)
, (30)

12
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and because only agents with ui≥ut will participate, the user base is then given
by

Nt =1−G(ut). (31)

Equations (30) and (31) solve ut =u(At ) and Nt =N (At ) as functions of At .
Next, we derive an equilibrium token pricing formula. By using ki,t =xi,t /Pt

and substituting (28) into the market-clearing condition (18), we obtain:

Pt =
N (At )S (At )At

M

(
1−α

r−μP (At )

) 1
α

, (32)

where

St ≡S (At )=
∫ U

u(At )
eudG(u) (33)

is the sum of all participating agents’ eui , measuring the aggregate transaction
needs. Industry practices broadly corroborate the pricing formula (32). For
example, as proxies for Nt and St respectively, daily active addresses (DAA)
and daily transaction volume (DTV) are featured prominently in practitioners’
token valuation framework.13 But instead of heuristically aggregating such
inputs into a pricing formula, we derive the token pricing formula as equilibrium
outcome together with endogenous user adoption.

By substituting (25) into the market-clearing condition (32), we obtain

rP (At )=P ′ (At )AtμA+
1

2
P ′′ (At )

(
Atσ

A
)2

+(1−α)

(
N (At )S(At )At
P (At )M

)α
P (At ) .

(34)
While our token pricing equation (34) may appear similar to the Black-

Scholes-type differential equation for derivatives pricing, the underlying eco-

nomic force in our model is different. The “flow” term, (1−α)
(
NtStAt
PtM

)α
P (At ),

in (34) comes from rearranging the market-clearing condition (32) and reflects
the aggregation of agents’ transactional demand for tokens. The Black-Scholes
equation does not feature such a flow term. Moreover, the Black-Scholes
equation has a “theta” term—the variation of derivative value over time—
because of finite maturity, while (34) does not have such term because token
does not have maturity. Finally, platform productivity, At , the underlying
fundamental that drives token price, is not tradable, so the coefficient onP ′ (At )
is μAAt , the drift of At under the risk-neutral measure, instead of r in the case
of derivatives on tradable underlying assets whose risk-adjusted return must
be r .14

13 See, for example, the article on token valuation, Today’s Crypto Asset Valuation Frameworks, by Ashley Lannquist
at World Economic Forum (Blockchain and Digital Currency).

14 Appendix F2 compares in detail our token pricing equation (34) with the Black-Scholes derivative pricing
equation.

13

https://blockchainatberkeley.blog/todays-crypto-asset-valuation-frameworks-573a38eda27e?from=timeline
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The preceding equation is an ordinary differential equation (ODE) forP (At ),
the token price as a function of the state variable At . We solve this ODE
with the following boundary conditions on P (At ). The lower boundary is
given by:

lim
At→0

P (At )=0 . (35)

As At =0 is an absorbing state, the platform is not productive and no agent
participates. Therefore, the token price is zero.

When At is sufficiently high, all agents participate with probability one at
all s≥ t . In this case, the following Gordon Growth Formula for token price
holds:

lim
At→∞P (At )=P (At ) ≡ SAt

M

(
1−α
r−μA

) 1
α

, (36)

where the aggregate transaction needs, S, is given by

S≡
∫ U

U

eudG(u) . (37)

In our numerical solution, we choose a very large valueA, so that the following
value-matching condition hold at A:15

P (A)=P (A). (38)

Our method of solving continuous-time Markov equilibrium follows
Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), and Li
(2017).

The next proposition summarizes the equilibrium features of tokenized
economy.

Proposition 2 (Tokenized Equilibrium). Under the increasing hazard rate
condition for G(u) and other regularity conditions, the Markov equilibrium
with At as the state variable has the following properties:

1. Token price P (At ) solves the ODE (34) subject to boundary conditions
(35) and (38). μPt and σPt in the token price dynamics (12) are given by
(25) and (26), respectively.

2. Given the token price dynamics, agents participate if ui≥ut , given by
(30), and the user base is Nt =1−G(ut), which increases in At and μPt .

3. Conditional on participation, the value of agents’ token holdings x∗
i,t is

given by (28), which increases in At and μPt .

15 Additionally, when we perturb A by a small amount ε, our solution with the new upper bound is numerically
indistinguishable from the solution with A being the upper bound.

14
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Figure 1
Adoption-accelerating effect of tokens
The black solid arrows point to the increases of the expected future productivityA, which lead to higher transaction
benefits of tokens, and in turn, larger user bases N . The blue dotted arrows indicate that increases in user base
result in even higher transaction benefits due to the user network externality. Finally, more users drive up the
token prices P in future dates, which feed into a current expectation of price appreciation and greater adoption
(red dash arrows).

The tokenless and tokenized economies differ in agents’ means of payment.
As in the cash-in-advance models (e.g., Galí 2015; Walsh 2003), the cost of
conducting transactions comprises the forgone interests on the balance of the
transaction medium.16 In the tokenless economy, this carry cost is rdt , the
risk-adjusted return of any tradable assets. In the tokenized economy, this carry
cost is

(
r−μPt

)
dt due to the expected token return.17 Agents expect token

price to appreciate when they expect higher future productivity (and thus larger
user base and stronger token demand).18 Figure 1 illustrates the intertemporal
feedback mechanism from token price dynamics to user adoption.

In sum, tokens accelerate user adoption by capitalizing the expected user-
base growth into an expected token return, reducing the effective carry cost. In
contrast, the numeraire good as means of payment does not deliver any financial
return to offset the carry cost.19

16 Appendix F1 compares our model setup with those used by standard monetary models.

17 As shown by the optimality condition (27), tokens deliver a dominated risk-adjusted financial return, μPt <r , but
compensation arrives in the form of transactional benefits. Therefore, holding token is still optimal for users.

18 We note that a predetermined token supply schedule is important. If token supply can arbitrarily increase ex post,
then the expected token price appreciation is delinked from the productivity growth and the resultant increase
of user base and token demand. Predeterminacy or commitment is credibly achieved through the decentralized
consensus mechanism empowered by the blockchain technology. In contrast, traditional monetary policy has a
commitment problem (Barro and Gordon 1983).

19 Admittedly, an expected capital loss, μPt <0, discourages adoption by increasing the carry cost. In Appendix D,
we extend our model: agents can choose between the numeraire good and token as a transaction medium rather
than always use either the numeraire good (Section 3) or the token (Section 4). In this more general setting,
agents only use tokens when μPt >0, and, thus, by introducing tokens, platforms accelerate adoption by simply
expanding agents’ choice set, allowing them to pick the currency with the lowest carry cost.

15
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4. Roles of Tokens

In this section, we first present the planner’s solution and then use it as
a benchmark to analyze the roles of tokens in the tokenless and tokenized
economies.

4.1 The planner’s solution
The planner’s problem is subject to the same platform transaction technology
faced by users in the tokenless economy. However, unlike the individual users,
the planner solves the adoption problem by taking into consideration the positive
externalities of agents’ adoption decisions. The present value of aggregate
platform transactional benefits is given by

E

[∫ ∞

t=0
e−rt

∫
i∈Ut

dvi,t di

]
, (39)

where E[·] is the expectation under the risk-neutral measure and dvi,t is given
in (2).

We solve (39) as follows. First, we show that similar to the tokenless
economy, the set of users, Ut , is characterized by a cutoff threshold: Ut = {i :
ui,t ≥uPLt }, which implies Nt =1−G(uPLt ). This follows from that it is in the
planner’s interest to bring agents with higherui on the platform for any givenNt .
Second, solving the socially optimal demand, xi,t , boils down to maximizing
dvi,t agent-by-agent, yielding the solution given by (20). By aggregating dvi,t
over all participating agents, we obtain∫
i∈Ut

[
αNtAte

ui

(
1−α
r

) 1−α
α

−φ
]
di =Nt

[
α

(
1−α
r

) 1−α
α

At

∫
i∈Ut

eui di−φ
]
.

(40)
As (40) is linear in Nt , the planner chooses full participation by setting Nt =1,
if the platform productivity is sufficiently high, that is, if and only ifAt >APL,
where

APL=φ

[
α

(
1−α
r

) 1−α
α

S

]−1

(41)

and S is given by (37).

4.2 User adoption growth
Figure 2 reports the adoption dynamics from our numerical solutions for the
tokenized economy, the tokenless economy, and the planner’s problem. The
blue solid line in Figure 2 shows that the user baseNt in the tokenized economy
is an S-shaped function of ln(At ).20 When the platform’s productivity At is

20 The curve starts at ln(At )=−48.35 (At =1e−21), a number we choose because it is close to the left boundary,
zero. The curve ends at ln(At )=18.42 (At =1e8), the touching point between P (At ) and P (At ).

16
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Figure 2
S-shaped user adoption curve in tokenized and tokenless economies
This graph shows that the use base, Nt , in the tokenized economy (blue solid curve) and tokenless economy (red
dash line) as functions of the logarithmic productivity ln(At ). The gray scatterplot is based on data of normalized
active user addresses (details in Appendix C). The vertical green dash line marks the level of productivity, beyond
which the planner chooses full adoption, and below which the planner chooses zero adoption.

low, the user base Nt barely responds to changes in At . In contrast, when At
is moderately high, Nt responds much more to changes in At . The growth of
the user base feeds onto itself: the more agents join the ecosystem, the higher
transaction surplus each derives. User adoption eventually slows when the pool
of newcomers is exhausted. We also plot the scattered data points of active
user addresses, our proxy for Nt , that guide our choices of parameter values.
In Appendix C, we detail the parameter choices and data sample construction.

By comparing the adoption dynamics in the tokenized and tokenless
economies, we see that the tokenized economy has faster adoption than the
tokenless economy in Figure 2. Introducing tokens effectively lowers the carry
cost from rdt to (r−μPt )dt , because, under the current parameter values,
μPt >0. Tokens are of limited supply and are required for transactions, users
expect tokens to appreciate when they expect adoption to grow.

We also plot in Figure 2 the planner’s solution via the dash vertical line at
ln
(
APL

)
, which is given by (41). Recall that the planner chooses full adoption

if At ≥APL and zero adoption otherwise. Relative to the planner’s solution,
a tokenless economy features underadoption as its Nt is below that of the
planner’s solution (100%) when At ≥APL.21 This is because agents do not
internalize the positive network externalities of adoption.

21 Proposition B2 in Appendix B shows that ANT , the lowest value of At , where NNTt >0, is below APL.

17
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Introducing tokens lifts the adoption curve relative to that of the tokenless
economy but is still below the full adoption level for At ≥APL. For At <APL,
though not sharply visible in the figure, the tokenized economy features a
positive level of adoption while the planner chooses zero adoption. Here by
introducing tokens, we change the payment technology that is accessible to
platform users. Even for the planner, requiring agents to hold the means of
payment incurs a carry cost of rdt per numeraire value, but when tokens are
available (and in the numerical solution, μPt >0), the carry cost is reduced to(
r−μPt

)
dt , and thus, the adoption level is higher.22

For tokens to accelerate adoption, there must be a market where tokens
are traded and agents can form their expectations of token price change, μPt .
Therefore, tokens reduce the carry cost of payment by capitalizing the future
growth of user base, and this mechanism does not exist in the planner’s economy
where agents cannot trade tokens and decide on xi,t voluntarily.

Among the purported reasons for this common practice of introducing
tokens, entrepreneurs foremost believe that using tokens can “bootstrap” the
community. Heuristically, practitioners have argued that tokens help grow the
ecosystem and allow all participants to benefit from the growth prospect of
platforms, although no formal analysis has been provided. Our paper exactly
examines this argument formally.

4.3 User adoption volatility
In equilibrium, all endogenous variables are functions of At , the state variable,
including Nt =N (At ). Therefore, the dynamics of Nt can be written as

dNt =μ
N
t dt +σ

N
t dZ

A
t , (42)

where both the drift μNt =μN (At ) and volatility σNt =σN (At ) are functions of
At .23 We thus plot σNt against Nt in panel A of Figure 3. Doing this allows us
to compare σNt of the two economies at the same stage of adoption Nt .24 Both
curves start and end at zero, consistent with the S-shaped adoption dynamics
in Figure 2. A key result is that the tokenized has a lower σNt . The intuition is
as follows.

First recall that Nt increases in At (through the transactional benefit) and
μPt (through the carry cost reduction) as shown in Proposition 2. Therefore,
to understand σNt , that is, how Nt responds to shocks, we examine how At
and μPt respond to shocks. Consider a negative shock, dZAt <0. The platform

22 When comparing token-based and traditional payment systems, we focus on users’ carry cost of holding means
of payment. In reality, the traditional payment systems are operated by third parties, such as banks, and therefore
feature other costs (e.g., the systemic risk generated by interbank networks in Denbee et al. (2016)).

23 Proposition B3 in Appendix B solvesσNt for the tokenized and tokenless economies and analytically characterizes
how tokens affect the user-base volatility.

24 The adoption is either zero or full in the planner’s solution, so its volatility is not economically interesting.

18
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A B

Figure 3
User adoption volatility reduction effect
Panel A plots the volatility of user base, σNt , in the tokenized (blue solid curve) and tokenless (red dotted curve)
economies as functions of Nt , respectively. Panel B shows that the expected token return under the risk-neutral
measure,μMt , as a function of logarithmic productivity, ln(At ). The black dotted line represents the (risk-neutral)
expected growth rate of At , μA.

productivity is thus lower, reducing the transactional benefit and henceNt . How
μPt responds to dZAt <0 depends on the long-run prospect of adoption.

A smaller current user base implies a greater potential of future adoption
(i.e., 100%−Nt ) because under the current parameter choices for our numerical
solution,μA>0 andNt reaches 100% in the long run. Therefore, agents expect
a stronger future token demand and a stronger token price appreciation (i.e., an
increase ofμPt ). In sum, while the decrease ofAt reducesNt , the increase ofμPt
dampens the reduction, makingNt less responsive to the shock. This buffering
effect of μPt is absent in the tokenless economy, so its user-base volatility is
higher.

Panel B of Figure 3 shows that μPt declines in ln(At ), which generates the
previously discussed user-base stabilizing effect of tokens. WhenAt (and thus,
Nt ) is low, token price is expected to increase at a faster rate, reflecting the
potential future adoption. As At and Nt grow, the pool of agents who have not
adopted (i.e., 100%−Nt ) shrinks, so the expected token appreciation declines.

We can also compare σNt of the tokenized and tokenless economies over
different values of At instead of Nt . For the same level of At , as the tokenized
economy has a largerNt , it is likely to have a larger variation inNt (i.e., a larger
σNt ) than the tokenless one. Therefore, instead of comparing σNt , we compare
σNt /Nt , the volatilities of user-base growth rate (i.e., dNt/Nt ). Proposition B4
in Appendix B2 shows that when the two economies have the same productivity,
the tokenized economy has a smaller volatility of user-base growth rate.

This user-base stabilizing effect also holds under μA<0, which implies a
long-run adoption level of 0%. When Nt declines due to the decrease of At ,
μPt increases and dampens the reduction of Nt because the potential of token

19
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demand (and price) to decline further (i.e., Nt−0%) is smaller. In sum, μPt is
a countercyclical force in the tokenized economy: it increases when dZAt <0
and decreases when dZA>0, dampening Nt ’s to shocks.

So far, we have only considered a constant drift of At . The user-base
stabilizing effect of tokens may not hold under an alternative specification
of productivity dynamics. Consider a time-varying drift of At that follows a

mean-reverting process and loads on a standard Brownian motion shock dZμ
A

t ,

dμAt =ψ
(
μ̄A−μAt

)
dt +σμ

A
dZ

μA

t , (43)

where ψ>0. Then the Markov equilibrium shall have two state variables, At
andμAt . Consider the scenario where the realized productivity shock is negative:

dZAt <0. As long as dZμ
A

t and dZAt are positively correlated, μAt is expected
to decline. Foreseeing a slower growth of productivity, user base, and token
demand, agents expect a decline of μPt , and thus, become more reluctant to
participant. This amplifies the initial negative impact of dZAt <0 on Nt via At .
Because of the lack of empirical studies on tokenized platforms’ fundamentals,
our modeling ofAt is guided by parsimony and how the model’s adoption curve
fits the data (see Appendix C). Our discussion of alternative μAt specifications
suggests that whether tokens amplify or dampen the response ofNt to variations
of platform fundamentals sheds light on the underlying dynamics of platforms’
fundamentals.

4.4 Token price dynamics under endogenous user adoption
In this section, we discuss how endogenous user adoption leads to nonlinear
price dynamics that are broadly consistent with empirical observations.

The token price, P (At ), and user base, N (At ), are functions of platform
productivity, At , the state variable. Figure 4 plots the joint dynamics of these
two key observables. Token price sharply increases with adoption in the early
stages, changes gradually in the intermediate stage, and speeds up again once
the user base reaches a sufficiently high level. The two price run-ups in the early
and final stages of adoption correspond to the slow user-base growth in these
stages relative to token price changes. Consistent with our model’s prediction,
Liu and Tsyvinski (2018) find that the value of cryptocurrencies is significantly
correlated with the growth of user networks.

This figure helps us understand the cross-sectional differences in token
pricing. Consider blockchain platforms categorized in term of their adoption
stages: early, intermediate, and late. For two blockchain platforms in the early
stage, a small difference ofNt between them can generate a very large difference
in the market capitalization of tokens (PtM), as seen in Figure 4. Essentially the
same result holds in the late stage. In contrast, in the intermediate stage, even a
large difference ofNt between the two platforms only yields a small difference
of ln(Pt ). Shams (2019) documents that user network externality is a key factor
driving the cross-sectional variation in cryptocurrency price dynamics.

20
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Figure 4
Token price dynamics over adoption stages
This graph plots the log token price over adoption stages, Nt (blue solid curve), and data as scattered dots.

Appendix E provides more asset pricing predictions. In Appendix E.1, we
explore the implications of endogenous user adoption on the volatility of
token price. The network effects amplify the transmission of At shocks to
the transactional benefits of token and its price. The mechanism is related to
the literature on strategic complementarity and fragility (e.g., Goldstein and
Pauzner 2005). So far, our analysis has assumed that platform productivity
shocks command a constant risk premium. In Appendix E.2, we follow Pástor
and Veronesi (2009) by modeling the correlation between the SDF shock and
At shock as an increasing function of Nt , which captures the rising systematic
risk of widely adopted platforms. The resultant Nt -dependent risk premium
induces a bubble-like behavior of the token price, namely, a gradual run-up
followed by an eventual decline.

5. Extensions and Discussions

5.1 Subsidy as an alternative solution to user adoption
In this subsection, we compare tokens with a traditional alternative
solution to network adoption—user subsidy (Rochet and Tirole 2006)—and
discuss the associated technical and financial considerations that affect the
implementation.

Let κ denote the lump-sum subsidy that the platform gives to a user for
platform participation per unit of time. Given this subsidy, agent i solves the
following problem at each t :

dyi,t =max

{
0,max
xi,t>0

(
κdt +dvi,t

)}
, (44)
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Figure 5
User subsidy versus using token
This figure plotsNt for the tokenized economy (blue solid curve), the tokenless economy (red dotted curve), and
the tokenless economy with subsidy κ =0.5φ (green dash curve).

where dvi,t is given in (2). Without this subsidy, this objective function is the
same as (2) in the tokenless economy. By combining the subsidy κ with the
participation cost φ, we can equivalently interpret introducing κ as reducing
the participation cost from φ to φ−κ .

Panel A of Figure 5 compares the adoption dynamics of token-based
economy (the solid blue curve), the tokenless economy (the dotted red curve),
and the tokenless economy with subsidy κ =0.5φ (the dash green curve). Here
we allow a sufficiently generous subsidy that effectively reduces agents’ cost
of participation by half. In this case, subsidy lifts the adoption curve, but it is
still below what tokens can achieve.

5.1.1 Charging fees on profits. One question remains: How to finance the
subsidies paid to users? Subsidies are often made possible by charging fees to
users. One way to introduce fees in our analysis is via a standard proportional
tax, τt , which can be time-varying and state-dependent. Given τt , agent i solves
the following modified problem:

dyi,t =max

{
0,(1−τt )max

xi,t

[(
xi,t
)1−α (

NtAte
ui
)α
dt−(φ−κ)dt−xi,t rdt

]}
.

(45)
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As the fee is charged on the maximized profit, introducing τt does not affect
agent i’s choice of xi,t and adoption decision.25 The fee charged on users, τt >0,
can be set to finance the subsidy:

τt

∫
ui≥ut

max
xi,t>0

[
κdt +

(
xi,t
)1−α (

NtAte
ui
)α
dt−φdt−xi,t rdt

]
dG(ui)=κNtdt,

(46)
where the left side gives the total fees collected from users and the right side is
the total subsidy to users. For τt to be feasible, it has to be smaller than 100%.
In the early stage whereAt is sufficiently low, the τt implied by the subsidy can
be greater than 100% and thus infeasible. In contrast, tokens do not have this
problem. The adoption-accelerating effect is active even when At is extremely
low. In fact, as shown by panel B of Figure 3, the expected token return, μPt , is
larger whenAt andNt are smaller, and thereby, the future potential of adoption,
that is, 100%−Nt , is larger. This is one advantage of tokens over subsidies.

Second, implementing this tax subsidy scheme can be more difficult than
tokens. Agents may not truthfully report their profits from platform activities
because agents’ type, ui , can be private information. Incomplete information
is a standard challenge recognized by studies on optimal taxation in the public
finance literature (e.g., Mirrlees 1971). Moreover, our analysis assumes that
agents receive subsidy only if they participate. If agents can obtain the subsidy
and fake participation, the subsidy becomes a pure outflow of the platform
and does not induce adoption. While by improving transparency, blockchain
technology can potentially mitigate but cannot fully eliminate these frictions.
Therefore, from an implementation perspective, token is a more operational
mechanism to induce early adoption.

5.1.2 Charging fees on xi,t . The platform may also directly charge fees on
the value of users’ holdings of means of payment:

dyi,t =max

{
0,max
xi,t>0

[(
xi,t
)1−α (

NtAte
ui
)α
dt−(φ−κ)dt−xi,t rdt−xi,t τtdt

]}
.

(47)
Here in addition to the subsidy term which effectively lowers the participation
cost to (φ−κ)dt , the fee, τtxi,t , effectively increases the carry cost from rdt to
(r+τt )dt . In addition, the platform also faces a new budget constraint:

τtdt

∫
ui≥ut

xi,t dG(ui)=κNtdt. (48)

Here τt distorts agents’ choice of xi,t . Although easier to implement, this
alternative fee subsidy is subject to the same problem we discussed earlier:
it is only feasible when At is sufficiently large. In contrast, tokens accelerate
adoption across all values of At .

25 If the maximized profit is positive when τt =0, it is still positive when τt ∈ (0,1) and agent i still participates. This
resembles the standard result that firms are neutral to taxes on profits.
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5.1.3 Intertemporal fee subsidy scheme. So far, we have only considered
static fee subsidy scheme. Dynamic schemes are more flexible, but their
applicability may be significantly compromised by financial constraints. An
intertemporal transfer, subsidizing users in earlier stages (i.e., when At is
low) and charging fees in later stages (i.e., when At is high), requires external
financing to fund early-stage subsidy. Therefore, financial frictions may arise
because of asymmetric information on the flow of fees and platform managers’
moral hazard in administrating the fee-based payouts to investors.

5.1.4 Subsidies under incomplete information. Agents’ adoption decisions
feature strategic complementarity, but given At and μPt , the assumption of
monotonic hazard rate of G(u) guarantees a unique Nt >0 in equilibrium (see
Proposition 2). Once we relax this assumption, there can exist multiple pairs
of Nt and ut that satisfy (30) and (31). To select the equilibrium user base,
one may take a global game approach (e.g., Carlsson and van Damme 1993;
Goldstein and Pauzner 2005; Morris and Shin 1998). For example, agents may
receive noisy and correlated signals of platform productivity.26 In this case,
user subsidies, by effectively changing the participation cost, can potentially
improve the coordination outcome.27 A fruitful direction of future research is
to investigate how tokens and subsidies can be jointly introduced to stimulate
adoption and address coordination failure.

5.1.5 Subsidies and user-base volatility. Finally, we compare the impact
of tokens and subsidies on the user-base volatility. In Section 5.3, we
show that tokens reduce the user-base volatility. Alternatively, platforms
may conduct countercyclical subsidies, that is, increasing subsidies following
negative shocks, while decreasing subsidies following positive shocks. This
is analogous to the countercyclical government expenditures as automatic
stabilizers. However, to implement such state-contingent subsidy schemes,
external funds are likely to be necessary because precisely when At and the
aggregate profits (or tax base) on the platform are low, subsidies are high and
have to be externally financed. Therefore, the effectiveness of this alternative
mechanism depends on how severe the financing frictions are. In comparison,
the stabilizing effect of tokens is always at work without requiring external
financing.

5.2 Scalability and decentralization
So far, our analysis applies to both centralized and decentralized platform
settings. Users in both settings eventually fully adopt as platform productivity

26 One may assume that productivity is immediately observed after agents make adoption and token holding
decisions, so the model features a tractable, static form of incomplete information.

27 This is analogous to government inventions that affect the parameters of individuals’ decision-making (e.g.,
Bebchuk and Goldstein 2011).
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becomes sufficiently high. To provide a richer context for the adoption problem
and blockchains’ potential we next highlight a key trade-off between scalability
and decentralization, which arises from a salient feature of blockchains:
the (relatively) decentralized nature of record-keeping. Users value full
decentralization, which is often costly for the platform. To ease our exposition
of this trade-off, we focus on a tokenless economy.28

5.2.1 Generalizing agent’s payoff. Specifically, we generalize the agent’s
flow payoff (conditional on participation) given in (8) to account for the effects
of decentralization and scaling as follows:

max
xi,t>0

[
dvi,t +F (Nt,xi,t ;θ,,N̆ )dt

]
. (49)

Here, the new term, F (Nt,xi,t ;θ,,N̆ ), captures the agent’s preference
captured by parameter for decentralization captured by parameter, as well
as her disutility from congestion captured by parameter θ and from consensus
delays (which is increasing in decentralization ).

We only requireF to be weakly increasing in θ and N̆ and weakly decreasing
in Nt , for a given level of decentralization . For illustration, we consider:

F (Nt,xi,t ;θ,,N̆ )=θ−c[Nt−N̆ ]+ −xi,th(), (50)

where h′()>0. The first term is the agent’s additional utility flow from
her preference for decentralization, for example, because of the reduction of
single points of failure or intermediary rent (Chen, Cong, and Xiao 2019).
The second term describes disutility from congestion when the user base is
sufficiently large (e.g., Easley, O’Hara, and Basu 2019; Huberman, Leshno,
and Moallemi 2019). This term captures the potential negative network effect
for a relatively decentralized blockchain. The last term reflects that a more
decentralized network is more costly for an agent with a larger choice of xi,t .
This is because the more decentralized a network is, the longer it takes to reach
consensus (e.g., Hinzen, John, and Saleh 2020).

5.2.2 Adoption trajectory. Conditional on participating on the platform, the
agent’s optimal holdings of the medium of exchange in units of the numeraire
good, xi,t , satisfies the first-order condition:

(1−α)(xi,t )
−α (NtAteui )α−r−h()=0 ⇒ x∗

i,t =NtAte
ui,t

(
1−α
r+h()

)1/α

.

(51)

28 The tokenized economy features similar trade-offs, but the endogenous time variation of μPt precludes a pure
analytical characterization.
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Therefore, an agent would participate if the maximized profit is nonnegative:

NtAte
ui α

(
1−α
r+h()

) 1−α
α

−φ+θ−c[Nt−N̆ ]+ ≥0. (52)

By following essentially the same argument in Section 2, we obtain the
following equilibrium condition for Nt :

1−Nt =G
(

−ln(Nt )+ln

(
φ−θ+c[Nt−N̆ ]+

Atα

)
−
(

1−α
α

)
ln

(
1−α
r+h()

))
(53)

Comparing (53) with (23), we notice the effects of θ , N̆ , and h(). An
increase in θ or N̆ weakly reduces the right side of (53), which implies that the
equilibrium Nt has to weakly increase. In other words, agents’ preference for
decentralization and efforts to improving scalability (such as increasing block
size without reducing network security) would positively affect the adoption
trajectory. The effect of decentralization on adoption trajectory is ambiguous
because on the one hand, agents prefer decentralization, but on the other hand, an
increase in decentralization might create a large enough increase in consensus
delay so that, in the last term withinG(·), the effective carry cost increases and,
thus, adoption drops.

5.2.3 Designer’s problem and scale-decentralization trade-off. We recog-
nize that it is technologically infeasible or economically very expensive to
achieve high decentralization and large scale at the same time. For example,
reaching consensus on a decentralized/permissionless blockchain (across the
nodes of the record-keeper network through costly protocols, such as proof-
of-work) takes time, a fact that inevitably constrains the transaction processing
scale.

To model this trade-off, we let the designer choose a system with
decentralization  and scalability N̆ . To do so, the designer incurs a cost
C(,N̆;a), which is increasing in  and N̆ . Here, a measures her attribute,
For example, Visa. Inc is very efficient at conducting large-scale business
transactions (large a), whereas Ethereum is known for well-designed consensus
protocols that attract users who value decentralization (small a). Naturally, their
different attributes lead to different choices of scalability and decentralization.

Specifically, the designer chooses the optimal N̆∗ and ∗ which maximize
the following:

∫ ∞

t=0
e−rtNt

⎡⎣α( 1−α
h()+r

) 1−α
α

At

∫
i∈Ut

eui di−φ+θ−c[Nt−N̆ ]+

⎤⎦dt−C(,N̆;a),

(54)
where the first term is the present value of aggregate transaction surplus (see

(39) and (40)), and the last term reflects the designer’s cost.
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In practice, the marginal cost of increasing the scalability/capacity N̆ , ∂C

∂N̆
,

is lower for a more reputable traditional designer (higher value of the attribute
a in our convention, think about VISA). In other words, ∂2C

∂a∂N̆
<0. Similarly,

the marginal cost of increasing the decentralization , ∂C
∂

, is lower for an
entrant with greater expertise at designing decentralized protocols (lower
value of the attribute a in our convention, think about Ethereum). In other
words, ∂2C

∂a∂
>0. Moreover, current technology dictates that it is more costly

to scale business on a decentralized system than on a centralized system(
∂2C

∂N̆∂
≥0
)

.29

Concerning the ideal scale-decentralization choice, we first note that (54)
exhibits negative cross-partial in a and , positive cross-partial in a and N̆ ,
and weakly negative cross partial in N̆ and. Applying monotone comparative
statics results, for example, theorem 4.1 in Athey, Milgrom, and Roberts (1998),
we conclude that the designer’s optimal ∗ is decreasing in a, while the
optimal N̆∗ is increasing in a. In other words, a more reputable traditional
designer (bigger a) optimally implements a system that is bigger in scale but
less decentralized.

We hope that our analysis of the trade-off between scalability and
decentralization in this section offers a broader context of adoption problem and
economic insights for the ongoing research in computer science on platform
adoption and blockhain scalability.

6. Conclusion

We provide a tractable dynamic equilibrium model of token pricing and
platform adoption. Platforms create value by supporting specific economic
activities and platform tokens derive value by enabling transactions among
heterogeneous users. As a result, token value reflects users’ endogenous
participation and the associated network externality effects. Endogenous user
base also plays a critical role in explaining the cross-section variation of token
pricing, the dynamics of token price volatility, and the run-up and crash of token
prices.

By comparing platforms with and without tokens, we show that introducing
tokens lowers the effective carry cost of conducting platform transactions and
hence accelerates the adoption of productive platforms. The introduction of
tokens also reduces the volatility of the user base, because agents’ expectations
about long-term growth in the token’s value weaken the impact of temporary
productivity shocks on the user base.

29 More generally, to capture these observations, we can assume that C has strictly increasing differences in a and
, strictly decreasing differences in a and N̆ , and increasing differences in N̆ and .
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A key assumption in our model is that the token market is fully liquid.30

However, the token market may be illiquid especially at early stages of platform
adoption. We leave incorporating token market illiquidity into our model for
future research. Another interesting extension of our model is to combine
our analysis of user activities with the design of platform infrastructure (e.g.,
blockchain protocol design in Fanti, Kogan, and Viswanath 2019). Finally,
tokens can play two roles. It serves as means of payment among platform
users, and platforms can issue tokens to compensate resource contributors and
reward their founders (Token2).

Appendix A. Transaction Surplus and Flow Utility
In this section, we provide theoretical foundations for our specification of platform transaction
surplus in (2). We first present a general model based on transaction costs that applies to all platform
tokens (not necessarily blockchain-based), which essentially captures a form of convenience yield
(see, e.g., Cochrane, 2018), and then discuss a case that is specific to blockchain platform. Here,
our goal is to illustrate practical settings that motivate our specification, not microfound every
application scenario.

A.1 A Model of Convenience Yield. Agents have investment opportunities that occur at Poisson
arrival times, {Tn}+∞

n=1, with time-varying and agent-specific intensity, λi,t . At a given Poisson time,
Tn, agent i is endowed with a technology, ωiF (·), that transforms labor into goods, and is matched
with another agent who can supply the required labor input. Agent-specific productivity is captured
by ωi . To simplify the exposition, we assume that the labor supply has a constant marginal cost
of one, and the supplier breaks even, so the full trade surplus is enjoyed by agent i. This setup of
uncertain lumpy transactions follows those of Alvarez and Lippi (2013) and Li (2018).

Agent i’s labor demand, denoted by h, is not restricted by the real balance of token holdings,
Ptki,Tn−, where ki,Tn− denotes the units of tokens carried to Tn and we make token price explicit in
the expression because we want to start with microfounding the utility flow in a tokenized economy.
Since the focus of this paper is not on financial constraints, we allow the agent to borrow dollars (an
instantaneous loan) at zero cost, so hmay exceed agent i’s wealth at the moment. The production is
done immediately, and the loan is repaid immediately by the goods. So, given a competitive credit
market, the loan rate is zero.

The lumpy payment for labor incurs a transaction cost that is proportional to the total payment
value, δh (δ>0), but using tokens as means of payment save the transaction cost by U

(
Ptki,Tn−

)
(U ′>0, U ′′<0) because agent i does not need to exchange dollars for tokens, the required means
of payment on the platform.

Agent i maximizes the investment profit, which is a jump in wealth,

max
h
ωiF (h)−h−(δh−U (Ptki,Tn−

))
, (A.1)

where the last term is the transaction cost. The optimal labor demand, h∗, is given by

ωiF
′(h∗)=1+δ, (A.2)

so the marginal value of production is equal to the marginal cost of labor plus the transaction cost,
δ. We can substitute the constant h∗ into the investment profit to have

ωiF
(
h∗)−(1+δ)h∗ +U

(
Ptki,Tn−

)
. (A.3)

We assume that ωi is sufficiently high so h∗ ≥Ptki,Tn−. The conversion between the local currency
(token) and other assets can be costly, especially when a lumpy transaction is required within a

30 Cryptocurrency exchanges help create liquidity, but may suffer from market manipulations such as wash trading,
as discussed in Cong et al. (2020).
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short period of time. By holding tokens, agents save such costs. Linking transaction costs to the
monetary value of assets has a long tradition in economics (Baumol 1952; Tobin 1956; Duffie
1990).

Therefore, at time t , agent i has an expected gain of λi,tU
(
Ptki,t

)
dt by holdings ki,t units of

tokens for dt . To obtain a tighter analytical characterization of the equilibrium, we specify λi,t =
(NtAt eui )

α , α∈ (0,1). A larger community (Nt ) makes it easier to find transaction counterparties.
A higher platform quality (At ) reflects a more efficient matching mechanism or the fact that the
economic transactions supported by the platform are more popular. And ui captures agent-specific

transaction needs. We specify U
(
Ptki,t

)
=χ
(
Ptki,t

)1−α
, so the expected transaction costs saved

are
λi,tU

(
Ptki,t

)
dt =

(
NtAt e

ui
)α (
Ptki,t

)1−α
χdt. (A.4)

In the following we set χ =1 because its scaling effect can be subsumed by the level of At .
We may reinterpret h as goods or services other than labor, and the investment profit as a burst of

consumption or utility value from transactions. The foundation of this specification of trade surplus
is twofold: (1) the arrival of transaction opportunities depends on the user base, platform quality,
and agent-specific factors, and (2) holding tokens on the tokenized platform save transaction costs
for lumpy payments.

Note that the same setup can also generate the trade surplus for a tokenless economy where the
transaction is settled using the numeraire good, so in the main text, we assume the same functional
form of transaction surplus. In a tokenless economy, agents hold assets that yield a risk-adjusted
return of r and dollars’ worth of xi,t . The transaction cost, δh, is thus the cost of immediately
exchanging a lumpy chuck of assets for cash. Holding cash saves this cost by U

(
xi,t
)
. If external

financing is required, the per unit cost of transaction, δ, also captures the difficulty to raise funds in
lumpy amounts. The concavity ofU (·) can be motivated by models of cash holdings that recognize
cash carry costs and external financial constraints (e.g., Bolton, Chen, and Wang 2011).

A.2 Staking Tokens. While the above transaction-cost based model applies to platform tokens
that serve as means of payment, we next give another theoretical foundation to illustrate that (a)
although we focus on tokens that explicitly serve as means of payment on platforms, our theory
more generally applies to all tokens that provide users utilities specific to the underlying platform
technology, and (b) blockchain-based platforms provide novel forms of transaction surplus from
holding tokens on platforms and further motivate our specification of token flow utility.

Many blockchain-based platforms feature users providing service to peers to make a profit.
For example, Filecoin, Golem, Storj, and Elastic all have “storage miners” who assist clients in
storing digital files in exchange for native tokens. Oftentimes, storage miners have to “stake” native
tokens (i.e., post it as collateral) in order to win the chance to service clients. In fact, staking is a
common practice on blockchain platforms to encourage value-creating activities among their users.
It goes beyond validating transactions and producing blocks within consensus mechanisms, such as
Proof-of-Stake (POS) and Distributed Proof-of-Stake (DPOS). In general, holding/staking tokens
may enable network participants to potentially receive access to exclusive features of the platform,
partake of business activities, or receive status recognition. For example, OmiseGO (OMG), the
first ERC20 tokens on Ethereum sold via an ICO to reach unicorn status (US$1 billion market
cap) in August 2017 (coinmarketcap.com), has validators deposit OMGs in staking contracts to
validate transactions. OmiseGo selects the validator based on who has staked the highest token to
validate the transaction and it performs the task. Depending on the performance of the validator,
the validator will receive either rewards or penalties. Filecoin, VentureFusion, Numerai, etc., all
feature some forms of staking.

Now suppose a storage miner on the platform has a realized storage space euiα , and is waiting
to be matched with clients demanding decentralized storage (similar to a labor-market search-and-
matching scenario). Potential client demand (analogous to the number of job seekers) is proportional
toNt , the user base of the platform, whereas the matching effort of the storage miner is proportional
to staking amount xi (similar to job vacancies). Then if the platform has a matching efficiency of

29



[16:08 28/8/2020 RFS-OP-REVF200095.tex] Page: 30 1–51

The Review of Financial Studies / v 00 n 0 2020

Aα , a matching function with constant return to scale (e.g., Pissarides, 2000) would yield the
storage miner a payoff of

euiαAαNα
t (Ptki,t )

1−α =(Ptki,t )
1−α(ANte

ui )α, (A.5)

which exactly gives the surplus flow in (2). The storage miner then takes back the same number of
tokens staked after providing the service for dt .

In the case above, it is crucial that a service provider (storage miner in the case of Filecoin)
needs to stake/hold native tokens to have a chance of being matched with a customer. If she can
match with a customer and instantaneously exchange tokens for the numeraire good, the velocity
of native tokens can be infinite, resulting in price indeterminacy.

A.3 Other Tokens. While our focus is on a majority of tokens whose value derives from the
productivity of underlying platforms and user network effects, we acknowledge that in reality, there
exists a variety of tokens that serve purposes other than facilitating platform-specific transactions.
Digital currencies developed by central banks serve general payment purposes. They are typically
not tied to specific user networks, and their adoption is driven by policy and legal decisions. There
are also tokens that enable the sharing of future corporate revenues or the distribution of products
and services. Such security tokens can be valued using traditional discounted cash flow models
and are therefore not our focus.

Moreover, our model does not capture the more complex interdependence of platforms and
their tokens. For example, Litecoin and Dogecoin are “altcoins,” which are variants of the original
open-sourced Bitcoin protocol to enable new features. Therefore, the productivity of their platforms
significantly inherits from the Bitcoin blockchain. Other examples include “AppCoins,” which
entrepreneurs often sell through the initial coin offerings (ICOs). AppCoins are developed for
specific applications (e.g., Gnosis and Golem) and are built on existing blockchain infrastructures
(e.g., Ethereum or Waves).

Appendix B - Proofs

Lemma B1. Given μPt and a sufficiently high productivity, that is, At >A
(
μPt
)
, and we have a

unique nondegenerate solution,Nt >0, andut >U for (30) and (31) ifG(u) has an increasing hazard
rate. The user base, Nt , increases in μPt and At . Agent i participates when ui ≥ut . Conditional
on participating, the numeraire value of agent i’s optimal token holding, x∗

i,t , is given by (28), and

increases in At and μPt .

Proof of Lemma B1. (30) and (31) jointly determine the user base Nt given At and μPt . First,
we note that Nt =0 is always a solution. Here we focus on the nondegenerate case, that is, Nt >0.
Fixing At and μPt , we consider a response function R

(
n;At ,μPt

)
that maps a hypothetical value

of Nt , say n, to the measure of agents who choose to participate after knowing Nt =n:

R
(
n;A,μPt

)
=1−G(u(n;A,μPt ))
=1−G

(
−ln(n)+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μPt

))
, (B.6)

Before we start, for any At =A>0, we define the value of its response function at n=
0: R

(
0;A,μPt

)
=0. This is consistent with that given a zero user base, each agent derives

zero transaction surplus from token holdings and chooses not to participate. Note that
limn↓0R

(
n;A,μPt

)
=0, so the response function is continuous in n. As depicted in Figure B.1,

the response curve originates from zero (the degenerate case).
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Figure B.1
Determining the user base

This graph shows the aggregate response of users’ adoption decision, R
(
n;At ,μPt

)
, to different levels of Nt =

n∈ [0,1], given At and μPt .

First, we show that givenμPt , there existsA such that forAt =A>A, its corresponding response
curve,

R
(
n;A,μPt

)
=1−G(u(n;A,μPt )) (B.7)

=1−G
(

−ln(n)+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μPt

))
, (B.8)

crosses the 45o line at least once in (0,1], and for any value ofAt =A<A, the response curve never
crosses the 45o line in (0,1]. Later in our numerical solution, we verify that this inequality holds at
all values of At . Given μPt , we define a mapping, A(n), from any equilibrium, with nonzero value
of user base, n∈ (0,1], to the corresponding value of At , that is, the unique solution to

1−G
(

−ln(n)+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μPt

))
=n, ∀n∈ (0,1]. (B.9)

This mapping is a continuous mapping on a bounded domain ⊆ (0,1]. Then by the Least-Upper-
Bound-Property of real numbers, the image set of this mapping, {A(n),n∈ (0,1)}, has an infimum,
which we denote byA. Now, forAt =A, consider a n

(
A
)∈ (0,1] such that (B.9) holds. For anyA>

A, the left-hand side (LHS) of (B.9) is higher than the right-hand side, that is, R
(
n
(
A
);A,μPt )>

n
(
A
)
, so that the response curve of At =A is above the 45o line at n

(
A
)
. Next, because the

response function R
(
n;A,μPt

)
is continuous in n and R

(
1;A,μPt

)≤1 by definition in (A8); that
is, it eventually falls to or below the 45o line as n increases, there must exist a n(A)∈ (0,1] such
that when at At =A, (B.9) holds by the Intermediate Value theorem. Therefore, we have proved
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that for any At =A>A, there exists a nonzero user base. Throughout the proof, we fix μPt , so A is
a function of μPt .

After proving the existence of Nt >0 for At ∈
[
A,+∞), we prove the uniqueness given the

increasing hazard rate of g(u) (i.e., g(u)
1−G(u) increase in u).31 Specifically, we show that for At ≥

A
(
μPt
)
, the response curve crosses the 45o line exactly once (and from above) whenAt ∈

[
A,+∞).

First note that R
(
n;At ,μPt

)−n has either a positive derivative or a negative derivative at n=0. If
it has positive derivative (i.e., the response curve shoots over the 45o line), then at n′, the first time
the response curve crosses the 45o line again, the derivative of R

(
n;At ,μPt

)−n must be weakly
negative at n′; that is, the response curve crosses the 45o from above,

g
(
u
(
n′;At ,μPt

)) 1

n′ −1≤0. (B.10)

Now suppose the response curve crosses the 45o line for the second time from below at n
′′
>n′,

so the derivative of R
(
n;At ,μPt

)−n at n′′ must be weakly positive, and is equal to

g
(
u
(
n′′;At ,μPt

)) 1

n′′ −1 =
g
(
u
(
n′′;At ,μPt

))
1−G(u(n′′;At ,μPt

))−1

≤ g
(
u
(
n′;At ,μPt

))
1−G(u(n′;At ,μPt

))−1

=
g
(
u
(
n′;At ,μPt

))
n′ −1

< 0, (B.11)

where the first inequality comes from the increasing hazard rate and the fact that u
(
n;At ,μPt

)
is decreasing in n for n∈ (0,1], and the second inequality follows from (B.10) and the fact that
the response curve crosses the 45o line at n′ (i.e., n′ =R

(
n′;At ,μPt

)
=1−G(u(n′;At ,μPt

))
). This

contradicts the presumption that the response curve reaches the 45o line from below (and the
derivative of R

(
n;At ,μPt

)−n is weakly positive). Therefore, we conclude that for At ∈
[
A,+∞),

there exists a unique adoption level n. Now if R
(
n;At ,μPt

)−n has negative derivative at n=
0, then in the previous argument, we can replace n′ with 0 and show that there does not exist
another intersection between the response curve and the 45o line beyond n=0. Therefore, only if
R
(
n;At ,μPt

)−n has positive derivative at n=0, do we have a positive (nondegenerate) adoption
level.

Finally, we prove that Nt increases in μPt . Consider μ̃Pt >μ
P
t . Suppose the contrary that their

corresponding adoption levels satisfy Ñt ≤Nt . Because we have proved that the response curve
only crosses the 45o line only once and from above, given Nt , we have

1−G
(

−ln(n)+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μPt

))
≥n, ∀n∈ (0,Nt ]. (B.12)

We know that, by definition,

Ñt = 1−G(u(Ñt ;At ,μ̃Pt ))
= 1−G

(
−ln

(
Ñt
)
+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μ̃Pt

))

31 The hazard rate is increasing if and only if 1−G(u) is log-concave. This assumption is common in the theory
literature, for example, to avoid the complicated “ironing” of virtual values.
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> 1−G
(

−ln
(
Ñt
)
+ln

(
φ

Atα

)
−
(

1−α
α

)
ln

(
1−α
r−μPt

))
≥ Ñt , (B.13)

where the first inequality uses μ̃Pt >μ
P
t and the second inequality uses the fact that Ñt ∈ (0,Nt ]

and the inequality (B.12). This contradiction implies that the adoption levelNt has to be increasing
in μPt , because ut decreases in both μPt and At . The same method proves that the adoption level
Nt increases in At .

Proof of Proposition 1. By setting μPt to zero, we can apply Lemma B1 to the tokenless
economy, and obtain the following the results: (a) (22) and (23) solve a unique pair of NNT

t and
uNTt as functions of At , and (b) the adoption level NNT

t increases in At .

Proof of Proposition 2. We apply Lemma B1 to the tokenized economy, and obtain the following
the results: (i) (30) and (31) solve a unique pair of Nt and ut as functions of At and μPt ; (ii) the
adoption level Nt (the participation threshold, ut ) increases (decreases) in At and μPt . Next, we
show that (32) implies a second-order ordinary differential equation for the token price,Pt =P (At ).

Because ut decreases in μPt , the right side of (32) is monotonic (increasing) in μPt , so, given
At and Pt , (32) uniquely solves μPt . This means μPt can be expressed as a function of Pt and

At , denoted by μPt =H (At ,Pt ). Note that by applying Itô’s lemma, we have μPt = P ′(At )
P (At )

Atμ
A+

1
2
P ′′(At )
P (At )

(
Atσ

A
)2

. Therefore, (32) implies an ordinary differential equation:

P ′ (At )
P (At )

Atμ
A+

1

2

P ′′ (At )
P (At )

(
Atσ

A
)2

=H (At ,Pt ). (B.14)

Given the boundary conditions (35) and (38), this ODE satisfies the regularity conditions in
theorems 4.17 and 4.18 in Jackson (1968), so the solution exists and is unique.

In the following, we summarize the steps of solving the token pricing ODE. First, the user-
type cutoff threshold ut and the user base Nt jointly solve (30) and (31). Moreover, we define the
aggregate of agents’ type in (33), which only depends on ut . All three variables, ut , Nt , and St ,
can be expressed as functions of At and μPt .

Second, the token market-clearing condition, (32), only contains Pt , At , and μPt . Because Nt
and St increase in At and μPt (as previously discussed), the right side of (32) is monotonic in μPt ,
so (32) implies a unique value of μPt given the values of At and Pt .

Third, because in equilibrium, the token price is a function of At , we can apply Itô’s lemma:

μPt = P ′(At )
P (At )

Atμ
A+ 1

2
P ′′(At )
P (At )

(
Atσ

A
)2

. (32) then implies a mapping fromAt , P (At ), and P ′ (At ) to

P ′′ (At ), that is, a second-order ODE ofP (At ). Augmenting the ODE with the boundary conditions
(35) and (38), we can solve the token price function P (At ).

Finally, once we have solved P (At ), we can apply Itô’s lemma again to solve μPt as a function
of At , and then using (30) and (31) to solve Nt and ut (and thus St ) as functions of At . Figure B.2
plots the complete solution of the model that includes all the endogenous variables as functions of
At , the state variable of the Markov equilibrium.

Proposition B1. The token price is positive in the Markov equilibrium in Propsition 2.

Proof of Proposition B1. We prove this proposition by contradiction. The token market-clearing
condition implies the aggregate token demand, M =

∫
ui≥ut ki,t di >0. Consider a value of At such

that P (At )=0. Agent i chooses the units of tokens

max
ki,t

{(
Ptki,t

)1−α (
NtAt e

ui
)α
dt−φdt−Ptki,t rdt +ki,tEt [dPt ]

}
. (B.15)

Given that Pt =0, the first term of transactional benefit is zero, so for k∗
i,t to be a finite number,

agent i must be indifferent between the marginal benefit from the expected token price change,
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A B C

D E F

Figure B.2
Endogenous variables as functions of the state variable

Et [dPt ], and the marginal cost of losing interests Pt rdt . Since the latter is zero, the former must be
zero Et [dPt ]=0. As a result, the maximized profit is −φ<0 for all agents, and no agent chooses
to participate, resulting in a zero aggregate token demand that violates the token market-clearing
condition.

Proposition B2. Define ANT ≡min
{
At :NNT (At )>0

}
. We have APL<ANT .

Proof of Proposition B2. To prove this inequality, consider the agent whose type is uNT , that
is, the type whose flow profit is equal to zero whenAt =ANT in the tokenless economy. Therefore,
we have the following

0=NNT ANT eu
NT
α

(
1−α
r

) 1−α
α −φ<αANT S

(
1−α
r

) 1−α
α −φ, (B.16)

where we use

NNT eu
NT

=
[
1−G(uNT )]euNT <∫ U

uNT
eu
NT
dG(u)+

∫ uNT

U

eudG(u)

<

∫ U

uNT
eudG(u)+

∫ uNT

U

eudG(u)≡S. (B.17)

Recall that in the planner’s solution, we have

0=αAPLS

(
1−α
r

) 1−α
α −φ. (B.18)

By comparing the right sides in the two preceding inequalities, we conclude ANT >APL.
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Proposition B3 (Comparing User-Base Volatilities over Adoption Stages). The user-base
volatility of the tokenless economy is

σNt =

(
g
(
uNTt

)
1−g(uNTt )

/NNT
t

)
σA. (B.19)

The user-base volatility of the tokenized economy is

σNt =

(
g
(
ut
)

1−g(ut )/Nt
)⎡⎣σA+

(
1−α
α

)⎛⎝ σ
μP

t

r−μPt

⎞⎠⎤⎦, (B.20)

where σμ
P

t is the diffusion of μPt as defined below:

dμPt =μμ
P

t dt +σμ
P

t dZAt . (B.21)

Under the same level of adoption, that is, Nt =NNT
t , the user-base volatility of the tokenized

economy is smaller than that of the tokenless economy if and only if μP decreases in At .

Proof of Proposition B3. Without loss of generality, we write the dynamics of Nt as:

dNt =μNt dt + σ̃
N
t NtdZ

A
t , (B.22)

where σ̃ Nt Nt =σNt is a more convenient notation to work with for the derivations.
First, we solve the user-base volatility without token. Using Itô’s lemma, we can differentiate

(23) and then, by matching coefficients with (42), derive μNt and σNt :

dNt =−g(uNTt )
duNTt − 1

2
g′(uNTt )〈

duNTt ,duNTt
〉
, (B.23)

where
〈
duNTt ,duNTt

〉
is the quadratic variation of duNTt . Using Itô’s lemma, we differentiate (22)

duNTt =− 1

Nt
dNt +

1

2N2
t

〈dNt ,dNt 〉− 1

At
dAt +

1

2A2
t

〈dAt ,dAt 〉

=−
(
μNt

Nt
−(σ̃ Nt )2 +μA−

(
σA
)2

2

)
dt−(σ̃ Nt +σA

)
dZAt . (B.24)

Substituting this dynamics into (B.23), we have

dNt =

[
g
(
uNTt

)(μNt
Nt

−(σ̃ Nt )2 +μA−
(
σA
)2

2

)
− 1

2
g′(uNTt )(

σ̃ Nt +σA
)2]

dt

+g
(
uNTt

)(
σNt +σA

)
dZAt , (B.25)

By matching coefficients on dZAt with (42), we can solve for σNt .
Next, we solve the user-base volatility in the tokenized economy where Nt depends on the

expected token price appreciation μPt that is a univariate function of At . In equilibrium, its law of
motion is given by a diffusion process

dμPt =μμ
P

t dt +σμ
P

t dZAt . (B.26)

Now, the dynamics of ut becomes

dut =− 1

Nt
dNt +

1

2N2
t

〈dNt ,dNt 〉− 1

At
dAt +

1

2A2
t

〈dAt ,dAt 〉
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−
(

1−α
α

)(
1

r−μPt

)
dμPt −

(
1−α
α

)(
1

2
(
r−μPt

)2
)〈
dμPt ,dμ

P
t

〉
(B.27)

Let σut denote the diffusion of ut . By collecting the coefficients on dZAt in (B.27), we have

σ
u
t =−σ̃ Nt −σA−

(
1−α
α

)⎛⎝ σ
μP

t

r−μPt

⎞⎠, (B.28)

which, in comparison with (B.24), contains an extra term that reflects the volatility of expected
token price change. Note that, similar to (B.23), we have

dNt =−g(ut )dut− 1

2
g′(ut )〈dut ,dut 〉, (B.29)

so the diffusion ofNt is −g(ut )σut . Matching it with the conjectured diffusion coefficient σNt gives
σNt . Under the same level of adoption, that is,Nt =NNT

t , we also have ut =uNTt , so the first brackets
in (B.19) and (B.20) have the same value. Therefore, the only difference between the two curves of

user-base volatility arises from σ
μP

t , the volatility of expected token price change. By Itô’s lemma,

σ
μP

t =
dμPt
dAt

σAAt , so the sign of σμ
P

t depends on whether μPt increases or decreases in At . When

μPt decrease inAt , σ
μP

t <0, and thereby, the tokenized economy has a smaller user-base volatility
than the tokenless economy.

Proposition B4 (Comparing the Volatilities of User-Base Growth Rates). For any given At ,
the volatility of user-base growth in the tokenized economy is smaller than that of the tokenless
economy if μPt >0 and μPt decreases in At .

Proof of Proposition B4. From the proof of Proposition B3, we know that in the tokenless
economy, the volatility of user-base growth rate, dNt/Nt , is

σ̃ Nt =

(
g
(
uNTt

)
NNT
t −g(uNTt ))σA =

(
g
(
uNTt

)
1−G(uNTt )−g(uNTt ))σA, (B.30)

and similarly, in the tokenized economy,

σ̃ Nt =

(
g
(
ut
)

1−G(ut )−g(ut )
)⎡⎣σA+

(
1−α
α

)⎛⎝ σ
μP

t

r−μPt

⎞⎠⎤⎦. (B.31)

Under the assumption of a weakly monotone hazard rate (introduced in Proposition 2), g(·)
1−G(·) is

weakly increasing in ut , so is g(·)
1−G(·)−g(·) . IfμPt >0, a tokenized platform has ut <u

NT
t (Proposition

2). Therefore, (
g
(
uNTt

)
NNT
t −g(uNTt ))≥

(
g
(
ut
)

1−G(ut )−g(ut )
)
. (B.32)

Moreover, if μPt decreases in At , by Itô’s lemma, σμ
P

t =
dμPt
dAt

σAAt <0, and thereby,⎡⎣σA+

(
1−α
α

)⎛⎝ σ
μP

t

r−μPt

⎞⎠⎤⎦<σA. (B.33)

Consequently, the volatility of user-base growth rate of the tokenized platform is smaller than that
of the tokenless economy for any given At .
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Appendix C - Parameter Choices

C1. Parameter Values
We choose the model parameters under the physical measure so that the model generates patterns
that are broadly consistent with user adoption and token price dynamics. Recall from Section 2.1
that under the widely used SDF,

d�t

�t
=−rdt−ηdẐ�t , (C.34)

At under the physical measure follows a GBM process, where the drift coefficient, μ̂A, is equal to
μA+ηρσA and the volatility coefficient is σA.

We use token price and blockchain user-base dynamics from July 2010 and April 2018. We
normalize one unit of time in the model to be 1 year. Since we fix the token supply at M , the
token price Pt completely drives the market capitalization (PtM). We map Pt to the aggregate
market capitalization of major cryptocurrencies.32 Since we study a representative token economy,
focusing on the aggregate market averages out idiosyncratic movements due to specificalities of
token protocols.

We collect the number of active user addresses for these cryptocurrencies and map the aggregate
number toNt . We map the data to early stage of adoption in the model (i.e.,Nt ≤0.5). We normalize
the maximum number of active addresses (in December 2017) to Nt =0.5 and scale the number
of addresses in other months by that of December 2017. For each month, we also need a value
of ln(At ). Since we cannot observe the platform quality, we assign December 2017 the value of
ln(At ) in our model that corresponds to Nt =0.5. With December 2017 as a reference point, we
calculate the values of ln(At ) for other months by applying forward and backward the expected
growth rate of At under the physical measure. As a result, we focus on the stage of adoption, that
is, Nt ∈

[
N,0.5

]
, where N =0.0001.

Next, we choose parameter values such that the model generates data patterns in Figures 2
and 4. We set the annual risk-free rate, r , to 5% and choose μA =2%<r to satisfy the no-arbitage
restriction. As we have previously discussed, we interpret At as a process that broadly captures
technological advances, regulatory changes, and the variety of activities feasible on the platform,
all of which suggest a fast and volatile growth ofAt . This consideration motivates us to choose σA =
200%. In Appendix C2, we conduct comparative statics for μA and σA. As shown in Figure E.6,
the model does generate a close link between the technology volatility and that of token returns,
likely to due the fact that we focus on fundamental aspects of adoption and valuation while do not
fully capture the behavioral and, in general, speculative factors in the model. That said, our choice
of σA =200% leads to a token return volatility that is close to the median cryptocurrency’s return
volatility in Hu, Parlour, and Rajan (2018). They document that the median cryptocurrency’s daily
return volatility is 14.6%, which is annualized to 232%.

This choice of σA =200% gives us not only a high volatility for At but also much of the
growth for At under the physical measure, as the physical measure drift of At is μ̂A =μA+ηρσA

(Girsanov’s theorem). To match the growth of Nt in the data, we set ηρ =1, so that μ̂A =202%
using the preceding equation. As a result, the user base Nt grows from N =0.0001 to 0.5 during
the 8-year period of our data sample and the growth rate for the model-implied Nt matches that
in data. One way to generate ηρ =1 is to set η to 1.5, which is roughly the Sharpe ratio of ex-post
efficient portfolio in the U.S. stock market (combining various factors) and ρ to 0.67, a sensible
choice of betas for the technology sector (Pástor and Veronesi, 2009).

32 We include all sixteen cryptocurrencies with complete market cap and active address information on
bitinfocharts.com: AUR (Auroracoin), BCH (Bitcoin Cash), BLK (BlackCoin), BTC (Bitcoin), BTG (Bitcoin
Gold), DASH (Dashcoin), DOGE (DOGEcoin), ETC (Ethereum Classic), ETH (Ethereum), FTC (Feathercoin),
LTC (Litecoin), NMC (Namecoin), NVC (Novacoin), PPC (Peercoin), RDD (Reddcoin), VTC (Vertcoin). They
represent more than 2/3 of the entire crypto market.
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By no arbitrage, the drift of At , μA, is smaller than r under the risk-neutral measure, because
after full adoption, μPt =μA as implied by the boundary condition. Therefore, for the model to
generate the high growth of user base in data, we need the drift of At to be high under the physical
measure, which requires, first, a high volatility of At and, second, a high enough ηρ. Setting ρ
to 0.67 seems at odds with the existing studies on the returns of cryptocurrencies that show their
correlations with the returns of traditional assets and macroeconomic factors are low (Hu, Parlour,
and Rajan 2018; Liu and Tsyvinski 2018). However, we argue that in our model, dZAt captures the
shocks to the underlying technology or platform quality instead of direct return shocks. Moreover,
the returns of cryptocurrencies can be driven by factors outside of our model, and such factors can
add noise orthogonal to the SDF and reduce the correlation between cryptocurrency returns and
the SDF.

We use the normalized distribution for ui by truncating the Normal density function g(u)=√
1

2πθ2 e
− u2

2θ2 within six-sigma on both sides. As the dispersion of ui determines how responsive

Nt is to the change of At , we match the curvature of Nt with respect to At by setting θ =10/
√

2,
which implies that thee cross-section variance of ui is 50. Note that what drives agents’ adoption
and token holding decisions is eui . A normal distribution of ui implies a log-normal distribution
of eui that features a concentrated mass in the range of low ui and a heavy right tail. Our choice
of this distribution is guided by data. In Appendix C2, we compare the adoption curve implied
by the normal distribution of ui and that from a uniform distribution, and show that the normal
distribution generates an adoption curve that fits data better.

We set α to 0.3 so that the senstivity of ln(Pt ) with repect to Nt matches the data in the region
whereNt ∈

[
N,0.5

]
as we show in Figure 4. The remaining parameters quantitatively do not affect

much the equilibrium dynamics. We set the participation cost, φ, to one and normalize M to 10
billion. As our model features monetary neutrality, Pt is halved whenM is doubled but importantly
the equilibrium dynamics is invariant.

C2. Comparative Statics
We conduct comparative static analysis for μA, σA, and G(u). We report in the following that
the qualitative results are robust to the choices of μA and σ . The normal distribution of agents’
type, ui , is guided by data. Agents’ transaction need, that is, what drives token demand, is eui ,
which follows a log-normal distribution featuring heavy tail. To demonstrate the desirability of
using a normal distribution of ui , we also report the model-implied adoption curve from a uniform
distribution of ui , and show that it fails to match data.

Risk-adjusted productivity growth μA. As shown in our revised draft, the dynamics of At
under the physical measure is

dAt

At
=
(
μA+ηρσA

)
dt +σAdZt . (C.35)

Here we do not necessarily require the growth rate of At under the physical measure to be small,
and in particular, below r .

The risk-adjusted drift ofAt ,μA, must be below r following the standard no-arbitrage condition.
Under the risk-neutral measure, the total return of any asset is equal to r . Upon full adoption, the
expected token return under the risk-neutral measure,μPt , converges toμA (see the upper boundary
condition for the token pricing ODE), so we must have μPt =μA<r once At increases beyond the
upper boundary.

Figure C.3 reports the ratio of token price to productivity, Pt/At , over the stages of adoption,
Nt in panel A and the user base, Nt , against the logarithmic productivity ln(At ) under different
values ofμA. The figures show that the qualitative dynamics of Pt andNt , the two key endogenous
variables in the model, are robust to the choices of μA. While the level of token price increases
significantly in the drift of platform productivity, the adoption curve is largely stable across
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A B

Figure C.3
Comparative statics: Risk-adjusted productivity growth μA

Panel A plots the ratio of token price to productivity, Pt /At , against the user base, Nt , under different values of
μA. Panel B plots the user base, Nt , against the logarithmic productivity, ln(At ), under different values of σA.
The values of the other parameters are set according to Appendix C1.

A B C

Figure C.4
Comparative statics: Productivity volatility σA

Panel A plots the user base,Nt , against the logarithmic productivity, ln(At ), under different values of σA. Panel B
plots the expected token return under the risk-neutral measure, μPt , against the logarithmic productivity, ln(At ),
under different values of σA. Panel C plots the token price, Pt , against the productivity,At , under different values
of σA. The values of the other parameters are set according to Appendix C1.

different values of parameters with the case of the highest μA (=0.03) featuring the fastest
adoption.

Productivity volatility σA. The volatility of platform productivity, At , certainly drives the
volatility of token price. While the endogenous adoption amplifies the volatility, the token price
volatility, σPt , is largely in the same magnitude of At ’s volatility as shown in Appendix E. The
focus of this paper is not on generating excessive volatility. Here we model agents’ adoption and
token demand decisions that are purely based on utility maximization under rational expectation,
while in reality, a great number of other factors affect token demand (e.g., Griffin and Shams 2020;
Liu, Tsyvinski, and Wu 2019). In fact, the upper boundary condition at full adoption shows that the
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Figure C.5
Comparative statics: The distribution of ui
This figure plots the user base, Nt , against the logarithmic productivity, ln(At ), under the normal distribution
of ui in Appendix C1 (blue solid curve) and the uniform distribution of ui (red dash line). The support of the
uniform distribution is [−29,29], chosen so that the productivity at full adoption matches that of the baseline
model.

token price evolves in lockstep with the platform productivity after Nt reaches 100%. Therefore,
this paper does not investigate whether token volatility deviates from that of fundamentals or why.

The aim is thus to develop a rational benchmark of token pricing and endogenous adoption.
Accordingly, the model has the desirable feature that the key results are largely not affected by the
choices of the volatility parameter, σA. Panel A of Figure C.4 plots the user base, Nt , for different
values of σA. The curves are almost identical. As shown by (30) and (31), what determines Nt are
At and μPt . Therefore, in Panel A of Figure C.4, given At , the adoption curves are similar across
different values of σA because the values of μPt are similar as shown in panel B. In our model,
agents’ decisions on adoption and token demand depends on At and μPt , and the parameter σA

only affects agents’ decision through μPt . Using Itô’s lemma, we have

μPt =
P ′ (At )
P (At )

Atμ
A+

1

2

P ′′ (At )
P (At )

(
Atσ

A
)2
. (C.36)

The choices of σA does not strongly affect the equilibrium outcome because the second-order
derivative of Pt to At is close to zero. Panel C reports the token price, which is almost linear in At
(i.e., has a second-order derivative close to zero).

Agent type distributionG(u). We choose a normal distribution forG(u) and set the parameter
in order to generate an adoption curve the matches well the data. Note that even though the
participation threshold, ut in (30), has ln(At ) in its expression, we cannot draw the conclusion
that the adoption curve, Nt =1−G(ut ), is S-shaped as the cumulative distribution function of
normal distribution. The threshold also contains other endogenous variables, such as the current
user base, Nt , and the expected token return, μPt . Therefore, the adoption curve is S-shaped as
a result of multiple endogenous forces in equilibrium with the parameter choice of G(u). Many
blockchain platforms cater to a small group of enthusiasts and thus a distribution of agents’ type
should feature a fat tail. Indeed, this is what a normal distribution of ui captures. Agents’ token
holdings and participation profits are given by (28) and (29) respectively. Both are proportional
to eui . Therefore, in our model, what drives agents’ activities and profits on the platform is eui ,
which follows a log-normal distribution when ui follows a normal distribution. The log-normal
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distribution has its mass concentrated in the small values (i.e., the majority who have low transaction
needs) and a heavy tail that extends to very large values (i.e., the minority of very active users).

For robustness, we plot in Figure C.5 the user base, Nt , against the logarithmic productivity,
ln(At ), under the normal distribution of ui in Appendix C1 (blue solid curve) and the uniform
distribution of ui (red dash line). The support of the uniform distribution is [−29,29], chosen so
that the productivity at full adoption matches that of the baseline model. It is clear that a uniform
distribution would not fit the data and our distributional assumption is guided by the need to fit
empirical data.

Appendix D. Endogenous Choice of Platform Currency

In the main text, we analyze the tokenized and tokenless economies and compare their adoption
dynamics. The numerical solution shows that μPt is positive across the values of At with μA>0,
and therefore, tokens accelerate adoption by reducing the carry cost by μPt . A potential concern is
that the conclusion is only valid under the specific set of parameter values. We address this issue by
extending the model to incorporate platform users’ voluntary choice between the numeraire good
and token as means of payment on the platform. For this general setup, we can prove that μPt >0
in equilibrium. Every instant, agents can choose either the numeraire good or tokens as means of
payment. The maximized profit from using the numeraire good is given by (21):⎡⎣NtAt eui α(1−α

r

) 1−α
α −φ

⎤⎦dt . (D.37)

The maximized profit from using token is given by (29):⎡⎣NtAt eui α( 1−α
r−μP (At )

) 1−α
α −φ

⎤⎦dt . (D.38)

Considering the choice of currency, a participating agent’s maximized profit is

max

⎧⎨⎩
⎡⎣NtAt eui α(1−α

r

) 1−α
α −φ

⎤⎦dt,
⎡⎣NtAt eui α( 1−α

r−μP (At )

) 1−α
α −φ

⎤⎦dt
⎫⎬⎭

≥
⎡⎣NtAt eui α(1−α

r

) 1−α
α −φ

⎤⎦dt. (D.39)

In the states where μP (At )>0, agents choose token; otherwise, agents can always opt for the
numeraire good as means of payment. The adoption-accelerating effect does not require μPt >0
for every value of At . As long as there exists values of At such that μP (At )>0, in those states,
participating agents choose to use tokens and derive more profits, and as a result, the user base is
higher than that in a tokenless economy.

Proposition D1 (Endogenous Currency Choice). If token is available, the user base,Nt , is equal
to or larger than the user base in the tokenless economy for any given At .

In this more general setting, agents only use tokens when μPt >0, and thus, by introducing
tokens, platforms accelerate adoption by simply expanding agents’ choice set, allowing them to
pick the currency with the lowest carry cost.

Next, we show that in equilibrium, agents either always choose to use tokens (and μPt >0)
or always choose to use the numeraire goods as means of payment. We prove this statement by
contradiction. Consider an equilibrium where at time t , agents choose to use the numeraire goods,
but there exists a positive probability that agents choose to use tokens in the future. To clear the
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Figure E.6
The persistent impact of shocks and volatility amplification
This graph shows the ratio of token price volatility,σPt , to productivity volatility,σA, which quantifies the strength
of volatility amplification by the endogenous user adoption. The solid line represents the baseline model. The
dashed line represents the model with endogenous platform productivity.

token market, the aggregate token demand must be positive and equal to M . Since agents do not
use tokens as means of payment and μPt ≤0, for the aggregate demand to be equal to M , the
token price must be zero because the transactional benefit is zero and the expected financial return,
μPt ≤0<r . However, there is a positive probability that in the future, agents use tokens, derive
transactional benefits, and thus Pt >0. The current Pt =0 then implies a positive infinite expected
return, contradicting μPt ≤0.

Proposition D2 (Consistent Choice of Currency). In equilibrium, agents either always use tokens
and μPt >0 or always use the numeraire goods as means of payment.

Proposition D2 states that our choice to examine the tokenized and tokenless economics
separately in the main text does not lose generality, because even when agents are allowed to
choose the platform currency every instant, the equilibria that emerge will either feature complete
token usage or complete usage of the numeraire goods. Moreover, in the equilibrium where agents
use tokens, μPt >0 holds in every state of the world.

Appendix E: Additional Results on Token Price

E1: Token Volatility and Endogenous Adoption
The shocks to platform productivity are transmitted to token price through users’ decision on
adoption and token holdings. In fact, token-price volatility σPt is generally larger than σA, the
productivity volatility, as Figure E.6 illustrates. To see the intuition, consider a positive shock toAt
that directly increases the utility flow of token holdings. User adoption increases as a consequence,
which leads to an even higher utility flow (as Nt enters into the utility flow). This feedback effect
amplifies the shock’s impact on token price, which implies that endogenous user adoption amplifies
volatility.

Importantly, our model features a new form of endogenous risk that is unique to platform
economics. The volatility of token price is larger than the productivity volatility (exogenous risk)
in equilibrium due to endogenous adoption. The amplification constitutes an endogenous asset-price
risk that is distinct from the fire-sale risk triggered by the balance sheet channel in the macro-finance
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literature (e.g., Brunnermeier and Sannikov 2014; He and Krishnamurthy 2011, 2013). Note that
under full adoption Nt =1, (36) reveals that the ratio of Pt to At is a constant, so σPt =σA and
the endogenous risk disappears. The network effect induces strategic complementarity in agents’
adoption decision, and thereby, amplifies the impact of fundamental shock. This mechanism is
related to the literature on strategic complementarity and fragility (e.g., Goldstein and Pauzner
2005). Here, the endogenous risk from strategic complementarity manifests itself in the equilibrium
asset (token) price.

Figure E.6 also shows that the token price volatility exhibits nonmonotonic dynamics as the
platform productivity grows: σPt shoots up in the early stage, gradually declines, and eventually
converges to σA as Nt approaches one. This dynamic is broadly consistent with the following
observations: token price volatility for a nascent platform is large and the cross-sectional variation
of volatility is also greater for nascent platforms.

Our analysis thus far has taken the platform productivity process as exogenous. In reality, many
token and cryptocurrency applications feature an endogenous dependence of platform productivity
on the user base. A defining feature of blockchain technology is the provision of consensus on
decentralized ledgers.33 In general, the more users on the platform, the more economic activities
taking place (i.e., higher At ). Moreover, a greater user base attracts more resources and research
onto the platform, accelerating the technological progress on the platform and creating a positive
feedback loop.

To capture this positive feedback feature between productivity and user base, we generalize the
process of At as follows:

dAt

At
=ω
(
Nt−N

)
dt +σAdZAt , (E.40)

whereω>0 andN is the minimal user base to achieve nonnegative drift. The lack of early adoption
reduces the likelihood of the platform achieving a high level of adoption. Because when At and
Nt , are low, μAt is negative, and thus, the only way for At to grow, that is, dAt >0, is to have a
long sequence of positive shocks, that is, dZAt >0. In contrast, whenAt andNt are high,At grows
from both a positive drift and positive shocks.

For our numerical solution, we set ω to 0.04 andN to 0.5, so whenNt <0.5, μAt <0, and when
Nt =1, μAt is equal to 0.02, which is the value of μA in the numerical solution of the main model.
Solving the Markov equilibrium under endogenous productivity only requires to replace μA in (6)
with ω

(
Nt−N

)
. The growth rate of At is no longer i.i.d. and the shock’s impact on At becomes

more persistent. Consider a positive shock. Not only the current At increases, but through Nt , the
growth rate of At increases, propagating the shock’s impact into the future. This amplifies the
volatility of token price. Consider a negative shock. It not only drags down the current productivity
and adoption but also, throughμAt =ω

(
Nt−N

)
, reduces the likelihood of higher future productivity

and adoption. The direct impact on the current adoption decreases the token price via a decline
of the current token demand. Moreover, the decline of expected future adoption implies a weaker
token demand in the future, and as a result, a decrease of μPt that further discourages adoption
and depresses the current token demand, resulting in a further decline of token price. Therefore,
we expect the current specification to deliver a stronger shock amplification effect than the case of
constant (and positive) μA. Figure E.6 shows that the ratio of σPt to σA is higher with endogenous
productivity than with exogenous productivity.

Our discussion on the token price volatility relates to the current debate on sources of
cryptocurrency volatilities and the possibility of creating stable coins for means of payment.
The endogenous adoption is a natural mechanism that transmits and amplifies the shocks to
platform fundamentals (At ) to the token price. However, as shown in Figure E.6, this amplification

33 In a “proof-of-stake” system, the consensus is more robust when the user base is large and dispersed because no
single party is likely to hold a majority stake; in a “proof-of-work” system, more miners deliver faster and more
reliable confirmation of transactions, and miners’ participation in turn depends on the size of user base (e.g.,
through transaction fees).
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mechanism is not strong under the current parameter choices for our numerical solution. Therefore,
if one has in mind a token-based ecosystem as described in our paper, the concern over token
price stability, and the associated benefits of having a stable token, should be directed towards
the volatility of platform fundamentals rather than active exit/entry of users. To look for stronger
volatility amplification mechanism, one may consider the economic forces outside of our model,
such as behavioral factors and token market structure.

E2: Technology Adoption and Bubbly Token Price
The prices of several prominent cryptocurrencies experienced significant runup followed by a crash
and subsequent stabilization. We show that such “bubbly” dynamics of token price dynamics can
arise in a rational model with endogenous adoption driving the correlation between the SDF and
token return. So far, we have set up and analyzed the model under the risk-neutral measure. Next,
we explicitly model the risk premium as a function of user baseNt . Let ρt denote the instantaneous
correlation coefficient between the productivity shock, dẐAt in (1), and the SDF shock, dẐ�t in
(4). To model the endogenous beta of platform productivity, we allow ρt to depend onNt . Suppose
that dρ (Nt )/dNt >0, which means that the productivity beta increases as the user base grows. As
the technology becomes more “mainstream,” shocks to it become increasingly systematic. This
assumption is inspired by the adoption-dependent beta of new technologies in Pástor and Veronesi
(2009). By using Girsanov’s theorem, we obtain the following productivity process under the
risk-neutral measure,

dAt

At
=
[
μ̂A−ηρ (Nt )σ

A
]
dt +σAdZAt . (E.41)

When the productivity shock becomes more correlated with the SDF shock, investors demand a
higher risk premium, which lowers the risk-adjusted growth of productivity. In other words, the risk-
neutral expected growth rate of At is μ̂A−ηρ (Nt )σA, is lower. To solve the Markov equilibrium,
we simply replace μA in (6) with this risk-adjusted drift of At .

Thus, two opposing forces drive Pt asAt grows. On the one hand, the mechanism that increases
Pt is still present: when At directly increases the flow utility of token or indirectly through its
positive impact on Nt , token price increases. On the other hand, the risk premium increases as
Nt increases, so the risk-adjusted growth of At declines, which in turn decreases Pt . The former
channel could dominate in the early stage of adoption, whereas the latter channel dominates in the
late stage of adoption. Therefore,Pt first rises withNt and then declines asNt reaches a sufficiently
high level, which resembles a bubble, as shown in the left panel of Figure E.7.34

Appendix F: Classical Models and Tokenomics

F1: Tokenomics and Monetary Economics
By trading in the token market, users profit from platform growth and effectively reduce the carry
cost of conducting transacting. Therefore, for payment platforms, the prominent adoption problem
in platform economics (e.g., Rochet and Tirole 2006) is naturally connected with the carry cost in
the classical models of money as a transaction medium (e.g., Baumol 1952; Tobin 1956). In the
following, we compare our model with the standard monetary models (i.e., the money-in-utility
and cash-in-advance models).

The token price, Pt is the price of tokens denominated in the numeraire consumption goods. It
is how many units of goods that one unit of token can buy. Therefore, xi,t =Ptki,t is the real value
of token holdings, and ki,t , the units of tokens, is the nominal value of token holdings. An agent
cares about her real token value, that is, how many units of goods the ki,t units of tokens can be
exchanged for, rather than the nominal token value, that is, the units of tokens, as the agent derives
utilities from the real value of transactions in the units of numeraire consumption goods.

34 In the numerical solution, we set μ̂A =4% and ρ (Nt )= μ̂ANt /3 for illustrative purposes.
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A B

Figure E.7
The “bubbly” behavior of token price This graph plots the ratio of token price, P (At ), to the long-run (full-
adoption) value of token, P (At ), which shows how endogenous adoption shapes the token price dynamics. The
solid line shows the baseline model. The dash line shows the model with endogenous systematic risk.

We follow the existing literature on money as means of payment. In theoretical models of
monetary economics (e.g., Baumol 1952; Tobin 1956; Feenstra 1986; Freeman and Kydland 2000)
and empirical studies (e.g., Poterba and Rotemberg 1986; Lucas and Nicolini 2015; Nagel 2016),
agents derive utility from the real value of money holdings.35 Table F.1 provides a side-by-side
mapping between our model of tokens as means of payment and the standard models in the monetary
economics literature (e.g., money-in-utility and cash-in-advance models). We refer readers to the
classical textbook treatments regarding monetary economics (e.g., Galí 2015; Ljungqvist and
Sargent 2004; Walsh 2003).

Note that our notations differ from those in standard monetary economics literature. We use Pt
as the value of token denominated in the numeraire consumption good. This is different from the
convention that money serves as the numeraire and the prices of goods are denominated in money.

The micro-foundation of our flow utility in Appendix A also sheds light on why it is the real
(goods) value of token holdings, instead of the nominal value, that matters. Agent i holds ki,t units
of tokens in preparation for a Poisson-arriving transaction opportunity because carrying tokens
provide payment convenience. When agent i conducts transactions, the transaction counterparty
demands payments in the units of numeraire consumption goods instead of in the units of tokens,
because eventually, the transaction counterparty cares about the amount of goods that tokens can
buy, not tokens themselves.36

35 For the nominal value of means of payment to affects agents’ decisions, additional frictions, such as nominal
illusion (e.g., Shafir, Diamond, and Tversky 1997) or sticky prices (e.g., Christiano, Eichenbaum, and Evans
2005), have to be introduced into the model.

36 For example, Opensea is an DApp marketplace on Ethereum that allows users to buy and sell through smart
contracts the crypto collectibles, gaming items, and other items backed by the Ethereum blockchain. A seller
Koryue listed to sell MCH Hero: #40320018 Lv.78 at 6:17:37 a.m. on January 4, 2020, for 2.1 ETH, with Ether
price then being about US$133. The same person relists the item at 5:54:29 p.m. on January 16, 2020, for 1.5
ETH, when Ether price was about US$166. The item is sold about an hour later. To the extent that during the short
span, agents’ valuation of the item did not change dramatically, we can see that they care about not the number
of tokens (2.1 vs. 1.5) but the actual dollar value that they can use for offline consumption (279 vs. 249). The
latter only has slight drop (possibly because of the seller lowering the price slightly), but it differs a lot in ETH.
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Table F.1
Comparing our model and standard monetary models

Our model Monetary economics

One unit of token/money buys: P units of numeraire goods 1/P units of goods
Token/money units (nominal value): ki,t units of token M units of money
Real token/money balance: Pki,t M/P

Effective carry cost: r−μPt r

This table provides a side-by-side mapping between our tokenized model economy and the standard monetary
economic models, such as money-in-utility and cash-in-advance models.

F2: Token Pricing and the Black-Scholes Differential Equation
Our token pricing equation (32) shares some common features with the Black-Scholes derivative
pricing equation. Both are second-order ordinary differential equation of an asset price that evolves
with an underlying state variable. However, the economic mechanisms that lead to these equations
are fundamentally different. The Black-Scholes equation is derived from the no-arbitrage condition.
Our token pricing equation (32) is obtained from aggregating platform users’ token demand and
clearing the token market. In the following, we list the steps that we use to obtain (32) and then
discuss its differences and similarities with the Black-Scholes option derivative equation.

First note that the state variable for our equilibrium solution is the exogenous productivity At ,
and thus, all endogenous variables are functions ofAt in equilibrium. For example, the equilibrium
token price can be written as Pt =P (At ), a univariate function of At . Similarly, Nt =N (At ) and
St =S (At ). Figure B.2 in Appendix B plots the solved endogenous variables that are all functions
of At from our model solution. By rewriting the token market-clearing condition (32), we obtain
the following equilibrium condition for the drift μPt :

μPt =r−(1−α)

(
NtStAt

PtM

)α
. (F.42)

By applying Itô’s lemma to Pt =P (At ), we may express the drift of Pt , μPt , as follows:

μPt =
P ′ (At )
P (At )

Atμ
A+

1

2

P ′′ (At )
P (At )

(
Atσ

A
)2
. (F.43)

Finally, (F-42) with (F-43) together give us (34), which we state below for the ease of reference:

rP (At )=P ′ (At )AtμA+
1

2
P ′′ (At )

(
Atσ

A
)2

+(1−α)

(
NtStAt

PtM

)α
P (At ) . (F.44)

Next, we compare our token pricing equation with the Black-Scholes derivative pricing equation
that values a derivative on a dividend-paying stock. Let St denote the ex-dividend price of stock,
which follows a geometric Brownian motion under the physical measure:

dSt

St
=(μS−δ)dt +σSdZt , (F.45)

where μS , σS , and δ are all constant and Zt is a standard Brownian motion. Note that this stock
continuously pays dividends at a constant dividend yield δ. Let Vt denote the price of a derivative
which delivers a contingent payment G(ST ) at maturity T , where G(·) is a function of ST , the
underlying stock price at maturity T . (See, e.g., the Black-Scholes European call option pricing
formula corresponds to the case where G(ST )=max{ST −K,0}.)

Many similar cases show that people think in terms of numeraire (the actual consumption value of those Ethers),
not in terms of the number of Ethers. When the Ether price fluctuates, the agents simply adjust the number of
Ethers when listing prices.
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By the standard no-arbitrage argument (e.g., Duffie, 2001), the value of this derivative, Vt , is
given by

Vt =Et

[
e−r(T−t)G(ST )

]
, (F.46)

where Et is the conditional expectation under the risk-neutral measure. We know that the value of
the derivative Vt is Markovian, which we express as V (St ,t), The standard no-arbitrage argument
implies that V (St ,t) satisfies the following PDE

rV (St ,t)=
∂V (St ,t)

∂St
St (r−δ)+

1

2

∂2V (St ,t)

∂S2
t

(
Stσ

S
)2

+
∂V (St ,t)

∂t
. (F.47)

Comparing our equilibrium token pricing ODE (34) with (F-47), the PDE for derivative pricing,
we make the following observations:

1. Difference: Price determination mechanism. The derivative pricing equation is derived
from the absence of arbitrage between the derivatives and their underlying assets (and
risk-free bonds). Economic profits from trading do not exist in the standard derivative
pricing framework. Our token pricing equation is derived from the token market-clearing
condition, which implies that the marginal participant (with ui =ut ) breaks even but all
other participants collect positive profits. Agents with ui >ut break even at the margin
as required by their first-order conditions, but their average revenues are larger than
their costs due to the concavity (or decreasing return to scale) of transactional benefits,(
xi,t
)1−α

(NtAt eui )
α dt , in the numeraire value of token holdings, xi,t .

2. Difference: Token’s “flow” term. Another difference between the two pricing equations

is that token has an additional “flow” term, (1−α)
(
Nt St At
PtM

)α
P (At ), while the derivatives

pricing model does not.37 This “flow” term appears in our model because of the
aggregation of heterogeneous users’ demand for tokens as a transaction medium.

3. Similarity: the same risk-adjusted expected return. Our token pricing equation and the
Black-Scholes pricing equation have the value of asset multiplied by r on the left side,
meaning that both feature a marginal risk-adjusted return equal to r , the risk-free rate.
Note that the total risk-adjusted return of tokens is the sum of transactional benefits and
the financial return (see (27) in our revision).

4. Similarity: The coefficients of ∂V (St ,t)
∂St

and dP (At )
dAt

. The state variable of derivatives is
the underlying stock’s price. Since the stock is traded, so it has an expected cum-dividend
return equal to r , and thus, its ex-dividend stock price has a drift that is equal to St (r−δ)
under the risk-neutral measure, which is the coefficient on ∂V (St ,t)

∂St
. The underlying state

variable of tokens is the platform productivityAt . The coefficient on dP (At )
dAt

isAtμA, also

the state variable’s drift. Since At is not traded, the risk-neutral drift, AtμA, is not equal
to At r , resulting in a shortfall similar to δ in the (r−δ) in the coefficient.

5. Similarity: The quadratic variation terms. Both our token pricing equation and the
standard derivative pricing equation have the second-order derivative term that depends
on the volatility of the underlying state variable (At for tokens and St for derivatives).

As a result, we have the same similar quadratic variation terms (
(
Atσ

A
)2

for tokens, and(
Stσ

S
)2

for derivatives) that is, the coefficients on ∂2V (St ,t)

∂S2
t

and d2P (At )

dA2
t

respectively,

from Itô’s calculus.

37 The absence of a flow term in the derivative pricing formula (F-47) is the result of this derivative not having any
flow payment before maturity T . If we had allowed this derivative to pay holders prior to maturity, the derivative
pricing equation (F-47) would have a “flow” term as well.
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6. Nonessential differences: finite maturity versus perpetuity. Tokens in our model are
perpetual with no maturity. Standard derivatives often have maturity, and hence, have the
additional term ∂V (St ,t)

∂t
in the pricing equation.
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