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Abstract

We develop a tractable two-sector equilibrium model with capital accumulation
and adjustment costs. We study capital reallocation decisions and asset pricing. With
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and efficiency losses in production. The distribution of capital between the two sec-
tors determines the risk-free rate, risk premium, investment, and Tobin’s q at both
sectoral and aggregate levels. Our framework highlights the importance of sectoral
heterogeneity and capital liquidity for economic growth and asset pricing. An unbal-
anced distribution of capital increases risk and reduces welfare, but making sectors
more balanced through capital reallocation reduces efficiency and growth.
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1 Introduction

Economic fluctuations often begin in a distinct sector, and then propagate throughout the

economy. Yet equilibrium models in macro and finance typically assume a representative

agent and/or a representative firm, emphasizing the equilibrium response to aggregate shocks

and de-emphasizing distribution and propagation. Existing models that incorporate multiple

sectors assume either that capital is perfectly liquid and can be reallocated frictionlessly, as

in Cox, Ingersoll, and Ross (1985), hereafter CIR, or that capital is completely illiquid

and fixed, as in Lucas (1978) and Breeden (1979), and the two-sector version by Cochrane,

Longstaff, and Santa Clara (2008), hereafter CLS.1 When capital is perfectly liquid as in

CIR, Tobin’s q is one at all times, heterogeneity plays no role and perfect aggregation holds

in equilibrium.2 When capital is completely illiquid as in CLS, investment is zero at all

times and prices have to adjust to sustain the no-trade equilibrium. CIR and CLS thus

correspond to the two extreme cases of capital mobility.

However, in reality, we live in a production economy and capital reallocation while feasi-

ble, is often costly. Motivated by this fundamental observation, we develop a parsimonious

and analytically tractable model to capture the impact of capital illiquidity on equilibrium

resource allocation between consumption and production, and between different productive

sectors, as well as intertemporal equilibrium asset pricing. Building on the neoclassical q

theory of investment,3 we use convex adjustment costs to model capital illiquidity. We show

that the distribution of capital effectively is the single state variable determining equilibrium

capital reallocation and asset pricing. For example, the distribution of capital between the

two sectors determines investment, the value of capital, and the risk premium both at the

sectoral and aggregate levels, as well as the equilibrium risk-free rate and aggregate quan-

tities. Unlike in CIR and CLS, both prices and quantities adjust as the economy optimally

accumulates and reallocates capital in response to shocks in our model. We first develop a

1Martin (2009) extends CLS to multi-tree, i.e. a Lucas orchard setting and obtains analytic asset pricing
results. Santos and Veronesi (2006) is a pure exchange economy with two different sources of income,
dividends and wages. They show the ratio of labor income to consumption predicts stock returns.

2See Jones and Manuelli (2005) for essentially the same modeling in endogenous growth context.
3Brainard and Tobin (1968) and Tobin (1969) define the ratio between the firm’s market value to the

replacement cost of its capital stock, as Q and propose to use this ratio to measure the firm’s incentive to
invest in capital. This ratio has become known as Tobin’s average Q. Hayashi (1982) provides conditions
under which average Q is equal to marginal q. Abel and Eberly (1994) develop a unified q theory of investment
in neoclassic settings. Lucas and Prescott (1971) and Abel (1983) are important early contributors.
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baseline case, with log utility and two ex ante identical sectors, to establish analytic findings

in a simple benchmark case. Then, we extend the model to a more general non-expected

Epstein-Zin utility framework4 and allow for ex ante asymmetry between the two sectors.

When the two sectors are ex ante identical, the economy tends toward a balanced capital

distribution, where the two sectors are of equal size and the consumer achieves maximum

diversification and utility. With two symmetric sectors, the interest rate is higher than with

one sector alone, since the consumer must be induced to save despite being well-diversified.

At the sectoral level, there is substantial impact of the capital distribution on value, invest-

ment, and asset returns. In particular, as one sector becomes small, its investment rate

skyrockets - not because its marginal returns increase (we have constant-returns-to-scale),

but rather because its cost of capital falls. This occurs because the small sector becomes

virtually risk-free (when the shocks to two sectors are uncorrelated), and retaining the small

sector and its potential for diversification becomes extremely valuable.5 We can therefore

gauge the importance of general equilibrium on prices and quantities, by scaling from a neg-

ligibly small sector that approximates “partial equilibrium” to a single dominating sector

that corresponds to standard one sector general equilibrium analyses.

However, the benefits of diversification are counterbalanced by the costs of reallocation.

A high cost of reallocating capital acts as a tax on savings, so high adjustment costs deter

savings, instead promoting consumption, and dampening growth. Asset prices rise with

adjustment costs because the rents to installed capital are higher, but the rates of return to

capital investment are lower. These results give a hint of our findings when liquidity varies

endogenously, expanding upon these comparative static results.

When we extend beyond log utility or allow for asymmetry, the effect of the capital

distribution becomes more pronounced - even for aggregate variables. With higher risk

aversion, when the household is less diversified because of an unbalanced distribution of

capital, the household responds by adjusting the consumption-savings decision: saving more

and consuming less. This raises investment and growth, but also results in higher risk

4We choose the agent’s utility function to be the one proposed by Epstein and Zin (1989) and Weil (1990)
in discrete time, but use the continuous-time formulation developed by Duffie and Epstein (1992a). This
utility specification allows us to separate the coefficient of relative risk aversion and elasticity of intertemporal
substitution, and still generate a stochastic balanced growth path, which is desirable.

5Note that the equilibrium interest rate and aggregate risk premium can be computed using the one-sector
economy, where the sector is the dominating one.
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premia and expected returns, so asset prices fall. Hence, the distribution of capital affects

both economic growth and asset prices.

Similarly, when the sectors are not ex ante identical, and the two sectors have different

adjustment costs (so that one is more liquid than the other), shocks to the distribution of

capital affect the overall liquidity of the economy. For example, when the economy has too

much illiquid capital (one might think of too much housing capital), aggregate volatility and

the aggregate risk premium are high, while aggregate investment and growth both decline.

The interest rate falls because the consumer has a greater incentive to save in the illiquid

economy, and saving goes to rebuild the liquid sector, which has a high value (and higher

Tobin’s q). This unpleasant combination of real outcomes and risk pricing continues until

the economy can rebalance by saving and investing in liquid capital. Interestingly, these

endogenous changes in liquidity also cause aggregate investment and Tobin’s q to move in

opposite directions.

Our findings convey both the importance of heterogeneity and also caution about the

lessons of modeling heterogeniety. Initially, with symmetry and log utility, we establish a

benchmark where the two sectors show interesting internal dynamics but have quantitatively

small effects on the aggregate. However, when we depart from log utility or allow for

asymmetry, the aggregate effects are substantial. First, even in the symmetric case, higher

risk aversion (we consider risk-aversion as high as four), the endogenous response of savings

to an undiversified economy causes investment and growth to depend on the distribution

of capital. Moreover, this generates a higher value of capital that is reflected in higher

asset prices and lower rates of return. With ex ante asymmetry between the two sectors,

changes in the distribution of capital determine the overall liquidity in the economy. These

endogenous compositional changes in liquidity drive investment and growth, as well as asset

prices and rates of return.

Related Literature. As we have noted, our paper is most closely related to CIR, CLS and

the neoclassical q theory of investment. Additionally, our paper is also linked to investment-

based general equilibrium models. Jermann (1998) develops a one-sector DSGE model with

habit formation preferences and capital adjustment costs to generate historical risk premium,

risk-free rate, and aggregate quantities. Tallarini (2000) introduces the Epstein-Zin utility

(with arbitrary risk aversion but unit EIS) into a one-sector DSGE model and finds that risk
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aversion has little impact on business cycle properties, and mostly influences the asset pricing

and welfare costs (of business cycle) calculations. He does not model capital adjustment costs

and hence q = 1 in his model at all times. Boldrin, Christiano, and Fisher (2001) introduce

habit formation in a two-sector DSGE model to generate price and quantity dynamics. Unlike

these papers, we use Epstein-Zin utility to separate risk aversion from the EIS and use the

capital adjustment costs to capture illiquidity. Finally, we solve the model analytically, while

all the above referenced papers solve the model numerically.

Although our paper does not directly address issues in international finance, the two

sectors in our model can be potentially interpreted as foreign and domestic economies. With

that interpretation, our paper can also be interpreted as one for international finance. Ob-

stfeld (1994) uses Epstein-Zin utility and shows that reallocation of capital achieves perfect

diversification in the absence of adjustment costs in the international context. In terms

of the model construction, ours features capital illiquidity and nests Obstfeld (1994) as a

special case. Dumas (1992) studies a two-country general equilibrium economy with lin-

ear/proportional shipping costs between countries and derives analytic solutions featuring

trade and no-trade regions.6

Our paper also contributes to the literature on capital reallocation. Ramey and Shapiro

(1998) examine the effect of fiscal shocks in a two-sector general equilibrium model with

costly reallocation of capital and find significant effects of the capital frictions. Eisfeldt

and Rampini (2006) emphasize the costs of reallocation, showing in a quantiative setting

that these costs must be time-varying and countercyclical in order to generate the observed

pattern of capital reallocation. In our model, the cost of reallocation varies endogenously,

generating large shifts in sectoral investment (e.g., as described above for a small sector) and

reallocation of capital.

There has been surging interest in linking corporate investments and q to cross-sectional

returns. See Cochrane (1991, 1996), Berk, Green, and Naik (1999), and Zhang (2003), for

example. These models focus on firm’s optimal investment and price securities by using

an exogenously specified stochastic discount factor. For a general equilibrium model with

cross-sectional stock return predictions, see Gomes, Kogan, and Zhang (2003).

6Technically, our model is an example of analytically tractable general equilibrium models featuring
heterogeneity. For an example of heterogenous investors with different risk aversion, see Dumas (1989).
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2 Baseline Model

Consider an infinite-horizon continuous-time production economy. There are two productive

sectors in the economy, sectors 0 and 1. We introduce the model in this section with the

case where the two sectors are symmetric. Hence, functional forms and parameter values

are not sector specific, but random variables are. We allow for sector asymmetry in the

general formulation of Section 5. Let Kn, In, and Yn denote the representative firm’s capital

stock, investment and output, respectively, in sector n, where n = 0, 1. The representative

firm in each sector has an “AK” production technology:

Yn(t) = AKn(t) , (1)

where A > 0 is a constant. Capital accumulation is given by

dKn(t) = Φ(In(t), Kn(t))dt+ σKn(t)dBn(t) , (2)

where σ > 0 is the volatility parameter, and the function Φ(In, Kn) measures the effective-

ness of converting investment goods into installed capital. In this section, we assume the

correlation between the Brownian motions B0 and B1 is zero. Shocks appear in the capital

accumulation dynamics (2) as in CIR and the endogenous growth models in macroeconomics

(e.g., see the handbook chapter by Jones and Manuelli (2005)). Similarly, Dumas (1992) con-

siders shocks to allocations in a two-country model with linear adjustment (shipping) costs.

As in Hayashi (1982) and Jermann (1998), we assume that the adjustment technology in each

sector is homogeneous of degree one in I and K, so we can write the installation function as

follows:

Φ(In, Kn) = φ(in)Kn, (3)

where in ≡ In/Kn is the investment-capital ratio in sector n. We require φ′( · ) > 0 and

φ′′( · ) ≤ 0. Our model nests frictionless “AK” models (such as CIR and Jones and Manuelli

(2005)) as special cases.7 In an earlier paper, Eberly and Wang (2009), we use this specifi-

cation in a deterministic model to examine the effects of capital reallocation on growth.

A representative consumer has a logarithmic utility given by:

E
(∫ ∞

0

e−αtα lnC(s) ds

)
, (4)

7Kogan (2004) considers a two sector model in which investment in one sector is irreversible (bounded
below by zero) and also bounded above. This is a special case of convex adjustment costs, applied to one
sector.
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where α > 0 is the subjective discount rate. We consider the more general recursive utility

formulation in Section 5. The consumer is endowed with financial claims on the aggregate

output from both sectors in the economy. Markets are complete.

Now consider the market equilibrium. The representative consumer chooses his consump-

tion and a complete set of financial claims to maximize (4). The representative firm in each

sector takes the equilibrium stochastic discount factor as given and maximizes firm value.

All produced goods are either consumed or invested in one or the other of the two sectors,

so the goods-market clearing condition holds:

C = Y0 + Y1 − I0 − I1. (5)

In equilibrium, the representative consumer holds his financial claims on aggregate output

in both sectors. Using the standard results in complete-markets competitive equilibrium

analysis, we obtain the equilibrium allocation by solving a central planner’s problem and

then decentralize the allocation using the price system. Details are included in the appendix.

3 Model Solution

We first summarize the model solution for the one-sector economy. Then, we solve the

allocation in the two-sector economy using the one-sector solution as the natural boundary

condition.

3.1 The one-sector economy

The one-sector economy serves as a benchmark and also is the solution to the model in the

extreme case where all capital is invested in one sector. In this case, the sectoral capital stock

is the aggregate capital K, which is the single state variable in this economy. The equilibrium

of the one-sector economy features stochastic growth, where the stochastic growth rates of

consumption, investment, and capital, and output are all equal. Moreover, these growth

rates are independently and identically distributed. Therefore, after scaling by capital,

the consumption-capital ratio c = C/K, investment-capital ratio i = I/K, and Tobin’s

q are all constant. For logarithmic utility, the first-order condition (FOC) with respect to

consumption gives c = αq, where q is the firm value-capital ratio, also referred to as average q
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or Tobin’s q. The FOC with respect to investment directly links Tobin’s q to the investment-

capital ratio i: q = 1/φ′(i). The FOCs for consumption and investment together with goods

market clearing condition (investment equals saving, i.e. A − c = i) jointly determine the

optimal investment-capital ratio as the solution to the equation (A − i)φ′(i) = α. The

equilibrium interest rate r is given by r = α+ φ(i)− σ2, the sum of the subjective discount

rate α and the expected growth rate φ(i), minus the standard precautionary saving term

for logarithmic utility. The expected return of a financial claim on aggregate output is

µm = α+φ(i) implying that the aggregate risk premium is equal to σ2. The CIR model is a

special case with q = 1 because capital is perfectly liquid (no adjustment cost, i.e. φ′(i) = 1).

In the appendix, we show that the representative consumer’s value function is J(K) =

ln(pK), where

p = (A− i) exp

[
1

α

(
φ(i)− σ2

2

)]
, (6)

and where i solves (A− i)φ′(i) = α. See the appendix for details. The constant value p will

help to determine the boundary conditions for a one-sector economy.

3.2 The two-sector economy

With two sectors, the natural state variables in the model are the capital stocks in the two

sectors. By exploiting the homogeneity properties of the model, the effective state variable

is the relative size of capital stocks in the two sectors, defined by

z ≡ K1

K0 +K1

, (7)

the ratio between sector-1 capital K1 and the aggregate capital (K0 + K1). Since physical

capital is non-negative, we have 0 ≤ z ≤ 1.

Let i denote the aggregate investment capital ratio: the ratio between aggregate invest-

ment (I0 + I1) and aggregate capital (K0 +K1), so that i ≡ (I0 + I1)/(K0 +K1). Using the

definitions of z and sectoral in, we have

i(z) = (1− z) i0(z) + zi1(z). (8)

Scaling the goods-market equilibrium market condition in equation (5) implies

c(z) + (1− z)i0(z) + zi1(z) = A0(1− z) + A1z. (9)
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3.2.1 Investment and endogenous growth

Adjustment costs drive a wedge between gross investment I and expected change in the cap-

ital stock in the economy Φ(I,K). The function Φ(In, Kn), which controls the effectiveness

of converting investment goods into installed capital, allows for both depreciation, so that

there is a difference between gross and net investment, and also investment adjustment costs

so that investment goods are used up in the installation process. The expected growth

rate φ(i) of capital nets out both depreciation and installation costs, so that the growth

in the capital stock is less than both gross investment i and the traditional notion of net

investment.

Let gn(z) denote the expected growth rate of capital in sector n. Using (2), we have

gn(z) = φ(in(z)), which differs from sectoral gross investment in(z). Let g(z) denote the

expected growth rate of aggregate capital (K0 +K1). We thus have

g(z) = (1− z) g0(z) + zg1(z). (10)

The concavity of φ(i) implies g(z) ≤ φ(i(z)). When z = 0, 1, the equality holds. Intuitively,

ceteris paribus, the expected growth rate g(z) is lower in a two-sector economy than the

corresponding one-sector economy, since both sectors incur convex adjustment costs.

3.2.2 Endogenous capital reallocation

The equilibrium dynamics of z are given by:

dzt = µz(zt)dt+ σzt(1− zt) (dB1(t)− dB0(t)) , (11)

where the drift µz(z) is given by

µz(z) = z(1− z)
[
g1(z)− g0(z) + (1− 2z)σ2

]
. (12)

Note that the volatility of dz is a quadratic function in z which attains its highest value at

z = 1/2 and becomes zero at z = 0, 1 (i.e. the one-sector economy is absorbing), as in the

two-tree pure exchange model of CLS. More interestingly in our model, the drift µz depends

on g1(z) − g0(z), the difference between the endogenous capital growth rates in the two

sectors. The larger this difference, the more capital reallocation occurs in equilibrium. This

component of growth, induced by the wedge between sectoral growth rates, fundamentally
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differentiates the results in our model from CLS. The sectoral growth rates will endogenously

differ between the two sectors because of the “imbalance” between the two capital stocks

(i.e. z 6= 1/2) even when the two sectors have the same technology.

3.2.3 Investment and Tobin’s q

We now turn to investment and the valuation of capital. The FOC for i1(z) is given by:

α

φ′(i1(z))
= c(z)

(
1 + (1− z)

N ′(z)

N(z)

)
, (13)

where N(z), the log of the value function (per unit of aggregate capital), is given in the

appendix. A similar first-order condition holds for i0(z) and is also in the appendix. Let

Vn(Kn; z) denote firm value in sector n. Using the homogeneity property, we have

Vn(Kn; z) = qn(z)Kn, n = 0, 1, (14)

where Tobin’s q in sector n is given by

qn(z) =
1

φ′(in(z))
. (15)

Intuitively, the capital stock increases by φ′(in) per marginal unit of investment. Each unit

of capital is valued at qn(z) Therefore, the firm optimally chooses in to equate φ′(in(z))qn(z)

to unity, the cost of investment.

The market value of aggregate capital is V (z) = V0(z) + V1(z) = q(z)(K0 + K1), where

Tobin’s q for the aggregate capital stock is given by

q(z) = (1− z)q0(z) + zq1(z) . (16)

3.2.4 Consumption and dividend yield

With complete markets and log utility, the aggregate consumption-wealth ratio C(z)/V (z)

is equal to the discount rate α, or equivalently c(z) = αq(z), as we noted in the one-sector

setting. While the aggregate dividend yield (i.e. consumption/wealth ratio) is constant and

equal to the discount rate α, the sectoral dividend yield dyn is stochastic and is given by

dyn(z) =
A− in(z)

qn(z)
, n = 0, 1. (17)
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The above formula implies that sectoral dividend yield can be negative if in(z) > A. Unlike a

one-sector model, the sectoral dividend yield can be negative when the consumer’s investment

incentive is high for that sector. We show that this negative dividend yield may indeed occur

when that sector is small and provides large diversification benefits.

4 An Exercise with Log Utility and Quadratic Adjust-

ment Costs

Up to now, none of our results depend on the particular functional form of adjustment costs,

φ(i). To further illustrate the properties of the model, we now specify a quadratic adjustment

cost function as follows:

φ(i) = i− θ

2
i2 − δ , (18)

where θ ≥ 0 is the adjustment cost parameter. When θ = 0, the expected growth rate of

capital is φ(i) = i − δ. We may naturally interpret δ as the expected rate of depreciation

in the special context without adjustment costs. By specifying the functional form, we first

obtain additional analytic solutions, and then solve the model numerically.

In the appendix, we show that the equilibrium consumption-capital ratio c(z) is given by

c∗(z) =
1

2

(
A− 1

θ

)
+

1

2

√(
A− 1

θ

)2

+ 4
α

θ

[
(1− z)2

L0(z)
+

z2

L1(z)

]
(19)

where the functions L0(z) and L1(z) are defined as:

L0(z) = (1− z)

[
1− zN

′(z)

N(z)

]
, (20)

L1(z) = z

[
1 + (1− z)

N ′(z)

N(z)

]
. (21)

Note that L0(z) + L1(z) = 1. The investment-capital ratios i0(z) and i0(z) are given by

i∗0(z) =
1

θ

[
1− α

c∗(z)

(
1− zN

′(z)

N(z)

)−1
]
, (22)

i∗1(z) =
1

θ

[
1− α

c∗(z)

(
1 + (1− z)

N ′(z)

N(z)

)−1
]
. (23)

Note that c(z), i0(z), and i1(z) are all explicit functions of N(z) and its derivatives. Using

these explicit expressions for decision rules, we obtain the following ODE for N(z):

0 = α ln

(
c∗(z)

N(z)

)
+ φ(i∗0(z))L0(z) + φ(i∗1(z))L1(z)− γσ2

2

[
L0(z)2 + L1(z)2

]
+ σ2M(z) , (24)
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where L0(z) and L1(z) are given in (20) and (21), respectively, and

M(z) =
z2(1− z)2N ′′(z)

N(z)
. (25)

We can obtain N(z) by solving the ODE (24) with the boundary conditions

N(0) = N(1) = p = (A− i) exp

[
1

α

(
φ(i)− σ2

2

)]
, (26)

where the constant value p is given in (6) and the optimal one-sector i = I/K is given by

i =
1

2

A+
1

θ
−

√(
A− 1

θ

)2

+
4α

θ

 . (27)

Our production model features endogenous growth and has direct implications for the

levels of the interest rate r(z) and the the expected return on the market portfolio µm(z),

but not the systematic risk σ2
m(z) and the risk premium rpm(z).

The sectoral distribution of capital, z, is the key state variable. Adjustment costs makes

z potentially slow moving as seen from (12). Moreover, the persistence of z induced by

adjustment costs expose the consumer to more sector-specific risk, ceteris paribus. The only

case in which prices are unaffected by the allocation of capital is at the absorbing boundaries

when z = 0, 1, or when the adjustment costs are arbitrarily small.

4.1 Sectoral distribution of capital z and the value function

Recall that the production and adjustment technologies in the two sectors are identical.

Despite the identical technologies, the two sectors price investment differently and carry

different risk premia because of differences in their capital stocks, even with constant-returns-

to-scale production.

We choose model parameters to generate sensible aggregate predictions and to highlight

the impact of endogenous investment and growth on equilibrium pricing and capital real-

location. The annual subjective discount rate is α = 0.04. Annual volatility is σ = 0.10

and the annual productivity parameter is A = 0.10. Finally, we choose the adjustment cost

parameter θ = 10 and δ = 0. The correlation coefficient ρ = 0. In the one-sector economy

(i.e. z = 0, 1), we have i = 0.0368, q = 1.58, and g = φ(i) = 0.03. The equilibrium one-

sector interest rate is r = 0.06% which tends to be high due to high precautionary saving.
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The equilibrium risk premium is 1% because of low risk aversion (γ = 1) and low volatility

(σ = 10%).

Figure 1 has six panels, arranged in 3 rows and 2 columns. The upper left panel of

Figure 1 shows N(z), the logarithm of the representative consumer’s value function per unit

of aggregate capital (K0 + K1), as a function of z = K1/(K0 + K1). Intuitively, we expect

that N(z) is maximized at z = 1/2, where the consumer achieves the maximally attainable

level of diversification between the two sectors.

The upper right panel of Figure 1 plots the drift of z, µz(z) given in equation (12). There

is a natural tendency for z to move towards the center (i.e. when z < 1/2, µz(z) > 0 and

hence on average z increases towards 1/2.) This mean reversion effect of µz(z) in z is also

present in CLS due to the definition of z. Unlike CLS, however, the “central tendency” is

stronger in our production economy due to endogenous investment and growth. Controlling

for size (that is, per unit of capital), the consumer has greater demand for the smaller sector,

and hence invests more per unit of capital, ceteris paribus. For example, when 0 < z < 1/2,

sector 1 is the smaller one, so the firm invests and grows at a faster rate, and i1(z) > i0(z)

and g1(z) > g0(z). The flexibility to adjust capital growth enhances the “central tendency”

of µz(z) due to endogenous growth. In contrast, in the CIR model with no adjustment costs

and hence unit marginal q, the economy frictionlessly responds to shocks and shifts capital

between two sectors, always maintaining half of its capital stock in each sector.

4.2 Aggregate implications on quantities and prices

In the mid left and right panels of Figure 1, we plot the aggregate investment capital ratio

i(z) and the aggregate Tobin’s q as functions of z. Note that neither i(z) nor q(z) are

monotonic in z.

The symmetry between the two sectors allows us to focus on the region 0 ≤ z ≤ 1/2.

First, aggregate investment i(z) decreases with z due to the adjustment cost. After reaching

the lowest value at around z = 0.10, investment i(z) starts to increase with z until it

peaks at z = 1/2. Intuitively, when z is close to zero (i.e. sector 1 is effectively the only

one), diversification has little value added, but the adjustment costs of having two sectors

may be high. Aggregate investment therefore falls. However, for sufficiently high z, the

diversification benefits outweigh the costs of adjusting capital stock. As a result, aggregate
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Figure 1: Aggregate results (log utility).
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investment increases and peaks again at z = 1/2.

Perhaps surprisingly, aggregate Tobin’s q moves in the opposite direction of aggregate

investment i(z) due to general equilibrium. With logarithmic utility, consumption is pro-

portional to firm value, i.e. c(z) = αq(z), where α is the agent’s subjective discount rate.

In equilibrium with symmetry, we have c(z) + i(z) = A. Therefore, a unit increase in i(z)

implies a unit decrease in c(z) and hence Tobin’s q decreases α units. Aggregate consump-

tion c(z) and hence q(z) first increase with z and then falls with z for z ≤ 1/2. Therefore,

our model predicts a negative (or weak) relation between i and q in aggregate data, even

though the neoclassic q theory of investment hold perfectly in the model. Heterogeneity and

equilibrium aggregation have first-order effects and potentially overturn the conventional

wisdom. However, for the illustration, the quantitative effects of sectoral distribution z on

aggregate investment are small. This is due to both consumption smoothing8 and the in-

vestment adjustment cost which encourages the firm to smooth its investment. In fact, we

show in Eberly and Wang (2009) in the deterministic case, and extend to uncertainty in the

appendix, that aggregate values are immune to the sectoral distribution of capital in the

case with log utility and log capital installation costs. Deviations from these assumptions

exhibit larger distributional effects, which we explore when we depart from the log utility

case in Section 5 and subsequent analysis.

Next, we turn to the asset pricing implications. In the bottom left and right panels of

Figure 1, we plot the expected return of the market portfolio (aggregate wealth), µm(z), and

the equilibrium interest rate r(z).

The expected return on the market portfolio, µm(z), closely tracks the expected aggregate

investment i(z) and aggregate growth rate g(z). This is consistent with the standard asset

pricing result that growth increases the expected rate of return on the risky asset. Its shape

again resembles a “W” as a function of z.

The risk-free rate r(z) depends on both the expected growth rate of aggregate consump-

tion and the volatility of aggregate consumption growth. Quantitatively, the precautionary

saving motive, measured by the variance of the market portfolio σ2
m(z), varies much more

with z than does aggregate growth. Hence, the precautionary motive determines the depen-

dence of the equilibrium interest rate on z. Note that r(z) reaches its maximum at z = 1/2,

8For log utility, the wealth effect offsets the substitution effect.
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where diversification achieves the highest possible level and precautionary saving demand

is lowest. A high interest rate is necessary to encourage saving in equilibrium when the

economy is well-diversified and the precautionary saving motive is weak.

4.3 Sectoral implications

The next set of figures shows sectoral values; in each panel we graph results for sector 1 only

for brevity since results are symmetric for sector 0. The top left and right panels of Figure

2 respectively plot the investment-capital ratio i1(z) and Tobin’s q in sector 1.

Sectoral investment and q. Recall that Tobin’s q in sector 1 is given by q1 (z) =

1/φ′(i1(z)) = [1− θi1(z)]−1. Therefore, Tobin’s q is monotonically increasing in its sectoral

investment-capital ratio and hence Tobin’s q and investment convey essentially the same

information for a given adjustment cost function. Note that both investment-capital ratio

i1(z) and Tobin’s q, q1(z), decrease before z reaches 0.80. Sectoral Tobin’s q and investment

capital ratio i become significantly larger as the sector becomes smaller, because the con-

sumer values the smaller sector more for diversification benefits, ceteris paribus. Recall that

there are constant-returns-to-scale in production, so this relationship between q and sector

size is not due to decreasing marginal returns in production. Rather, the diversification ben-

efits of keeping the small sector “alive” with the potential to grow are very valuable. Upon

vanishing, the sector will never be reborn, and the economy (with only the one surviving

sector) will be significantly riskier thereafter.

Note that i1(z) and q1(z) increase with z for sufficiently high z. The representative

agent’s consumption smoothing motive in equilibrium requires consumption and hence ag-

gregate investment to be relatively smooth and not too volatile. When sectors are sufficiently

imbalanced, the contribution by the dwindling sector to total investment is negligible. Hence,

to maintain a sufficient level of aggregate investment for the purpose of consumption smooth-

ing, the investment-capital ratio in the larger sector (i.e. sector 1 when z is high) must rise

as its share z increases. This explains the increasing behavior of the investment-capital ratio

i1(z) and Tobin’s q in z at the right side of the graph.

Sectoral risk premium and dividend yield. The mid left and right panels of Figure

2 graph the sectoral risk premium rp1(z) and dividend yield dy1(z). The risk premium of a
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Figure 2: Sectoral implications (log utility).

16



miniscule sector is effectively zero, because this sector carries almost no weight in aggregate

consumption, and the correlation ρ between the two shocks is zero. The same intuition

applies in the pure-exchange economy (e.g. CLS). Recall that the interest rate is lowest

at z = 0 and z = 1, therefore, the discount rate, the sum of the interest rate and the

risk premium, for a sector is lowest when it is vanishing. Intuitively, in equilibrium, the

preferences for consumption smoothing and risk diversification lower the risk premium and

the discount rate for the shrinking sector. Since the physical production technology remains

unchanged, the vanishing sector invests at the highest rate i1(0) to take advantage of its

lowest cost of capital.

To finance this high level of investment around z = 0, the firm lowers its dividend yield.

The dividend yield for the dwindling sector is positive in our example. However, for other

parameter values, the firm may choose to issue equity and hence the dividend yield may be

negative. Tobin’s q reaches the maximal level q1 (0) at z = 0 despite the low dividend yield.

Note that the high valuation of capital for the vanishing sector is primarily driven by the

discount rate effect induced by diversification benefits. Unlike the aggregate dividend yield,

which is equal to the subject discount rate α for log utility, the sectoral dividend yield varies

significantly with z.

Sectoral β and volatility. We now turn to sectoral risk measures. In the bottom left and

right panels of Figure 2, we plot β and return volatility σr1(z) in sector 1. The β for sector

1 is given by

β1(z) =
σ

(σm(z))2

[
σm1 (z) + ( σm1 (z)− σm0 (z)) z(1− z)

q′1(z)

q1(z)

]
, (28)

where σm0 (z) and σm1 (z) are given by

σm0 (z) =
σ0(1− z)

q(z)

[
q0(z)− z(1− z)q′0(z)− z2q′1(z)

]
, (29)

σm1 (z) =
σ1z

q(z)

[
q1(z) + (1− z)2q′0(z) + z(1− z)q′1(z)

]
. (30)

The non-monotonic behavior of β can be understood by considering several benchmarks.

First, zero risk premium for the disappearing sector implies β1(0) = 0. Second, with increases

in the share of capital z, more consumption is financed out of sector-1’s output and hence

β1(z) rises. Third, β(1/2) = 1, which follows from symmetry between the two sectors and
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β = 1 for the market portfolio by definition. When z increases above 1/2, β1(z) exceeds

one, because the other sector becomes smaller and carries smaller β (again by symmetry).

Therefore, the bigger sector is riskier, ceteris paribus. Finally, when the sector becomes

sufficiently large (i.e. low enough z), β has to fall as the sector becomes effectively the market

portfolio, which has β = 1 by definition. Indeed, in the limit, when sector 1 comprises the

whole economy (z = 1), β1 = 1.

Now consider return volatility for sector 1, σr1(z). We have

σr1(z) = σ

√(
q′1(z)

q1(z)
z(1− z)

)2

+

(
1 +

q′1(z)

q1(z)
z(1− z)

)2

. (31)

While σr1(z) also varies non-monotonically with z, its behavior is rather different from β1(z).

At z = 0, β1(z) is zero and hence all return volatility comes from the idiosyncratic component

because the sector carries no weight in the aggregate. Since total return volatility is the same

as capital stock growth volatility σ for the miniscule sector, we have σr1(0) = σ = 0.10. When

z = 1, sector 1 is the whole economy and hence the aggregate volatility is also σ = 10%. It

is thus natural to expect a non-monotonic relation between sectoral return volatility σr1(z)

and sectoral distribution of capital stock z.

5 Equilibrium with Recursive Utility and Asymmetry

We now extend our baseline model to allow for more flexible preferences and sectoral asymme-

try. Specifically, we consider the setting where the representative consumer has a homothetic

preference featuring both constant relative risk aversion and constant elasticity of intertem-

poral substitution (Epstein and Zin (1989) and Weil (1990)). We use the continuous-time

formulation of this recursive utility introduced by Duffie and Epstein (1992a). That is, the

agent’s has a recursive preference defined as follows:

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
, (32)

where f(C, J) is known as the normalized aggregator for consumption C and the agent’s

continuation value J . Duffie and Epstein (1992a) show that f(C, J) for Epstein-Zin non-

expected (homothetic) utility is given by

f(C, J) =
α

1− ψ−1

C1−ψ−1 − ((1− γ)J)ω

((1− γ)J)ω−1
, (33)
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where

ω =
1− ψ−1

1− γ
. (34)

The parameter ψ ≥ 0 measures the elasticity of intertemporal substitution, and the pa-

rameter γ ≥ 0 is the coefficient of relative risk aversion. The parameter α > 0 is the

entrepreneur’s subjective discount rate. The widely used time-additive separable constant-

relative-risk-averse (CRRA) utility is a special case of the above Duffie-Epstein-Zin-Weil

recursive utility specification where the coefficient of relative risk aversion γ is equal to the

inverse of the elasticity of intertemporal substitution ψ, i.e. γ = ψ−1 and hence ω = 1.

For the general recursive utility given in equations (32) and (33), the scale-invariance

property proves useful in keeping our model analysis tractable (see Duffie and Epstein (1992b)

for example). Using this preference, we can quantify both the effect of intertemporal substi-

tution and that of risk aversion on equilibrium resource allocation and asset pricing.

5.1 One-sector Economy

The one-sector economy defines the boundaries of the two-sector economy as one sector’s

capital stock shrinks to zero. We now allow for sector-specific values of sectoral parameters,

so that the two sectors need not be ex ante identical. The one-sector equilibrium investment-

capital ratio i∗n for sector n solves the following non-linear implicit equation:

An − i∗n =
1

φ′n(i∗n)

[
α + (ψ−1 − 1)

(
φn(i∗n)− γσ2

n

2

)]
. (35)

Note that the left side of (35) is also the equilibrium consumption-capital ratio. Note that in

equilibrium, the firm’s optimality implies that Tobin’s q is given by q∗n = 1/φ′n(i∗n). Therefore,

the marginal propensity to consume out of wealth C/V , i.e. the dividend yield on aggregate

wealth, is given by

dyn =
An − i∗n
q∗n

= α + (ψ−1 − 1)

(
φn(i∗n)− γσ2

n

2

)
. (36)

The equilibrium value function coefficient pn for a one-sector economy is given by

pn =
α

φ′n(i∗n)

[
1 +

ψ−1 − 1

α

(
φn(i∗n)− γσ2

n

2

)]1/(1−ψ)

. (37)
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5.2 Two-sector Economy

For two-sector economy, sectoral investment-capital ratios i0 and i1 jointly solve the following

implicit equations as functions of z = K1/(K0 +K1):(
c∗(z)

N(z)

)1/ψ

=
α

φ′0(i
∗
0(z))

1

N(z)− zN ′(z)
, (38)(

c∗(z)

N(z)

)1/ψ

=
α

φ′1(i
∗
1(z))

1

N(z) + (1− z)N ′(z)
, (39)

where c∗(z) is the optimal aggregate consumption-capital ratio: c∗(z) = C∗/(K0 + K1).

Naturally, the goods-market equilibrium market condition given in (9) continues to hold.

Equations (38), (39), (9) and the following ODE jointly give the solution for sectoral

investment-capital ratios:

0 =
α

1− ψ−1

[(
c∗(z)

N(z)

)1−ψ−1

− 1

]
+ φ0(i

∗
0(z))L0(z) + φ1(i

∗
1(z))L1(z)

− γ

2

[
σ2

0L0(z)2 + σ2
1L1(z)2 + 2ρσ0σ1L0(z)L1(z)

]
+
σ2

0 − 2ρσ0σ1 + σ2
1

2
M(z) , (40)

where L0(z), L1(z), and M(z) are given in (20), (21), and (25), respectively.

Both z = 0 and z = 1 are absorbing barriers. They correspond to the one-sector model

solution. The boundary conditions are

N(0) = p0, and N(1) = p1 , (41)

where pn is the value function coefficient for the one-sector economy, and is given by (37),

evaluated with parameters and the optimal investment-capital ratios in sectors 0 and 1.

Using Ito’s formula, the dynamics of z = K1/(K0 +K1), which govern endogenous capital

reallocation, are given by

dzt = µz(zt)dt+ zt(1− zt)σ1dB1(t)− zt(1− zt)σ0dB0(t) , (42)

where the drift of z, µz(z), is given by

µz(z) = z(1− z)
[
φ1(i1(z))− φ0(i0(z)) + (1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
. (43)
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5.3 Two-sector CIR Model

We next report the results for the setting with no adjustment costs in either sector, i.e.

φ′n(i) = 1 for n = 0, 1. Because capital is perfectly liquid, we have a time-invariant steady-

state sectoral capital distribution. That is, there is a single constant z which maximizes the

representative consumer’s welfare and is given by

z∗ =
(A1 − δ1)− (A0 − δ0) + γ (σ2

0 − ρσ0σ1)

γ (σ2
0 − 2ρσ0σ1 + σ2

1)
. (44)

Aggregate consumption-capital ratio c(z∗) is given by

c(z∗) = αψN(z∗)1−ψ , (45)

where N(z∗) is given by

N(z∗) = α [1 + (1− ψ) ((A0 − δ0) z∗ + (A1 − δ1) (1− z∗)− α− Π(z∗))]1/(1−ψ) , (46)

and

Π(z∗) =
γ

2

[
σ2

0(z∗)2 + 2ρσ0σ1z
∗ (1− z∗) + σ2

1(z∗)2
]
. (47)

6 Exercise with recursive utility: capital illiquidity

As in the baseline case, the analytic results with recursive utility are independent of the

functional form for adjustment costs, φn(i). In order to calculate quantitative results we

now use the baseline quadratic adjustment cost function:

φn(i) = i− θn
2
i2 − δn. (48)

We continue to use the parameter values we introduced in Section 4.1 for the baseline sym-

metric model with log utility.

To understand the role of capital liquidity, we now consider a comparative static change

in the efficiency of reallocating capital. In standard equilibrium models, this experiment

is not possible, since capital reallocation is either frictionless (CIR) or ruled out in pure-

exchange settings (CLS). In this section, we analyze the aggregate and sectoral effects of

changing the adjustment cost parameter θ. We choose three levels of the adjustment cost

parameters: θ = 10, 20, and 10, 000 for Figures 3-6. The higher the value of θ, the more
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illiquid is physical capital. The extreme value of θ = 10, 000 corresponds to essentially

completely illiquid capital. Without investment, the economy essentially behaves as a pure-

exchange economy (CLS). We set the agent’s coefficient of relative risk aversion γ = 2. All

other parameter values are the same as in Section 4.

The adjustment costs impose direct resource costs (hence lowering the welfare) and also

discourage savings and investment. The higher the adjustment cost parameter θ is, the lower

welfare N(z) is, and the higher consumption is. In fact, for the highest adjustment cost, the

consumer consumes virtually the entire dividend and does not save; in this case, no direct

resource costs are incurred at all, but the high adjustment cost gives rise to the misallocation

of resources.

6.1 Aggregate implications

Figures 3 and 4 plot aggregate implications for two settings where the elasticity of intertem-

poral substitution ψ is set at ψ = 0.5 and ψ = 2, respectively. We consider these two values

of elasticities because there is much debate about the magnitude of elasticity of intertempo-

ral substitution. In the macro finance literature (where long-run risk is a key input), a high

value of elasticity ψ is often chosen.9

First, we show that regardless of elasticity of intertemporal substitution, welfare N(z)

decreases with the adjustment cost. For a given θ, N(z) is higher when the sectors are more

balanced. Second, investment decreases with the adjustment cost and hence consumption

must increase with the adjustment cost in the short run: aggregate output is either invested

or consumed via dividends. Third, the higher the adjustment cost, the higher the rents to

installed capital and hence the higher is Tobin’s q.

Fourth, the higher the adjustment cost, the smaller is adjustment and thus on average

the smaller is magnitude of the change in z, |µz(z)|. When the adjustment cost is lower, the

consumer actively reallocates capital to drive the allocation of capital back to the optimal

value of z = 0.5, so the central tendency in Figures 3-4 is dramatically strengthened as

capital becomes more liquid, i.e. the adjustment cost declines. Fifth, the aggregate risk

9Bansal and Yaron (2004) argue that the elasticity of intertemporal substitution is larger than one and
use 1.5 in their long-run risk model. Attanasio and Vissing-Jorgensen (2003) estimate that the elasticity of
intertemporal substitution is higher than unity for stockholders. Hall (1988) uses aggregate consumption
data, obtains an estimate near zero. Using micro and macro evidence, Guvenen (2006) aims to reconcile the
different estimates and finds that the elasticity depends on wealth.
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Figure 3: Aggregate implications with risk aversion γ = 2 and elasticity ψ = 0.5.
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Figure 4: Aggregate implications with risk aversion γ = 2 and elasticity ψ = 2.
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premium rp(z) is virtually independent of the adjustment cost. This is perhaps counter-

intuitive. We provide intuition in two steps: first, with one sector only (i.e. z = 0, 1), this

is expected because the volatility of the shock to capital is exogenously given. Adjustment

costs enter via the expected change, i.e. the drift, in capital accumulation. This in turn

translates into the implication that only the drift µz(z), not the volatility, of the capital

stock share z (the key state variable), depends on the adjustment cost specification. Since

the risk premium depends on the volatility of z and the pricing kernel, we naturally do not

expect much variation of the aggregate risk premium with respect to the adjustment cost.

Moreover, for a given value of θ, the agent’s incentive to consume is highest when the two

sectors are more balanced because the systematic risk is smaller (due to diversification).

Finally, the adjustment cost has a significant effect on the level of the interest rate and

hence also the expected aggregate market return.10 Intuitively, the more liquid capital is,

the more attractive and hence the higher is investment. In order to clear the goods market,

we need to encourage the consumer to save so that investment can be financed. As a result,

the equilibrium interest rate is higher in a more liquid economy, as we see for both levels

of elasticities. This is often viewed as one undesirable effect of introducing production into

equilibrium asset pricing models because it pushes up the equilibrium interest rate.

6.2 Sectoral implications

Figures 5 and 6 plot the corresponding sectoral results for the same two settings, i.e. elasticity

of intertemporal substitution ψ is set at ψ = 0.5 and ψ = 2. In the low adjustment cost

economy, the incentive to save and reallocate capital is strong, and hence investment is

high at the sectoral level. This effect is also reflected in the lower value of Tobin’s q when

adjustment costs are low. When adjustment costs are so high as to prohibit investment

almost entirely, the value of Tobin’s q for a vanishing sector increases sharply, as the marginal

value of reviving the shrinking sector skyrockets.

The sectoral risk premium and sectoral β are almost independent of the adjustment costs

provided that the sector is not too small. However, when the sector is small enough (low

z for sector 1), the properties of the sectoral risk premium and β differ depending on the

elasticity of intertemporal substitution and the adjustment costs. In those situations, the

10This is because aggregate risk premium is effectively independent of the adjustment cost as we have
argued in the preceding paragraph and documented in Figures 3-4.
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Figure 5: Sectoral implications with risk aversion γ = 2 and elasticity ψ = 0.5.
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Figure 6: Sectoral implications with risk aversion γ = 5 and elasticity ψ = 2.
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diversification incentive is very strong.

With a relatively small elasticity of intertemporal substitution (e.g. ψ = 0.5), for low

values of z, the higher the adjustment cost is, the larger the sectoral risk premium and β

are. Intuitively, a more costly adjustment process makes the smaller sector riskier.

With a large elasticity of intertemporal substitution (e.g. ψ = 2), the representative

agent’s incentive to smooth consumption over time is very high. As a result, the value of

the dwindling sector skyrockets and investment increases substantially when the adjustment

cost is relatively low. Intuitively, if ψ is high (e.g. ψ = 2), for the dwindling sector, the

sensitivity of Tobin’s q with respect to changes in sectoral distribution z is quite high when

the adjustment cost is low. As a result, the sectoral risk premium and sectoral β are higher

in dwindling sectors when the adjustment cost is low.

7 Exercises: Recursive Utility with Quadratic Adjust-

ment Costs

In this section, we continue to use the baseline quadratic adjustment cost function, and

explore the implications of changing risk aversion and asymmetric sectors. Otherwise, we

continue to use the parameter values that we introduced in Section 4.1 for the baseline

symmetric model with log utility.

7.1 Varying Risk Aversion

Since diversification across the two sectors plays an important role in capital allocation, we

now consider changing risk aversion in order to explore the quantitative impact of risk. We

already discussed the log utility case (γ = 1) in Figures 1 and 2, so now we graph the results

for different values of risk aversion, γ = 2, 5, holding the other parameters of the model fixed.

With non-expected utility, we can hold the intertemporal elasticity of substitution, ψ, fixed

at 0.5, while changing risk aversion. The case with γ = 2 is thus the standard CRRA case.

Aggregate implications. In Figure 7, we plot the aggregate implications of the model

with risk aversion γ = 2, 5. In all cases, higher risk aversion lowers welfare N(z) and raises

investment. Note, however, the greater curvature in welfare N(z) as a function of z, the

distribution of capital, for higher values of γ. The more risk averse consumer responds more

to changes in the distribution of capital, which determine how well-diversified the household
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Figure 7: Aggregate implications with different levels of risk aversion γ = 2, 5 and
elasticity of intertemporal substitution ψ = 0.5.
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Figure 8: Sectoral implications with different levels of risk aversion γ = 2, 5 and
elasticity of intertemporal substitution ψ = 0.5.
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is. When his risk aversion is high, the consumer cuts consumption more as he becomes less

diversified (z closer to zero or one), and instead engages in more precautionary savings. The

middle panel of Figure 7 shows that this savings response translates into higher investment

and growth near the boundary values of z, compared to z = 0.5. This greater response

of investment to the distribution of capital, z, increases the mean reversion in the model,

evidenced in the drift for the dynamics of z, µz(z). The higher is risk aversion, the greater

is the central tendency in z. These effects are also evident in the interest rate, which also

shows more curvature in the high risk aversion case. With higher risk aversion, the model

also generates higher expected returns and risk premia, consistent with the lower asset prices

and investment, compared to the low risk aversion case.

Sectoral implications. In Figure 8, we plot the sectoral implications for the model

with risk aversion γ = 2, 5. As in the aggregate case, the higher value of risk aversion

is associated with higher investment and Tobin’s q in each sector, as well as a higher risk

premium. The dividend yield is lower when risk aversion is higher because of the strong

investment response to higher risk aversion, depleting the dividend.

These results indicate that risk aversion, even for modest values of γ, substantially en-

hances the effect of the distribution of capital on aggregate variables. In particular, the

central tendency in the model is much stronger as risk aversion increases, since the consumer

is more sensitive when the economy is less diversified. The enhanced central tendency drives

greater investment and growth for extreme values of z. As in the single sector model, greater

risk aversion increases risk premia, but lowers expected returns owing to the lower interest

rate resulting from greater precautionary saving. Hence, asset prices rise with risk aversion

in equilibrium.

7.2 Asymmetric sectors, Varying Risk Aversion

So far, we have only considered cases with two symmetric sectors, so the economy achieves

maximum diversification and highest welfare at z = 0.5. Now we allow for the two sectors to

have different values of the adjustment cost parameter θ, so that one sector is relatively liquid

and the other illiquid. In this case, shocks to z not only change the degree of diversification,

but also the economy’s liquidity composition. In Figures 9 through 11, we plot results for
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the model with θ0 = 10, and θ1 = 10, 000.11 By choosing θ1 = 10, 000, we effectively make

the sector 1 illiquid (Lucas tree) sector.

Aggregate Implications. When z is low, sector 1 (the illiquid sector) is small and the

overall economy is relatively liquid. As z rises, the economy has relatively more illiquid cap-

ital. Now, the value function N(z) in Figure 9 achieves its maximum at a value of z less than

0.5, since the consumer prefers to hold more of the relatively liquid capital, ceteris paribus.

Because sector 0 is significantly more attractive than sector 1, the liquidity preference dom-

inates the diversification concern so that the drift in z is negative for all z. Additionally,

there is more reallocation for higher values of risk aversion. The middle panel of Figure 9

shows that investment falls monotonically as z increases: as capital becomes less liquid on

average, savings and aggregate investment fall monotonically. Similarly, consumption rises

monotonically as z increases and capital is less liquid. Paradoxically, Tobin’s q rises with z as

investment falls. This effect is consistent with the fact that the value of installed capital rises

as adjustment costs generate rents to installed capital. Again, changes in liquidity cause

investment and Tobin’s q to move in opposite directions: higher liquidity (higher values of

z) increases investment but decreases Tobin’s q. The bottom panel of Figure 9 shows that

the aggregate risk premium is highest when the economy is less-well-diversified, especially

for higher risk aversion. The interest rate reaches its peak to the left of z = 0.5, where it is

also relatively flat. In this region, the economy is relatively liquid so there is little change

in precautionary savings as z varies. On the right-hand side, however, where the economy is

illiquid, precautionary savings and hence the interest rate are more sensitive to changes in

z, especially for higher risk aversion.

Sectoral Implications. The next two figures, Figures 10 and 11, show the sectoral

values as functions of z in the economy; since the two sectors are no longer symmetric, we

now graph the two sectors separately. Figure 10 shows values for sector 1, the illiquid sector

with high adjustment costs. The first panel of Figure 10 shows that investment is always

near zero (because of the prohibitively high adjustment costs), so Tobin’s q varies with z,

especially as sector 1 becomes very large. The middle panel shows that the risk premium

in sector 1 rises as that sector becomes a larger share of the economy, consistent with our

earlier discussion of the symmetric sectors. Since investment is zero for all values of z, the

11In our earlier paper, Eberly and Wang (2009), we studied asymmetric productivity, A, in a deterministic
setting.
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Figure 9: Aggregate implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.
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Figure 10: Sector-1 implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.
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Figure 11: Sector-0 implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.
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dividend yield simply reflects the ratio of A to value, or the inverse of Tobin’s q. Similar to

what we saw in the symmetric case, the bottom panel shows that sectoral β rises and then

falls as sector 1 becomes larger.

Figure 11 for the liquid sector shows the properties of liquid capital in the model. The

first panel of Figure 11 shows that both investment and Tobin’s q in sector 0 rise with z,

as the economy becomes less liquid on average. In this example, as z approaches unity

and the liquid sector tends to disappear, the value of liquid capital (measured by Tobin’s

q) exceeds 100, since the agent places such a high value on resuscitating the liquid sector.

The second panel of the charts shows that the risk premium in the liquid sector does not

generally increase with the size of the sector, especially for higher risk aversion. As z rises

and sector 0 shrinks, its risk premium initially falls, as expected, but then it rises again

(before falling abruptly when the sector becomes insignificant), especially when risk aversion

is high. In the range where the liquid sector is a relatively small part of the economy, sector

0 is nonetheless the only sector with an “adjustable” capital stock. Thus, it buffers all

shocks (even shocks to the other sector) to provide consumption smoothing. This can be

seen in the bottom panel of the figure, where sector 0 volatility increases to the right of the

graph. Moreover, sector 0’s β also falls, and then increases again (before going to zero) as

sector 0 shrinks. Thus, as sector 0 becomes very small, the value of its capital (Tobin’s

q) shoots up because the overall cost of capital falls, but sector 0 itself becomes riskier and

more volatile.

This version of the model allows us to consider the properties of an economy with an

unbalanced capital stock. Of course, an overall negative shock to the capital stock reduces

wealth and consumption. But if an economy finds itself with a relative excess of illiquid

capital, the effects are worse because the economy is not only poorer, but also undiversified

and illiquid. Relative to setting z at its utility-maximizing value, a high value of z is

associated with lower aggregate investment and growth, even though the investment rate

in liquid capital increases to rebuild the liquid sector. Because the overall economy is less

liquid, the aggregate risk premium rises and so does aggregate return volatility. The interest

rate falls because the consumer has a greater incentive to save in the illiquid economy. In

the model, the results are endogenously generated by the equilibrium response to an excess

of illiquid capital relative to liquid capital. Such a shock causes the overall economy to
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become less liquid: this is an endogenous change in liquidity in contrast to the comparative

static change in θ we considered in Section 6.

8 Conclusion

We have developed an analytical framework that extends and nests standard equilibrium

models in macroeconomics and finance. The two sector structure allows us to consider both

ex ante and ex post heterogeneity. This is especially important in assessing the role of

equilibrium in models with a representative firm. By examining the dynamics of the model

when one sector is relatively small and has little impact on the aggregates, researchers can

examine a “partial equilibrium” exercise in an equilibrium setting. In the limit, as a sector

becomes an increasingly large share of the economy, our results converge to those of a single

sector equilibrium model - which provides the boundary conditions for our model. Similarly,

by allowing for investment with adjustment costs, we nest both the “two trees” approach

of CLS and the frictionless model of CIR, as adjustment costs go to infinity and to zero,

respectively, in our model. Not only does our framework allow for intermediate cases between

CLS and CIR, it also allows for asymmetric capital adjustment across the two sectors, which

is implicitly ruled out by both polar cases.

The model is driven by the tension between diversification and adjustment costs. The

agent is most diversified by a balanced capital stock, but maintaining this balance requires

incurring costs of reallocating capital. The efficiency cost of reallocating capital is a drag on

growth in the economy, so the agent gives up some efficiency and growth in order to diversify

risk.

After developing the general framework, we use it to demonstrate both when heterogene-

ity is not relevant in the aggregate and when it is - and for the latter case, how heterogeneity

affects the equilibrium. In the symmetric economy with log utility, the distribution of cap-

ital across sectors has very little effect on aggregate values. This immunity is exact when

the adjustment cost function is also log, as we show in a deterministic case in Eberly and

Wang (2009) and extend here to the stochastic case. However, even with quadratic adjust-

ment costs, the distributional effects are negligible when the utility function is log. When

we depart from log utility, greater risk aversion generates a much larger consequence of the

distribution of capital.
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Even in the benchmark case, the two sector economy exhibits endogenous capital real-

location. The desire for diversification generates mean reversion in the capital distribution,

counterbalanced by costs of adjustment, so reallocation is slow and time-varying. For ex-

ample, when a sector is small, the desire to invest and restore diversification is very large.

Conversely, the cost of capital is very low because the sector is virtually risk-free. Hence,

Tobin’s q and investment are very large in the dwindling sector, and the dividend yield may

be negative, even with constant-returns-to-scale in production and identical technologies in

the two sectors.

When risk aversion is higher, the economy is more sensitive to the distribution of capital,

exhibiting greater reallocation and greater price variation at both the aggregate and sectoral

levels. These results are further enhanced when liquidity differs between the two sectors,

so that one sector has relatively liquid (low adjustment cost) capital. In this case shocks

to the distribution of capital change both diversification and liquidity in the economy. In

particular, a low-liquidity economy is both undiversified and faces costly rebalancing, so the

agent is especially sensitive to risk. An economy with too much illiquid capital has low

investment and low growth, but high risk premia and high volatility even while the interest

rate is low. This situation persists while the economy rebuilds liquidity by investing in the

low adjustment cost sector.

These results demonstrate the impact of shifting the balance between risk diversification

and costly reallocation. Higher risk aversion focuses on the value of diversification, while

altering the reallocation technology changes the costs of moving capital in the desired di-

rection. Because liquidity is valuable in a stochastic economy, the more so the higher is

risk aversion, these shifts significantly alter the dynamic equilibrium prices and quantities.

Put differently, shocks in the model can unbalance the desired “match” of capital to sectors,

and the adjustment cost function controls how readily new matches can be made. Hence,

the model generates endogenous shifts in the matching function governing reallocation, as

suggested in the labor literature by Shimer (2007) and in current data by Kocherlakota

(2010).
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A Appendix: Technical details (Not for publication)

We provide technical details for the general case with recursive utility. We first solve the

central planner’s resource allocation problem. Then, by using the standard welfare theorem,

we use equilibrium allocation to derive both aggregate and sectoral asset pricing implications.

A.1 The social planner’s resource allocation solution.

We conjecture that representative agent’s value function J(K0, K1) has the homogeneity

property in sectoral capital stocks K0 and K1 and can be written in the following form:

J(K0, K1) =
1

1− γ
((K0 +K1)N(z))1−γ , (A.1)

where z = K1/(K0 + K1) and N(z) is a function to be determined. We use Jn(K0, K1) to

denote the first-order derivative with respect to capital stock Kn in sector n = 0, 1. Similarly,

we use Jmn(K0, K1) to denote the second-order derivatives with respect to capital stocks in

sectors n and m.

The following Hamilton-Jacobi-Bellman (HJB) equation describes the planner’s problem:

0 = max
I0, I1

f(C, J)+φ0(i0)K0J0+φ1(i1)K1J1+
1

2
σ2

0K
2
0J00+ρσ0σ1K0K1J01+

1

2
σ2

1K
2
1J11. (A.2)

Using the conjectured value function (A.1), we have the following two first-order conditions

(FOCs) with respect to the sectoral investment-capital ratios i0 and i1:(
c∗(z)

N(z)

)1/ψ

=
α

φ′0(i
∗
0(z))

1

N(z)− zN ′(z)
, (A.3)(

c∗(z)

N(z)

)1/ψ

=
α

φ′1(i
∗
1(z))

1

N(z) + (1− z)N ′(z)
, (A.4)

where c(z) = C/(K0 + K1) is the aggregate consumption-capital ratio. With the optimal

c∗(z), the normalized aggregator of Duffie-Epstein utility for the agent is given by

f(C∗, J) =
α

1− ψ−1

[(
c∗(z)

N(z)

)1−ψ−1

− 1

]
((K0 +K1)N(z))1−γ . (A.5)

As a special case, if ψ = 1, we have f(C, J) = α [ln c(z)− lnN(z)] ((K0 +K1)N(z))1−γ .

Substituting the normalized aggregator (A.5) and the FOCs (A.3) and (A.4) for i0 and i1

into the HJB (A.2), we obtain the nonlinear differential equation (40) in the text. Similarly,
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we apply our two-sector results to z = 0 and z = 1, we obtain the boundary conditions given

by (41) and (37) at the absorbing boundaries: z = 0, 1.

Using the Ito’s formula, we show that the dynamics of z = K1/(K0 +K1) are given by

dzt = µz(zt)dt+ zt(1− zt)σ1dB1(t)− zt(1− zt)σ0dB0(t) , (A.6)

where the drift of z, µz(z), is given by

µz(z) = z(1− z)
[
φ1(i

∗
1(z))− φ0(i

∗
0(z)) + (1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
. (A.7)

The aggregate capital accumulation dynamics is

d(K0(t) +K1(t))

K0(t) +K1(t)
= g(zt)dt+ (1− zt)σ0dB0(t) + ztσ1dB1(t) , (A.8)

where the aggregate growth (capital accumulation) rate g(z) is given by

g(z) = (1− z)φ0(i
∗
0(z)) + zφ1(i

∗
1(z)) . (A.9)

The volatility of the aggregate growth (capital accumulation) rate is given by

σ(z) =
√
σ2

0(1− z)2 + 2ρσ0σ1(1− z)z + σ2
1z

2 . (A.10)

The aggregate Tobin’s q is

q(z) =
V (K0, K1)

K0 +K1

= (1− z)q0(z) + zq1(z) . (A.11)

A.2 Asset pricing implications.

Let ξ denote the equilibrium stochastic discount factor (SDF). Using the results in Duffie

and Epstein (1992), we have

ξt = exp

[∫ t

0

fJ(C∗s , Js) ds

]
fC(C∗t , Jt). (A.12)

We have

fJ(C∗, J) =

(
α

1− ψ−1

)[(
ψ−1 − γ

)( c∗(z)

N(z)

)1−ψ−1

− (1− γ)

]
, (A.13)

fC(C∗, J) =
α(C∗)−ψ

−1

((1− γ)J(K0, K1))ω−1
=
δ(N(z)(K0 +K1))

ψ−1−γ

(C∗)ψ−1 . (A.14)
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The equilibrium dynamics of the SDF is given by

dξt = −r(zt)ξtdt− η0(zt)ξtdB0(t)− η1(zt)ξtdB1(t) , (A.15)

where the equilibrium interest rate as a function of z is given by

r(z) = α + α

(
ψ−1 − γ
1− ψ−1

)[
1−

(
c∗(z)

N(z)

)1−ψ−1
]

+ γg(z)

− (γ + 1)
[
(1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
ε(z)− ε(z) (φ1(i

∗
1(z))− φ0(i

∗
0(z))

+
ψ−1

2

[
d2

dz2
ln c(z)− (1− γψ)

d2

dz2
lnN(z)

]
z2(1− z)2(σ2

0 − 2ρσ0σ1 + σ2
1)

− (γ + 1)γ

2

(
σ2

0(1− z)2 + σ2
1z

2 + 2ρσ0σ1z(1− z)
)
− (σ2

0 − 2ρσ0σ1 + σ2
1)ε2(z)

2
, (A.16)

and the equilibrium market prices of risk for two diffusion risks B0(z) and B1(z), η0(z) and

η1(z), are respectively given by

η0(z) = σ0ε(z) + γσ0(1− z), (A.17)

η1(z) = −σ1ε(z) + γσ1z, (A.18)

where

ε(z) = ψ−1

(
−c
∗′(z)

c∗(z)
+ (1− γψ)

N ′(z)

N(z)

)
z(1− z) . (A.19)

The market-to-book ratio, average q, is also equal to marginal q, for sector n is given by:

qn(z) =
Vn
Kn

=
1

φ′n(i∗n(z))
, n = 0, 1. (A.20)

The dividend yields in sector n, dyn, is given by

dyn(z) =
Dn

Vn
=
An − i∗n(z)

qn(z)
. (A.21)

Next, we derive the dynamics for the rate of return from investing in sector 0, dR0(t),

which is given by the sum of sector-0 dividend yield D0(t)dt/V0(t) = dy0(zt)dt and the

expected rate of capital gains dV0(t)/V0(t). Using Ito’s formula, we obtain:

dR0(t) =
D0(t)dt+ dV0(t)

V0(t)
= dy0(zt)dt+

dq0(zt)

q0(zt)
+
dK0(t)

K0(t)
+
dq0(zt)

q0(zt)

dK0(t)

K0(t)
,

= µr0(zt)dt+
q′0(zt)

q0(zt)
zt(1− zt) (σ1dB1(t)− σ0dB0(t)) + σ0dB0(t), (A.22)
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where the expected rate of return in sector 0, µr0(z), is given by

µr0(z) = dy0(z) + φ0(i0(z)) + z(1− z) [φ1(i1(z))− φ0(i0(z))]
q′0(z)

q0(z)
(A.23)

−z2(1− z)
(
σ2

0 − 2ρσ0σ1 + σ2
1

) [q′0(z)

q0(z)
− 1

2

q′′0(z)

q0(z)
(1− z)

]
.

Let σr0(z) denote the return volatility in sector 0. We may calculate σr0(z) as follows:

σr0(z) =

[(
q′0(z)

q0(z)
z(1− z)

)2 (
σ2

0 − 2ρσ0σ1 + σ2
1

)
− 2z(1− z)

q′0(z)

q0(z)

(
σ2

0 − ρσ0σ1

)
+ σ2

0

]1/2

.(A.24)

Similarly, the instantaneous rate of return dR1(t) including both the dividend yield and

capital gains in sector 1 is given by

dR1(t) =
D1(t)dt+ dV1(t)

V1(t)
= dy1(zt) +

dq1(zt)

q1(zt)
+
dK1(t)

K1(t)
+
dq1(zt)

q1(zt)

dK1(t)

K1(t)
,

= µr1(zt)dt+
q′1(zt)

q1(zt)
zt(1− zt) (σ1dB1(t)− σ0dB0(t)) + σ1dB1(t), (A.25)

where the expected rate of return in sector 1, µr1(z), is given by

µr1(z) = dy1(z) + φ1(i1(z)) + z(1− z) [φ1(i1(z))− φ0(i0(z))]
q′1(z)

q1(z)
(A.26)

+z(1− z)2
(
σ2

0 − 2ρσ0σ1 + σ2
1

) [q′1(z)

q1(z)
+

1

2

q′′1(z)

q1(z)
z

]
.

Let σr1(z) denote the return volatility in sector 1. We may calculate σr1(z) as follows:

σr1(z) =

[(
q′1(z)

q1(z)
z(1− z)

)2 (
σ2

0 − 2ρσ0σ1 + σ2
1

)
+ 2z(1− z)

q′1(z)

q1(z)

(
σ2

1 − ρσ0σ1

)
+ σ2

1

]1/2

.(A.27)

The sectoral risk premium is then given by rpn(z) = µrn(z)− r(z), for n = 0, 1.

Using the portfolio argument, we obtain the following dynamics for the rate of return on

the market portfolio dRm(t):

dRm(t) = µm(zt)dt+ σm0 (zt)dB0(t) + σm1 (zt)dB1(t) , (A.28)

where the expected return of the market portfolio is then given by

µm(z) =
1

q(z)
[(1− z)q0(z)µr0(z) + zq1(z)µr1(z)] , (A.29)
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and the volatility functions are given by

σm1 (z) =
σ1z

q(z)

[
q1(z) + (1− z)2q′0(z) + z(1− z)q′1(z)

]
, (A.30)

σm0 (z) =
σ0(1− z)

q(z)

[
q0(z)− z(1− z)q′0(z)− z2q′1(z)

]
. (A.31)

The market return volatility is therefore given by

σm(z) =

√
(σm0 (z))2 + 2ρσm1 (z)σm0 (z) + (σm1 (z))2 . (A.32)

The aggregate market risk premium is given by rpm(z) = µm(z)− r(z).

Sectoral betas are defined in the standard way, i.e. β0(zt) = Covt(dR0, dR
m)/Vart(dR

m).

The betas for sectors 0 and 1, β0(z) and β1(z), are given by

β0(z) =
σ0σ

m
0 (z) + ρσ0σ

m
1 (z)

(σm(z))2 +
(σ1 − ρσ0)σ

m
1 (z)− (σ0 − ρσ1)σ

m
0 (z)

(σm(z))2 z(1− z)
q′0(z)

q0(z)
, (A.33)

β1(z) =
σ1σ

m
1 (z) + ρσ1σ

m
0 (z)

(σm(z))2 +
(σ1 − ρσ0)σ

m
1 (z)− (σ0 − ρσ1)σ

m
0 (z)

(σm(z))2 z(1− z)
q′1(z)

q1(z)
. (A.34)

The instantaneous correlation between dR0(t) and dR1(t) is calculated as follows:

χ(z) =
z(1− z)

σr0(z)σr1(z)

[
σ2

0

q′1(z)

q1(z)

(
z(1− z)

q′0(z)

q0(z)
− 1

)
+ σ2

1

q′0(z)

q0(z)

(
z(1− z)

q′1(z)

q1(z)
+ 1

)]
(A.35)

− ρσ0σ1

σr0(z)σr1(z)

[
2z2(1− z)2 q

′
0(z)

q0(z)

q′1(z)

q1(z)
+ z(1− z)

(
q′0(z)

q0(z)
− q′1(z)

q1(z)

)
− 1

]
.

For the special case where both sectors are liquid (i.e. two-sector CIR version), we can

solve the ODE and decision rules in closed form. The results for this important special case

are summarized in Section 5.3. A key result is that the steady-state capital ratio between

the two sectors is a constant z∗ given by (44) as implied by perfect liquidity of capital.

46


