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Emissions abatement alone cannot address the consequences of global warming for
weather disasters. We model how society adapts to manage disaster risks to capital
stock. Optimal adaptation—a mix of firm-level efforts and public spending—varies as
society learns about the adverse consequences of global warming for disaster arrivals.
Taxes on capital are needed alongside those on carbon to achieve the first best. We ap-
ply our model to country-level control of flooding from tropical cyclones. Learning ra-
tionalizes empirical findings, including the responses of Tobin’s q, equity risk premium,
and risk-free rate to disaster arrivals. Adaptation is more valuable under learning than
a counterfactual no-learning environment. Learning alters social-cost-of-carbon pro-
jections due to the interaction of uncertainty resolution and endogenous adaptive re-
sponse.

KEYWORDS: Climate change, weather disasters, adaptation, capital tax, learning, as-
set prices, tropical cyclones, social cost of carbon.

1. INTRODUCTION

GLOBAL COSTS OF WEATHER-RELATED DISASTERS have increased sharply in recent
decades. While this trend increase is partly due to economic growth and exposure of
physical capital (Pielke, Gratz, Landsea, Collins, Saunders, and Musulin (2008)), recent
climate research links climate change to more frequent disasters (National Academy of
Sciences (2016)). Emissions abatement will only impact such losses decades down the
road and might not fully address the consequences for weather disasters. Hence, adap-
tations to mitigate natural disaster risks, be it flooding from tropical cyclones or damage
from wildfires, need to play a major role going forward.
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Since there is considerable uncertainty on the impact of global warming for the fre-
quency of disasters,1 adaptation naturally depends on households learning about these
consequences. In contrast to emissions abatement, which have been the main focus of re-
search using integrated assessment models (Nordhaus (2017), Golosov, Hassler, Krusell,
and Tsyvinski (2014), Jensen and Traeger (2014), Cai and Lontzek (2019), and Barnett,
Brock, and Hansen (2020)), such adaptation strategies have thus far been relatively un-
deremphasized both in climate change research and practice (Bouwer, Crompton, Faust,
Hoppe, and Pielke (2007)).

To address these issues, we begin by introducing learning and adaptation into a
continuous-time stochastic general-equilibrium model with disasters along the lines em-
phasized by Rietz (1988), Barro (2006), and Pindyck and Wang (2013). Output is deter-
mined by an AK growth function augmented with capital adjustment costs (e.g., Hayashi
(1982)) that give rise to rents for installed capital and the value of capital (Tobin’s average
q). Disaster shocks following a Poisson process destroy capital stock, affect equilibrium
asset prices, and reduce the welfare of households endowed with recursive utility (Epstein
and Zin (1989)).

Mitigation of these disaster shocks is modeled via a combination of two adaptation
technologies: (1) adaptation spending at the firm level that reduces the exposure of a
firm’s capital to the disaster shock (e.g., sandbags and other temporary barriers to protect
buildings) and (2) spending at the aggregate level that requires collective action, which
reduces the conditional damage of a disaster arrival and tail risk for all agents in the
economy (e.g., an early warning system, infrastructure maintenance and preparedness,
and other government funded programs.)2

Our model generates the following key properties and predictions. First, while the plan-
ner’s first-best solution features an optimal mix of spending on both adaptation technolo-
gies, firms do not internalize the benefits of aggregate risk mitigation and underspend on
total risk mitigation in market economies. We prove that an optimal tax on capital to fund
government spending on reducing aggregate tail risks restores the first-best solution while
still maintaining a balanced budget.

Second, belief that the economy is in the bad state (B) is a key state variable driving
optimal adaptation and equilibrium outcomes. “Bad” news (an unexpected arrival) leads
to a discontinuous jump (worsening) of belief, as a disaster arrival is a discrete event also
serving as a discrete signal.3 Absent any arrivals, belief drifts gradually toward the good
(G) state, as no news is good news when it comes to arrival of disasters in our model.

Third, unexpected disaster arrivals have both direct effects (i.e., capital destruction)
and indirect effects due to learning that the world is riskier than anticipated. As a re-
sult, the effects of disaster arrivals on economic growth are also time-varying and persis-
tent. Additionally, Tobin’s q falls and the stock market risk premium rises upon a disaster
arrival. Without the learning channel in our model, asset valuation multiples, for exam-
ple, Tobin’s q, would not move upon disaster arrivals as predicted by Pindyck and Wang

1According to a survey (Knutson et al. (2020)), the most pessimistic climate model projects the frequency of
tropical cyclones in 2oc world to be 2.25 times higher than in the pre-industrial era. The most optimistic model
projects a slight decrease relative to pre-industrial levels. The median model projects a modest 13% increase
relative to pre-industrial.

2See Lasage et al. (2014), Muis, Gaceneralp, Jongman, Aerts, and Ward (2015), and Fried (2022)) for evi-
dence on the value of flood control adaptations.

3Our model generates time-varying disaster arrival rates via learning (also see, e.g., Wachter and Zhu (2019)
and Collin-Dufresne, Johannes, and Lochstoer (2016)).
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(2013). The disaster arrival effects on growth, valuation, and risk premium are a major
difference between our model and the literature.4

We then quantify the importance of learning and adaptation for disaster risk mitigation
in the context of tropical cyclones, which include hurricanes, typhoons, cyclones, and trop-
ical storms,5 that are estimated to affect nearly 35% of the global population. Using panel
data covering 109 countries over the period of 1950–2010, we calibrate our model via
simulation to target moments pertaining to the macroeconomy (aggregate consumption,
investment, and output), to financial markets (the risk-free rate, equity risk premium,
and Tobin’s q), and to the arrivals of tropical cyclones and adaptation (e.g., government
flood control budgets). We confirm findings in the literature that a typical disaster leads
to 1% reduction in GDP growth (Hsiang and Jina (2014)). We also present new findings
that country-level asset prices (the risk-free rate, Tobin’s q, and equity risk premium) also
respond strongly to disaster arrivals, thus allowing us to internally calibrate parameters
governing the learning process.

The first finding of our quantitative analysis is that large learning effects are needed
to rationalize the data. The second finding is that the value of adaptation is much higher
than under the counterfactual no-learning environment. That is, a large part of the value
of optimal adaptation derives from uncertainty associated with learning about the climate
state. The third finding is that there is a significant gap between welfare in a competitive
economy (with only private adaptation) and welfare in the first-best economy, which is
implementable in a market economy with optimal capital taxes. Our quantitative conclu-
sions are generally robust to two changes to the model: (1) a generalized belief updating
process that allows the underlying state to switch between the good and bad states, and
(2) different risk preferences.

Having established the importance of adaptation for mitigating disaster risks in a learn-
ing environment, we then explain how learning and adaptation influence the social cost
of carbon. We consider a tractable extension, incorporating features from the social cost
of carbon model of Van den Bremer and Van der Ploeg (2021). Output depends on both
capital and fossil fuels. Using fossil fuels increases the stock of carbon in the atmosphere,
which leads to lower recovery rates given a disaster arrival, and hence results in more
damages akin to integrated assessment models, which generally do no feature learning.
Moreover, our model also features uncertainty about the frequency of disasters, which
our society learns about from disaster arrivals, and then makes adaptation decisions in
response.

We obtain the planner’s first-best solution for this economy. We then analyze the de-
centralized competitive market model. Equilibrium outcomes depend on both the belief
(about how likely the economy is in the bad state) and the carbon stock. In order to ad-
dress the climate externality, we show that a combination of three taxes implements the
first-best outcome: (1) a carbon tax on a firm’s fossil-fuel usage; (2) a tax on firm invest-
ment and (3) a tax on capital to fund aggregate adaptation. The optimal carbon tax rate
equals the social cost of carbon in the first-best economy as in the literature. The tax rate
on firm investment is chosen to ensure that the equilibrium capital accumulation dynam-
ics is the same as in the first-best economy. This new tax margin is not in Golosov et al.

4See Hong, Karolyi, and Scheinkman (2020) for a review of recent findings on weather disasters and climate
risks including the impact of sea-level rise on coastal property prices. Beliefs of the risks are shown to play a
role (Bakkensen and Barrage (2022)).

5They are referred to as tropical storms or hurricanes in Atlantic, typhoons in the Pacific, and cyclones in
Indian Ocean.
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(2014) as capital is a flexible input choice in their model as opposed to a state variable in
our model. Finally, the capital tax rate in our generalized model is similar to the one in
our baseline model without carbon.

We use our calibration of the first-best solution to highlight the role of learning. As
Daniel, Litterman, and Wagner (2019) have observed, integrated assessment models with-
out learning invariably yield a social cost of carbon (and hence an optimal carbon tax) that
is gradually rising over time as a larger carbon stock is assumed to lead to more damages.
In contrast, the social cost of carbon, under our calibration, is declining at the beginning
of the transition period due to interaction of resolution of uncertainty and endogenous
response of adaptation. In general, the optimal fossil fuel tax and adaptation spending
levels over time depend the society’s prior belief and the speed of convergence of beliefs
to a steady state.

Our work is related to insightful work by Bretschger and Vinogradova (2019), who
model optimal abatement with recurrent disasters. In contrast to ours, their model has no
capital adjustment costs, no learning, and does not distinguish between adaptation and
fossil fuel (abatement). As a result, in their model, the expected growth rate is constant
over time as in Pindyck and Wang (2013) and Tobin’s q always equals one, both of which
are counter to the evidence in our Section 6. Moreover, the social cost of carbon in their
model does not depend on the interaction of learning and adaptation.

Sections 2–6 contain the model and solution; derivations and proofs are in Appen-
dices A–B. In Sections 6–7, we apply our model to tropical cyclones. Section 8 presents
the extension of our model with a carbon stock. Online Appendices OA–OD cover com-
parative statics and the derivations and proofs for extensions. Data and programs are
available online in the Supplementary Material (Hong, Wang, and Yang (2023)).

2. MODEL

In this section, we develop a model of learning and adaptation to disaster risks in a
market economy. Time is continuous and the horizon is infinite. There is a continuum of
identical firms and households, both with a unit measure.

2.1. Firms’ and Households’ Optimization Problems

Firm Production. A firm produces output proportional to its capital stock, Kt . That is,
its output is AKt , where A> 0 measures productivity. (This is an AK model).

Firm Investment, Capital Accumulation, and Arrival of Jumps (Disasters). Let It denote
firm investment. The firm’s capital stock Kt evolves as

dKt = (It− − δKKt−) dt + σKKt− dWK
t −Nt−Kt−(1 −Z) dJt � (1)

where δK is the depreciation rate of capital. The second term captures continuous diffu-
sive shocks to capital, where WK

t is a standard Brownian motion and the parameter σK
is the diffusion volatility. This term is the standard source of shocks for AK models in
macroeconomics and sometimes is interpreted as stochastic depreciation shocks. The last
term in (1) captures the loss to the firm’s capital from a stochastic arrival of a disaster.

The process Jt in (1) is a Poisson process where each jump arrives at a constant but
unobservable rate, which we denote by λ. We will return to discuss the details for the
arrival rate λ. There is no limit to the number of these jump shocks. If a jump does not
arrive at t, that is, dJt = 0, the third term disappears. To emphasize the timing of potential
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jumps, we use t− to denote the pre-jump time so that a discrete jump may or may not
arrive at t. The Nt− process is chosen by the firm to mitigate its exposures to disasters,
which we introduce later.

Without reducing disaster exposures (which implies Nt− = 1), upon a disaster arrival
at t (dJt = 1), a stochastic fraction (1 − Z) ∈ (0�1) of the firm’s capital stock Kt− is
permanently destroyed at t, and hence the surviving capital stock is Kt = ZKt−. (For
example, if the firm incurred no disaster exposure reduction spending at t− and a shock
arrived at t destroying 15 percent of capital stock, we would have Z = 0�85.) Naturally,
anticipating damages caused by these disasters, the firm has incentives to ex ante reduce
its exposures to disaster shocks by spending resources (e.g., sandbags to keep a building
from flooding during a tropical cyclone).

Let �(Z) and ξ(Z) denote the cumulative distribution function (cdf) and probability
density function (pdf) for the stochastic fraction of capital recovery Z, respectively, con-
ditional on a jump arrival. While the firm takes the distribution of Z as given, the society
as a whole can spend resources to influence the distribution of Z by making disasters less
damaging to the economy. We introduce the determinants of �(Z) at the aggregate level
in Section 2.4.

Reducing a Firm’s Disaster Exposure (Firm-Level Adaptation). Let Xe
t− denote the

firm’s adaptation spending to reduces its exposure to a disaster, where the superscript
e refers to exposure at t−. With this spending at t−, should a disaster arrive at t, the firm
decreases its capital loss from (1 −Z)Kt− to Nt−(1 −Z)Kt−, where Nt− ∈ [0�1] depends
on Xe

t−. The effect of this spending on capital stock dynamics is captured by the Nt− term
in (1). Let xet− =Xe

t−/Kt− denote the firm’s scaled disaster exposure reduction spending.
To preserve our model’s homogeneity property, we assume thatNt− is a function of xet−:

Nt− =N(
xet−

)
� (2)

Equations (1) and (2) imply that if we double Xe
t− and capital stock Kt− simultaneously,

the benefit from reducing disaster damages (in units of goods) also doubles. To see why,
observe that Nt− =N(xet−) is unchanged with the simultaneous doubling of Xe

t− and Kt−
but the amount of loss reduced by adaptation, is doubled since Kt− has doubled.

We require N ′(xe) ≤ 0 as adaptation spending reduces damages. Additionally, the
marginal effect of spending on reducing damages is decreasing in xe, which implies
N ′′(xe) ≥ 0. Finally, by definition, N(0) = 1, as no adaptation spending (xe = 0) no dam-
age reduction.

Capital Adjustment Costs and Firm’s Objective. Following the q theory of investment
(Hayashi (1982)), we assume that when investing It dt, the firm incurs capital adjustment
costs, 	t dt. The firm’s dividend payout (profit), Yt , is then given by

Yt =AKt − (It +	t) −Xe
t �

Following Hayashi (1982), we specify the adjustment cost 	t as 	t =	(It�Kt), where

	(It�Kt) =φ(it)Kt�
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where it = It/Kt and φ(i) is increasing and convex. The firm chooses investment I and
the adaptation spending Xe to maximize its present value given by6

E

(∫ ∞

0

Mt

M0
Yt dt

)
� (3)

where M is the equilibrium stochastic discount factor (SDF) that captures both the time
value and risk premium.7 The equilibrium SDF is the representative consumer’s equilib-
rium marginal rate of substitution (MRS). Let Q0 denote firm value at t = 0, the solution
for (3).8

Households’ Preferences. We work with the recursive utility developed by Epstein and
Zin (1989) and formulated in continuous time by Duffie and Epstein (1992). The lifetime
utility of our representative consumer’s recursive preferences is given by

V0 = E

[∫ ∞

0
f (Ct�Vt) dt

]
� (4)

where f (C�V ) known as the normalized aggregator is given by

f (C�V ) = ρ

1 −ψ−1

C1−ψ−1 − (
(1 − γ)V

)ω
(
(1 − γ)V

)ω−1 (5)

and ω = (1 − ψ−1)/(1 − γ). Here, ρ is the rate of time preference, ψ is the elasticity of
intertemporal substitution (EIS), and γ is the coefficient of relative risk aversion. Unlike
expected utility, recursive preferences as defined by (4) and (5) disentangle risk aversion
from the EIS.9 To check the robustness of our analysis, we also analyze our model with
external habit formation proposed by Campbell and Cochrane (1999) in Section 7.7.

2.2. Bayesian Belief Updating About the Disaster Arrival Frequency

Next, we turn to the disaster arrival process. The arrival rate λ while constant is unob-
servable to the agent.10 Therefore, an arrival of a disaster not only destroys capital stock,
but also serves as a signal from which households and firms update their beliefs about λ.

While the true disaster arrival rate λ is constant by assumption, households and firms
do not have complete information about the value of λ. What the households and firms

6Financial markets are perfectly competitive and complete. While the firm can hold financial positions (e.g.,
DIS contracts in net zero supply), these financial hedging transactions generate zero NPV for the firm. There-
fore, financial hedging policies are indeterminate, a version of the Modigliani–Miller financing irrelevant re-
sult. The firm can thus ignore financial contracts without loss of generality.

7The firm takes M as given when solving its problem and the M process is determined in equilibrium.
8Because installing capital is costly, installed capital earns rents in equilibrium so that Tobin’s average q, the

ratio between the firm’s value (Q0) and the replacement cost of capital (K0), exceeds one.
9If γ = ψ−1 so that ω = 1, we have the standard constant-relative-risk-aversion (CRRA) expected utility,

represented by the additively separable aggregator:

f (C�V ) = ρC1−γ

1 − γ − ρV �

10In Section OA of the Online Appendix, we generalize our model to a setting where the unobservable
disaster arrival rate λ is stochastic and follows a two-state continuous-time Markov chain.
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know at time 0 is that the true value of λ is either λG or λB with λB > λG. If the true value
of λ is λB rather than λG, capital stock is more likely to be hit by a disaster (i.e., a negative
jump). We refer to the low-arrival-rate and high-arrival-rate scenarios as the good (G)
state and the bad (B) state, respectively. Additionally, all agents are endowed with the
same prior belief π0− that the true value of λ is λB. In sum, all agents in our model have
the same information sets, share the same prior, and use the same Bayes rule to update
beliefs.

Let πt denote the time-t posterior belief that λ= λB:

πt = Pt (λ= λB)�

where Pt (·) is the conditional probability at t. The expected disaster arrival rate at t, λt is

λt = Et (λ) = λ(πt) = λBπt + λG(1 −πt)� (6)

which is a weighted average of λB and λG. A higher value of πt corresponds to a belief
that the economy is more likely in State B where the jump arrival rate is λB > λG.

What leads the agent’s belief to worsen (increasing π) is jump arrivals. What leads the
belief to revise favorably is no-jump arrivals. In this sense, no-jump news is good news.
Mathematically, the agent updates his belief using the Bayes rule:11

dπt = σπ (πt−)(dJt − λt− dt)� (7)

where

σπ (π) = π(1 −π)(λB − λG)
λ(π)

= π(1 −π)(λB − λG)
λBπ + λG(1 −π)

> 0� (8)

Here, signals come from Jt . Note that πt and λt are both martingales, which can be
seen from (7) as Et−[dJt] = λt− dt. When a disaster strikes at t, the belief immediately
increases from the pre-jump level πt− to πJ

t by σπ (πt−), where

πJ
t = πt− + σπ(πt−) = πt−λB

λ(πt−)
>πt−� (9)

If there is no arrival (dJt = 0) over dt, the household becomes more optimistic. In this
case,

dπt

dt
= μπ (πt−) = πt−(1 −πt−)(λG − λB)� (10)

using μπ(πt−) = −σπ (πt−)λ(πt−). Equation (10) is a logistic differential equation. Con-
ditional on no jump (dJv = 0) for v ∈ (s� t), we obtain the closed-form logistic function
for πt :

πt = πse
−(λB−λG)(t−s)

1 +πs
(
e−(λB−λG)(t−s) − 1

) � (11)

In Figure 1, we plot a simulated path for π starting from π0 = 0�08. It shows that absent a
jump arrival, belief becomes more optimistic and πt decreases deterministically between
two consecutive jumps following the logistic function given in (11). Once a jump arrives
at t, the belief worsens moving upward to πJ

t given in (9) by a discrete amount σπ (πt−)
given in (8).

11See Theorem 19.6 in Liptser and Shiryaev (2001). A similar learning problem is in Dieckmann (2011).
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FIGURE 1.—This figure simulates a path for disaster arrival times in panel A and plots the corresponding
belief updating process in panel B starting with π0 = 0�08. The belief decreases deterministically in the absence
of jumps but discretely increases upward upon a jump arrival.

2.3. Competitive Market Structure and Equilibrium

Next, we turn to the competitive market economy. Financial markets are dynamically
complete. Without loss of generality, it is sufficient to assume that the following financial
securities exist at all time t: (i) a risk-free asset thats pays interest at the equilibrium rate
of rt and (ii) the aggregate equity market.12 To ease exposition, we use boldfaced letters
to refer to aggregate variables so as to differentiate from the corresponding firm-level
variables.13

Let {Qt} denote the equilibrium ex-dividend aggregate stock market value and {Dt}
denote the aggregate dividends, respectively. The cum-dividend return is then given by

dQt + Dt− dt
Qt−

= μQ(πt−) dt + σK dWK
t +

(
QJ
t

Qt−
− 1

)
dJt � (12)

where μQ(π) is the expected stock market return (leaving aside the jump effect). We
later verify that the diffusion volatility of the stock market return equals σK , the same as
the diffusion volatility given in (1). Finally, the last term captures the effect of jumps on
returns.

Competitive Equilibrium. We define the recursive competitive equilibrium as follows:
(a) Taking the equilibrium risk-free rate r and the equilibrium aggregate stock market

12For markets to be dynamically complete, we also need actuarially fair diffusion and jump hedging contracts
(for each possible jump contingency) as in Pindyck and Wang (2013). The net demand is zero for all hedging
contracts. For expositional simplicity, we omit these hedging contracts and refer readers to Pindyck and Wang
(2013) for related detailed analysis.

13Because our model economy is populated with a continuum of identical households and firms, the average
of a micro-level variable equals the corresponding variable in the aggregate. For example, the average of It
equals the aggregate It . Similarly, the average of it equals the aggregate it . Our aggregation result is based on
the exact law of large numbers (Duffie and Sun (2012)).
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return process (12) as given, the representative household chooses consumption C and
allocation to the aggregate stock market � to maximize lifetime utility given by (4)–(5);14

(b) Taking the equilibrium SDF {Mt; t ≥ 0} as given, the representative firm chooses in-
vestment I and the disaster exposure mitigation spendingXe to maximize its market value
given in (3); (c) The interest rate r, the stock market return process (12), and the SDF
{Mt; t ≥ 0} are consistent with the households’ and firms’ optimal decisions and all mar-
kets clear in equilibrium.

2.4. Source of Externality: Technology Reducing Tail Risk of the Damage Distribution �(Z)
for All Firms

Next, we introduce another adaptation technology, which reduces the tail risk of the
aggregate disaster distribution �(Z). In contrast to the first type of adaptation technol-
ogy, which operated at the firm level, this second type of adaptation technology operates
at the aggregate level and features an externality (a realistic aspect of adaptation) as its
effectiveness depends on collective contributions of all firms in aggregate (i.e., a public
good).

We assume that the aggregate spending made at t− can curtail left-tail disaster (jump)
risks at t if a jump arrives at t.15 The idea is that changing the distribution ofZ for all firms
is very costly and requires a spending that is at the order of a fraction of the aggregate
capital stock K. Let Xd

t− denote the aggregate spending on this distribution-tail-curtailing
technology, where the superscript d refers to the notion that this spending is to make the
distribution of fractional loss (1 −Z) less damaging. Let xdt− = Xd

t−/Kt− denote this scaled
aggregate adaptation spending. Since aggregate risk reduction is a public good, no firm
has incentives to spend on this new technology. This is the reason why markets fail.

Specifically, by spending on aggregate tail risk reduction, we change the distribution
of the post-jump fractional recovery Z from �(Z) to �(Z;xdt−). While simultaneously
doubling this type of aggregate adaptation spending Xd

t− and the aggregate capital stock
Kt− does not change the distribution �(Z;xdt−), as the ratio xdt− = Xd

t−/Kt− remains un-
changed, doing so doubles the benefit of this public spending (i.e., the total reduction of
damages) in levels as the benefit is proportional to Kt−(1 −Z) at the aggregate level.16

We have completed the description of our market economy model. Before solving it in
Section 4, we first analyze the planner’s problem. The first-best solution for the planner’s
model serves as an important benchmark for our analysis of the market economy.

3. PLANNER’S PROBLEM AND ITS FIRST-BEST SOLUTION

The social planner chooses consumption C, investment I, and adaptation spendings Xd

and Xe to maximize the representative household’s utility given in (4)–(5) subject to the
representative firm’s production/capital accumulation technology, the adaptation tech-
nologies, and the aggregate resource constraint: C + I +�+ Xd + Xe =AK.

To save on notation, we drop the subscript fb in this section until the end of this section
where we summarize the first-best solution.

14Since each household is infinitesimally small and has no impact on any aggregate variables, there is no
incentive to spend on mitigation. We provide additional discussions later in the paper.

15Our assumption is motivated by the literature on flood control, where public adaptations reduce the tail
event of high inundation levels (Lasage et al. (2014) and Muis et al. (2015)). Private adaptation is only effective
at low inundation levels.

16This is similar to the homogeneity assumption for disaster distribution (private adaptation) mitigation
spending Xe

t−.
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Dynamic Programming. Let V (K�π) denote the representative household’s value
function. The Hamilton–Jacobi–Bellman (HJB) equation for the planner is

0 = max
C�I�xexd

f (C� V ) + (I − δKK)VK(K�π) +μπ (π)Vπ(K�π) + 1
2
σ2
KK2VKK(K�π)

+ λ(π)Exd
[
V

(
KJ �πJ ) − V (K�π)

]
� (13)

where πJ is the post-jump belief given in (9), KJ is the post-jump capital stock given by

KJ = (
1 −N(

xe
)
(1 −Z)

)
K�

μπ(π) is the expected change of belief absent jumps given in (10), λ(π) is the jump arrival
rate given in (6), and E

xd [·] is the expectation operator with respect to the pdf ξ(Z;xd) for
the recovery fraction Z for a given level adaptation spending xd to reduce aggregate risk.

The first term on the right-hand side of (13) is the household’s normalized aggregator
(Duffie and Epstein (1992); the second term captures how investment I affects V (K�π);
the third term reflects how belief updating (in the absence of jumps) impacts V (K�π);
and the fourth term captures the effect of capital-stock diffusion shocks on V (K�π). It is
worth noting that as the signals in our learning model are discrete (jump arrivals), there
is no diffusion-induced quadratic-variation term involving Vππ in the HJB equation (13).

Direct (Value Destroying) versus Learning Effects. Finally, the last term (on the second
line) of (13) captures the effect of jumps on the expected change in V (K�π). This term
captures rich economic forces and warrants additional explanations. When a jump arrives
at t (dJt = 1), capital falls from Kt− to (1 −Z)Kt− absent exposure mitigation spending.
By spending xet− to reduce the exposure, the planner reduces the capital loss from (1 −
Z)Kt− byN(xet−)(1−Z)Kt−, so that the post-jump capital is KJ

t = (1−N(xet−)(1−Z))Kt−
at t.

In sum, a jump triggers two effects on V (K�π). First, there is a direct capital destruction
effect. As a jump arrival lowers capital stock from Kt− to KJ

t = (1 −N(xet−)(1 −Z))Kt−,
the value function decreases from V (Kt−�πt−) to V (KJ

t �πt−) even if we ignore the agent’s
belief updating due to learning. Second, there is a learning (belief-updating) effect. As a
jump arrival also causes the belief to increase from πt− to πJ

t given in (9), the agent
becomes more pessimistic causing the value function to further decrease from V (KJ

t �πt−)
to V (KJ

t �π
J
t ). These two effects reinforce each other over time leading to potentially

significant losses.
The planner chooses consumption C, investment I, two types of adaptation spendings,

Xd and Xe, to maximize recursive utility given in (4)–(5) by setting the sum of the five terms
on the right-hand side of (13) to zero, implied by the optimality argument underpinning
the HJB equation for recursive utility (see Duffie and Epstein (1992)). Because of the
resource constraint, it is sufficient to focus on I, Xd , and Xe as control variables.

First-Order Conditions for Investment and Two Types of Adaptation Spendings. The first-
order condition (FOC) for investment I is(

1 +	I(I�K)
)
fC(C� V ) = VK(K�π)� (14)

The right-hand side of (14), VK(K�π), is the marginal (utility) benefit of accumulating
capital stock. The left-hand side of (14) is the marginal cost of accumulating capital,
which is given by the product of forgone marginal utility of consumption fC(C� V ) and
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the marginal cost of accumulating capital, (1 +	I(I�K)). Because of capital adjustment
costs, increasing K by one unit requires incurring investment costs more than one unit,
which explains the marginal adjustment cost 	I(I�K). Because of nonseparability of pref-
erences, fC(C� V ) depends on not just consumption C but also the continuation utility V .

The FOC for the scaled aggregate tail risk reduction spending xd is

fC(C� V ) = 1
K
λ(π)

∫ 1

0

[
∂ξ

(
Z;xd

)
∂xd

V
(
KJ �πJ )]

dZ� (15)

if the solution is positive, xd > 0.17 The planner chooses xd to equate the marginal cost
of adaptation, which is the forgone marginal (utility) benefit of consumption fC(C� V )
given on the left-hand side of (15), with the marginal benefit of adaptation given on the
right-hand side of (15).18 By spending xd per unit of capital to make the distribution of Z
less damaging, the planner changes the pdf ξ(Z;xd) for the fractional capital recovery, Z,
from ξ(Z;0) to ξ(Z;xd).

Similarly, the FOC for the scaled aggregate disaster exposure reduction spending xe is

fC(C� V ) = −λ(π)N ′(xe
)
E

xd
[
(1 −Z)VK

(
KJ �πJ )]

� (16)

if the solution is strictly positive, xe > 0.19 That is, the planner optimally chooses xe to
equate the marginal benefit of reducing the disaster exposure with the marginal cost of
doing so. By spending xet− per unit of capital, the planner reduces the post-jump fractional
capital loss from (1 −Z)Kt− to Kt− − KJ

t =N(xet−)(1 −Z)Kt−.

Using the Homogeneity Property to Simplify the Solution. Our model has the following
homogeneity property. If we double capital stock K, it is optimal for the planner to simul-
taneously double its quantity choices: the two types of adaptation spendings Xd and Xe,
investment I, and consumption C at all time. As a result, the value function V (K�π) is
homogeneous with degree (1 − γ) in K and given by

V (K�π) = 1
1 − γ

(
b(π)K

)1−γ
� (17)

where b(π) is a welfare measure proportional to certainty equivalent wealth under first
best to be determined as part of the solution. Using the FOCs (14), (15), (16), substituting
the value function V (K�π) given in (17) into the HJB equation (13), and simplifying these
equations, we obtain the following four-equation ODE system for b(π), i(π), xd(π), and
xe(π):

0 = ρ

1 −ψ−1

[(
b(π)

ρ
(
1 +φ′(i(π)

)))1−ψ
− 1

]

+ i(π) − δK − γσ2
K

2
+μπ (π)

b′(π)
b(π)

17Otherwise, xd = 0 as adaptation in reality cannot be negative. When do we see xd = 0? One scenario is
when the technology is very inefficient. In this case, the marginal benefit of spending on disaster distribution
mitigation spending is less than one, causing the planner to set xd = 0.

18The second-order condition (SOC) λ(π)
∫ 1

0 [ ∂
2ξ(Z;xd )
∂(xd )2 V (KJ �πJ )]dZ < 0 is satisfied.

19Otherwise, xe = 0 since adaptation cannot be negative.
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+ λ(π)
1 − γ

[(
b
(
πJ )
b(π)

)1−γ

×E
xd (π)

((
1 −N(

xe(π)
)
(1 −Z)

)1−γ) − 1
]
� (18)

b(π) = [
A− i(π) −φ(

i(π)
) − xd(π) − xe(π)

]1/(1−ψ)

× [
ρ
(
1 +φ′(i(π)

))]−ψ/(1−ψ)
� (19)

1
1 +φ′(i(π)

) = λ(π)
[
b
(
πJ )
b(π)

]1−γ

×N ′(xe(π)
)
E

xd (π)
[
(Z − 1)

(
1 −N(

xe(π)
)
(1 −Z)

)−γ]
� (20)

1
1 +φ′(i(π)

) = λ(π)
1 − γ

[
b
(
πJ )
b(π)

]1−γ

×
∫ 1

0

[
∂ξ

(
Z;xd(π)

)
∂xd

(
1 −N(

xe(π)
)
(1 −Z)

)1−γ
]
dZ� (21)

The boundary conditions at π = 0 and π = 1 map to a generalized model of Pindyck
and Wang (2013), which allows for the two types of adaptation spendings introduced in
our model. Note that (1) the π = 0 and π = 1 states are absorbing, in that the economy
stays permanently in stateG and B, respectively, as there is no learning at either state and
(2) i, xd , xe, c, and welfare measure b are all constant at the π = 0 and π = 1 states. For
brevity, we omit the boundary conditions implied by (18)–(21) at π = 0 and π = 1.

Next, we summarize our model’s solution and provide a proof in Appendix A.1.

PROPOSITION 1: The first-best solution is given by the value function (17), where the wel-
fare measure bfb(π), ifb(π), xdfb(π), and xefb(π), solve the four-equation ODE system (18)–
(21).

4. COMPETITIVE MARKETS SOLUTION

While the planner’s (first-best) public adaptation spending is strictly positive, no firms
have incentives to reduce the aggregate risk distribution in a market economy. We show
that the market solution is equivalent to the planner’s solution for the case where only the
disaster exposure reduction technology is available.

4.1. Firm Adaptation and Investment

A firm maximizes its value given by (3) taking the following SDF Mt as given:

dMt

Mt−
= −rt− dt − γσK dWK

t + (ηt − 1)
(
dJt − λ(πt−) dt

)
� (22)

The first term on the right-hand side of (22) states the equilibrium restriction that the
drift of dMt/Mt− equals −rt− dt (Duffie (2001)), where the equilibrium risk-free rate rt−
is a function of πt−, rt− = r(πt−). The second term on the right-hand side of (22) is the dif-
fusion martingale and γσK is the equilibrium market price of diffusion risk as in Pindyck
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and Wang (2013), which we verify later. As λ(πt−) dt = Et−(dJt), the last term in (22) is
a jump martingale under the physical measure. This implies that when a jump arrives at
t, the SDF changes discretely from Mt− to M

J
t by a multiple of endogenously determined

market price of jump risk ηt :

M
J
t

Mt−
= ηt�

which is a function of belief πt− and the realized value of Z: ηt = η(πt−;Z).20

Applying the Itô’s lemma to firm valueQ(Kt�πt) = q(πt)Kt given in (3) and using (22),
we obtain the following HJB equation for Tobin’s q, q(π) (see Appendix B.1):

r(π)q(π) = max
i�xe�xd

A− i−φ(i) − xe − xd + (i− δK)q(π) +μπ(π)q′(π) − γσ2
Kq(π)

+ λ(π)Exd
[
η(π;Z)

(
q
(
πJ )(

1 −N(
xe

)
(1 −Z)

) − q(π)
)]
� (23)

The expectation operator in the last (jump) term (23) takes the aggregate disaster mit-
igation spending in the economy, xd , as given. Additionally, there are three optimality
conditions.

First, (23) implies that xd = 0, as a firm is infinitesimal, and hence reducing aggregate
disaster risk brings no benefit but only cost to itself.21 Second, unlike xd , (23) implies a
rather different FOC for the firm’s exposure reduction spending xe:

1 = −λ(π)q
(
πJ )

N ′(xe)Exd
[
(1 −Z)η(π;Z)

]
� (24)

By spending a dollar at the margin on exposure risk mitigation, the firm reduces the de-
struction of its capital stock by −(1 − Z)N ′(xe) > 0 units should a jump arrive. Upon a
jump arrival, the gross percentage change of SDF is MJ

t /Mt− = η(πt−;Z) and the Tobin’s
q jumps from q(π) to q(πJ ). To obtain the marginal benefit of spending on exposure mit-
igation Xe, we multiply the marginal reduction of capital stock destruction caused by a
jump arrival, −(1 − Z)N ′(xe) > 0, by λ(π)q(πJ )η(π;Z), and then integrate over all
possible values of Z. The resulting expected marginal value of mitigating the disaster ex-
posure, given on the right-hand side of (24), equals one, the marginal cost of mitigating
the exposure on the left-hand side of (24).

The FOC for investment implied by (23) is

q(π) = 1 +φ′(i(π)
)
� (25)

which is the standard investment optimality condition that equates the marginal q to the
marginal cost of investing 1 +φ′(i(π)). The homogeneity property implies that the aver-
age q equals the marginal q as in Hayashi (1982).

20We provide equilibrium solutions for r(πt−) and η(πt−;Z) in Section 5.3 and Sections 4.3, respectively.
21To be precise, since the firm’s adaptation spending xd has positive marginal cost but zero marginal benefit,

the FOC cannot hold with equality and the corner solution xd = 0 is optimal.
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4.2. Household Optimization

We show that the household’s value function, Jt = J(Wt�πt), is homogeneous with de-
gree 1 − γ in wealth W . That is, Jt = J(Wt�πt) takes the form of

J(W�π) = 1
1 − γ

(
u(π)W

)1−γ
� (26)

where u(π) is a welfare measure that will be endogenously determined.
First, no household spends on disaster exposure or disaster distribution mitigation

spendings: Xd = 0 and Xe = 0, as no one has impact either the aggregate disaster distri-
bution or the aggregate disaster exposure. Second, we solve for the household’s optimal
consumption C and allocation to the risky asset � using the following HJB equation:

0 = max
C��

f (C�J) +μπ (π)Jπ + λ(π)
∫ 1

0

[
J
(
W J �πJ ) − J(W�π)

]
ξ
(
Z;xd

)
dZ

+ [
r(π)W + (

μQ(π) − r(π)
)
�−C]

JW + σ2
K�

2JWW

2
� (27)

where μQ(π) is defined in (12), πJ is the post-jump belief given in (9), and W J is the
post-jump wealth given by

W J
t =Wt− +

(
QJ
t

Qt−
− 1

)
�t−�

The aggregate stock market valuation Qt is proportional to the aggregate capital stock
K: Qt = q(πt)Kt where q(πt) is the Tobin’s q for K in equilibrium. When a jump arrives,

QJ
t

Qt−
= q

(
πJ
t

)
KJ
t

q(πt−)Kt−
= q

(
πJ
t

)
q(πt−)

(
1 −N(

xet−
)
(1 −Z)

)
� (28)

Equation (28) states that aggregate stock market value changes from Qt− = q(πt−)Kt−
to QJ

t = q(πJ
t )KJ

t as a jump arrives for two reasons: (1) capital stock decreases from Kt−
to KJ

t = [1 − N(xet−)(1 − Z)]Kt− by a fraction of N(xet−)(1 − Z) and (2) the aggregate
Tobin’s q changes from q(πt−) to q(πJ

t ), where πJ
t = πt−λB/λ(πt−) is given in (9). For

brevity, we drop the time subscripts when it does not cause confusion. That is, we write
QJ /Q = QJ

t /Qt−.
Substituting (26) into the consumption FOC fC (C�J) = JW (W�π) and simplifying the

expression, we obtain the following consumption rule:

C(W�π) = ρψu(π)1−ψW � (29)

Consumption is linear in wealth with a π-dependent marginal propensity to consume.
Simplifying the household’s FOC for the market portfolio allocation �, we obtain

�= −μQ(π) − r(π)
σ2
K

JW (W�π)
JWW (W�π)

+ λ(π)
σ2
K

E
xd

[(
1 − QJ

Q

)
JW

(
W J �πJ )

JWW (W�π)

]
� (30)

The first term in (30) is the standard Merton’s mean-variance demand (absent jumps)
and the second term in (30) captures the intertemporal hedging demand as a jump arrival
causes both the household’s belief π and wealth W as well as the stock market Q to jump
discretely.
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4.3. Market Equilibrium

In equilibrium, the household invests all wealth in the stock market, Wt = �t = Qt . We
can show that the ratio of the pre-jump and the post-jump SDF Mt in equilibrium, ηt , is
given by

ηt = M
J
t

Mt−
= JW

(
QJ
t �π

J
t

)
JW (Qt−�πt−)

� (31)

The second equality in (31) states that ηt equals the ratio of the household’s post-
jump marginal value of wealth JW (QJ

t �π
J
t ) and the pre-jump marginal value of wealth

JW (Qt−�πt−). This is because in equilibrium both the household’s pre-jump and post-
jump wealth are in the stock market: Wt− = Qt− and W J

t = QJ
t . Using the homogeneity

property, we write ηt as

ηt = η
(
πt;Z�xet−

) =
(
u
(
πJ
t

)
u(πt−)

)1−γ( q
(
πJ
t

)
q(πt−)

(
1 −N(

xet−
)
(1 −Z)

))−γ
� (32)

We can further simplify the household’s HJB equation (27) as

0 = ψ−1ρψu(πt−)1−ψ − ρ
1 −ψ−1 +μQ(πt−) +μπ(πt−)

u′(πt−)
u(πt−)

− γσ2
K

2

+ λ(πt−)
1 − γ

[
E

xd
(
ηt

QJ
t

Qt−

)
− 1

]
� (33)

where ηt is given in (32) and μQ(πt−) defined in (12) is given by22

μQ(πt−) = r(πt−) + γσ2
K + λ(πt−)Exd

t−

[
ηt

(
1 − QJ

t

Qt−

)]
(34)

= c(πt−)
q(πt−)

+ i(πt−) − δK +μπ (πt−)
q′(πt−)
q(πt−)

� (35)

In equilibrium, the household invests all wealth in the stock market, Wt = �t = Qt .
Additionally, both the aggregate disaster exposure and distribution adaptation spendings
in a laissez-faire economy equal zero: Xe = Xd = 0.23 In sum, the solution is given by (1)
the ODE (33) for u(π) and the FOCs (29)–(30) for households and (2) the ODE (23) for
q(π) and the FOCs (24)–(25) for firms. We can also show that this solution of our market
model is the same as that of a planner’s problem, where the planner has no access to the
adaptation technology that curtails tail risk (xd(π) = 0). This planner’s problem is easier
to solve. Rather than solving for u(π) and q(π) in our market economy, it is equivalent
to solve for b(π) and optimal policies in the planner’s economy. Next, we summarize this
equivalence result.

PROPOSITION 2: The market solution is the same as the planner’s solution where there is
no adaptation technology to change the distribution of the recovery fraction Z (xd(π) = 0).

22We use the FOC given in (30) and the equilibrium condition �t = Wt to obtain (34). Substituting the
resource constraint c(π) =A− i(π) −φ(i(π)) − xe(π) into the ODE (23) for q(π), we obtain (35).

23Since households contribute nothing to disaster exposure and distribution mitigation spendings, using the
law of large numbers, the aggregate exposure and distribution mitigation spendings are also zero.
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See Appendix B.3 for proof. Note that this proposition states that the welfare theorem
applies when there is no such adaptation technology.

5. OPTIMAL TAXATION IN MARKET ECONOMY AND ASSET PRICES

In this section, we show that introducing optimal capital taxation into our competitive
market economy of Section 2 changes the market-economy solution given in Section 4 to
the one implied by the planner’s first-best solution given in Section 3. We then derive the
asset prices that would hold under a given economy type.

5.1. Firm and Household Optimization Under Capital Taxation

The government taxes the firm’s capital stock Kt at a rate of τt = xdfb�t , where xdfb�t is the
first-best mitigation spending to change the distribution of Z, obtained in Section 3. Then
the government spends Xd

t = τtKt to reduce the tail risk of the disaster distribution.24 We
write the tax rate τt as a function of πt : τt = τ(πt) = xdfb�t = xdfb(πt).

Facing a capital tax rate of τ(πt) and taking the equilibrium SDF Mt as given, each firm
chooses {I�Xe�Xd} to maximize its value given in (3), where its payout, Yt , is given by25

Yt =
(
A− τ(πt)

)
Kt − It −	t −Xe

t �

In effect, taxes lower productivity fromA toA−τ(πt). Applying Itô’s lemma to firm value
given in (3) and using (22), we obtain the following HJB equation for Tobin’s average q,
q(πt):

r(π)q(π) = max
i�xe

A− τ(π) − i−φ(i) − xe + (
i(π) − δK

)
q(π)

+μπ (π)q′(π) − γσ2
Kq(π)

+ λ(π)Exd
[
η

(
π;Z�xe

)(
q
(
πJ )(

1 −N(
xe

)
(1 −Z)

) − q(π)
)]
� (36)

Note that the tax rate τ(π) appears in (36). The FOCs for i and xe are given in (24)
and (25), respectively, the same as in the no-tax model of Section 4.26 Next, we prove
that incorporating optimal taxes into the competitive-market economy yields the first-best
solution.

5.2. Optimal Capital Taxation Restores First-Best

In this section, we show that the household’s value function in the competitive economy
with optimal taxes is the same as the value function under the first-best. As the house-
hold’s value function in a market economy depends on wealthW while the planner’s value
function depends on K, we use the equilibrium result Wt = q(πt)Kt in the market econ-
omy with taxation to write the household’s value function as J(Wt�πt) = J(q(πt)Kt �πt).
The value functions in the two economies are equal, V (Kt �πt) = J(Wt�πt), if and only if
b(π) in the first-best economy equals the product u(π)q(π) in the competitive economy
with taxes.

24Equivalently, the government can impose via a tax on sales AK t at the firm level.
25The firm does not spend on disaster distribution mitigation (Xd = 0) as there is no benefit.
26For brevity, we refer readers to Section 4 for the household’s problem, as it is in effect the same as in the

previous section.
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Specifically, we show the following results: (1) the first-order conditions for i(π) and
xe(π) in the competitive economy with an optimal tax rate set at the xdfb are the same as
those in the planner’s economy; (2) the implied ODE for u(π)q(π) in the competitive
market economy is the same as the ODE (18) for b(π) in the planner’s economy; (3) all
the boundary conditions at π = 0 and π = 1 in the two economies are the same. Below is
a proof.

First, combining the equilibrium aggregate investment FOC, q(π) = 1 + φ′(i(π)),
implied by (25) with the optimal scaled consumption rule c(π) = ρψu(π)1−ψq(π) =
(ρq(π))ψ[u(π)q(π)]1−ψ, implied by (29) and W = q(π)K, we obtain the following ex-
pression for consumption:

c(π) = [
ρ
(
1 +φ′(i(π)

))]ψ[
u(π)q(π)

]1−ψ
�

Using the goods-market clearing condition c(π) =A− τ(π) − i(π) −φ(i(π)) − xe(π)
and b(π) = u(π)q(π), we obtain the following expression:

b(π) = [
A− τ(π) − i(π) −φ(

i(π)
) − xe(π)

]1/(1−ψ)[
ρ
(
1 +φ′(i(π)

))]−ψ/(1−ψ)
� (37)

which is the same as the investment FOC, given in (19), for the planner’s problem, pro-
vided that the capital tax rate equals xdfb(π): τ(π) = xdfb(π). Note that (37) summarizes
both the consumer’s and the firm’s optimization FOCs in the market economy with opti-
mal taxes.

Second, substituting (32) for η into the FOC (24) for disaster exposure mitigation xe in
the competitive market economy, we obtain

1 = −λ(π)q
(
πJ )

N ′(xe)Exd
[

(1 −Z)
(
u
(
πJ )
u(π)

)1−γ(q
(
πJ )

q(π)
(
1 −N(

xe
)
(1 −Z)

))−γ]
�

Using the investment FOC q(π) = 1+φ′(i(π)), the equilibrium conditions (q(π) = q(π)
and i(π) = i(π)), and the b(π) = u(π)q(π) result for the two economies, we obtain

1 = −N ′(xe(π)
)
λ(π)

(
1 +φ′(i(π)

))[b(πJ )
b(π)

]1−γ
E

xd (π)
[
(1 −Z)

(
1 −N(

xe(π)
)
(1 −Z)

)−γ]
�

which is the same as the planner’s FOC (20) for xe. So far, we have verified that the FOCs
for investment and exposure mitigation spending in the two economies are the same.

Third, substituting (35) into (33) and using the consumption rule c(π) = ρψu(π)1−ψ ×
q(π) implied by the FOC (29), we may rewrite the ODE (33) for the household’s u(π)
as

0 = ρψu(π)1−ψ − ρ
1 −ψ−1 + i(π) − δK +μπ(π)

(
u′(π)
u(π)

+ q′(π)
q(π)

)
− γσ2

K

2

+ λ(π)
1 − γ

[(
u
(
πJ )

q
(
πJ )

u(π)q(π)

)1−γ
E

xd
((

1 −N(
xe

)
(1 −Z)

)1−γ) − 1
]
� (38)

We obtain (38) by using η(π;Z�xe) given in (32) and QJ /Q given in (28).
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Fourth, using the conjecture b(π) = u(π)q(π) = u(π)(1 +φ′(i(π))), we may simplify
the ODE (38) and obtain the following ODE for b(π) = u(π)q(π):

0 = ρ

1 −ψ−1

[[
b(π)

ρ
(
1 +φ′(i(π)

))]1−ψ
− 1

]
+ i(π) − δK +μπ(π)

b′(π)
b(π)

− γσ2
K

2

+ λ(π)
1 − γ

[(
b
(
πJ )
b(π)

)1−γ
E

xd
((

1 −N(
xe

)
(1 −Z)

)1−γ) − 1
]
�

which is the same as the ODE (18) for b(π) in the first-best economy.27 In sum, we have
verified that setting the capital tax at τ(π) = xdfb(π) in the market economy yields the
same allocation as in the first-best economy. Next, we summarize this result.

PROPOSITION 3: Setting the capital tax rate τ(πt) to xdfb(πt) for all firms and then spend-
ing all tax proceeds each period to mitigate the tail risk of the disaster distribution: τ(πt) =
xdfb(πt), the competitive-market economy attains the first-best resource allocation.

It is worth noting that the homogeneity property of our model allows us to simplify
our analysis by writing the optimal tax rate on capital as a function that only depends on
belief, independent of a firm’s capital stock: τ(π) = xdfb(π). However, the market decen-
tralization argument that allows the economy to attain the first-best (after the planner
imposes the optimal capital tax to fund the aggregate public adaptation spending) does
not depend on the homogeneity property. We provide our intuition in two steps.

First, once the planner taxes all firms possibly using nonlinear tax rates on their capital
stocks and uses these tax proceeds to fund the first-best aggregate risk mitigation spending
Xd
t , the planner has fixed the market failure. Second, after the externality is addressed and

the aggregate climate risk is properly mitigated, it is then optimal for both the representa-
tive consumer and producer to choose the first-best consumption and capital investment
decisions, respectively.

5.3. Asset Prices

Next, we report and discuss the equilibrium asset pricing implications.

PROPOSITION 4: Tobin’s average q for the aggregate capital stock is q(π) = 1 +φ′(i(π)),
where i(π) is the optimal investment-capital ratio. The equilibrium risk-free rate, r(π), is
given by

r(π) = ρ+ψ−1
(
i(π) − δK

) − γ
(
ψ−1 + 1

)
σ2
K

2

−
[(

1 −ψ−1
)(u′(π)
u(π)

+ q′(π)
q(π)

)
− q′(π)

q(π)

]
μπ(π)

− λ(π)
[
E

xd
(
η

(
π;Z�xe

)) − 1
]

− λ(π)
ψ−1 − γ

1 − γ
[

1 −E
xd

(
QJ

Q
η

(
π;Z�xe

))]
� (39)

27Also applying the same arguments to the boundaries at π = 0 and π = 1, we can show that the two
economies have the same FOCs at the boundaries and, moreover, b(0) = u(0)q(0) and b(1) = u(1)q(1).
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where η(π;Z�xe) is given in (32) and QJ /Q is the jump-triggered (gross) percentage change
of the stock market value given in (28). The stock market risk premium, rp(π), is

rp(π) = γσ2
K − λ(π)Exd

[(
η

(
π;Z�xe

) − 1
)(QJ

Q
− 1

)]
� (40)

These results apply to both the market economy with taxation and the one without.
Out of the six terms in (39), the first three terms are the contributing factors to the

equilibrium interest rate in AK models with diffusion shocks. The fourth term captures
the effect of belief updating. The fifth term describes how the jump-induced expected
change of the marginal value of wealth (MJ /M) contributes to the risk-free rate. The
sixth term captures the additional effect of jumps on the equilibrium risk-free rate due to
the household’s recursive (nonseparable) Epstein–Zin preferences rather than expected
utility.28

There are two terms for the market risk premium rp given in (40). In addition to the
diffusion risk premium (the first term), there is a jump risk premium (the second term),
which equals the expectation over the product of the (net) percentage change of marginal
value of wealth (M), (η(π;Z�xe) − 1), and the (net) percentage change of the stock
market value given in (28), both of which are caused by jump arrivals. A downward jump
causes the household’s marginal utility to increase (η(π;Z�xe) = M

J /M ≥ 1). As the
stock market valuation decreases upon a jump arrival, (QJ <Q), the jump risk premium
is positive.

6. APPLICATION TO TROPICAL CYCLONES

We apply our model of learning and adaptation for weather disasters to tropical cy-
clones and leverage our asset pricing results to highlight the learning channel. Our largest
sample contains annual observations for the real GDP per capita growth rate and cyclone
landfalls across 109 countries from 1960 to 2010 with 5410 county-year observations in
total.29

6.1. Frequencies of Landfalls and Spendings on Flood Control

Let Landfalli�t be an indicator variable that equals one if and only if country i expe-
rienced at least one cyclone landfall that is “tropical storm” or higher in year t. Table I
reports the sample statistics of cyclone landfalls for each of the four regions.30 Globally,
a country on average experiences a tropical cyclone landfall once every 7�4 years, as the
disaster arrival rate is 0.135 per annum (in Table I).

The primary adaptation for countries in our sample is government flood control bud-
gets. Unlike the landfall data, such data is not readily available. We hand collected data
on government flood control budgets based on public sources by focusing on countries in
the West Pacific (including Oceania), which according to Table I faces the most frequent

28To be precise, for recursive utility, fCV �= 0 and, therefore, the SDF Mt is not additively separable, which
makes jumps to have an additional intertemporal effect. For expected utility (γ =ψ−1), this term disappears.

29These are the same set of countries as in Hsiang and Jina (2014) excluding Taiwan for which there is no
GDP data from the World Bank Development Indicator.

30We assign the 109 countries into four regions: North Atlantic (including North America, the Caribbean,
and West Europe), West Pacific (including Oceania), North India (including North India, Middle East, North
Africa, and Central Europe), and South Atlantic (including Latin America and Sub-Saharan Africa).
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TABLE I

SUMMARY STATISTICS OF CYCLONE LANDFALLS.

Region
(1) Total # of

Country-Year Obs.
(2) Total # of Cyclone

Landfall Obs.
(3) Freq. of Landfalls = (2)/(1):
Disaster Arrival Rate Estimate

North Atlantic 1587 229 0�144
West Pacific 638 326 0�511
North India 719 75 0�104
South Atlantic 2466 99 0�040

Global 5410 729 0�135

tropical cyclone landfalls. We are able to obtain through various sources 72 country-year
observations of government flood control budgets for a cross-section of eight countries.31

For this cross-section, the average annual government flood control budget is around
0.1% (10 basis points) of the country’s capital stock with a standard deviation of 0.05%
across country-years observations. There are also private spendings as well on flood con-
trol according to field studies, which typically place these private spendings somewhat
around 0.03%–0.05% of capital stock, below the 0.1% of capital stock for public spend-
ings (Lasage et al. (2014)).

To provide some perspectives on these small expenditures on flood control, over this
sample period the output-to-capital ratio is about 30% (with a standard deviation of
17%). The investment-capital ratio is 7% (with a standard deviation of 4%) and the
consumption-capital ratio is 22% (with a standard deviation of 13%). The small expendi-
tures on adaptation presumably reflect a belief that the consequences of global warming
are relatively mild but they may significantly increase should the frequencies of arrivals
increase and the society quickly updates beliefs toward the most pessimistic model pro-
jections.

6.2. Damage From Landfalls and Asset Market Reactions

Importantly, we retrieve two key panel regression estimates on the response of growth
and asset prices to the arrival of cyclones that highlight the role of learning in financial
markets. How policies (e.g., investment and consumption) and asset prices respond to
a cyclone arrival depend on beliefs π, which change over time (Propositions 1 and 4).
A landfall is bad news leading to more pessimistic beliefs for future growth. Asset prices
also fall in anticipation of more frequent disasters in the future. In Pindyck and Wang
(2013), which is a special case of our no-learning model, disasters lead to a destruction in
capital stock K but the growth rate is identically and independently distributed at all time.
That is, even after a disaster arrival destroys a fraction of the country’s capital stock, there
is no impact at all on either growth projection or asset prices (e.g., Tobin’s q, the risk-free
rate, and the risk premium) going forward in Pindyck and Wang (2013). This is because
there is no learning in their model.

We now show that landfalls damage growth and asset prices respond adversely to news
of cyclone arrivals, consistent with our model in which learning plays a key role. Table II
reports the estimates of the impact of a major cyclone making landfall on growth for

31West Pacific countries include China, Japan, Korea, and the Philippines. Oceania countries include Aus-
tralia, Indonesia, New Zealand, and Papua New Guinea.
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TABLE II

BASELINE MODEL ESTIMATION RESULTS.

Dependent Variable: Growth Rate of Real GDP Per Capita

(1) (2) (3) (4) (5)
North Atlantic West Pacific North India South Atlantic Global

Landfall −0�0061 −0�0029 −0�0088 −0�0275 −0�0077
(0�0030) (0�0015) (0�0026) (0�0074) (0�0018)

Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes

Note: Clustered standard errors are shown in parentheses below the estimates.

each region and also the world. The dependent variable is the per capita growth rate.
The independent variable is the landfall indicator. The panel regression has country fixed
effects, year fixed effects, and country-specific quadratic time trends. A landfall disaster
reduces the expected annual growth rate by 0.61%, 0.29%, 0.88%, and 2.75% in North
Atlantic, West Pacific, North India, and South Atlantic, respectively, and by 0.77% in
the global sample. Since the average annual growth rate in our sample is 1.95% (with a
standard deviation of 5.09%), a landfall, which lowers the annual growth rate by 0.77%
on average, is quite economically damaging.32

Since the data availability for financial variables is quite limited before 1990, and to be
consistent with our samples using real GDP growth data, the sample period of macro-
financial variables for the cyclone landfall analysis is from 1990 to 2010. Even then, we
only have a subset of countries that have the relevant financial variables. Panel A of Ta-
ble III reports the unconditional moments for asset prices pooling all these remaining
countries. These moments include a risk-free rate of 1.43% and an equity risk premium
of 5.26%, a volatility of equity market returns of 26.57%, and a Tobin’s average q of 2.49.

As before with real GDP growth in Table II, we use a panel regression model in panel
B of Table III to measure the impact of a cyclone landfall on a country’s real interest rate
(RealRF), equity risk premium (ERP), or Tobin’s average q (TobinQ) by using country
and time-fixed effects. The panel regression model regresses financial variables on an in-
dicator for cyclone landfall (Landfall) for the whole sample. A cyclone landfall on average
reduces Tobin’s average q by 0.10, lower the real interest rate by 0.09%, and increases eq-
uity risk premium by 0.31% per annum. These estimates are inconsistent with models of
disasters absent learning, for example, Pindyck and Wang (2013), as we discussed earlier.

7. QUANTITATIVE ANALYSIS

In this section, we first calibrate our model and then conduct a quantitative analysis
based on findings for tropical cyclones (Section 6).

7.1. Distributional and Functional Form Specifications

As in Barro (2006) and Pindyck and Wang (2013), we assume that the distribution
function of the recovery fraction Z upon a cyclone arrival is given by a power law over

32Our estimates are consistent with those reported in Hsiang and Jina (2014), who estimate the marginal
effect of windspeed on GDP growth damage.
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TABLE III

SUMMARY STATISTICS OF ASSET PRICES.
Panel A: Summary Statistics

Mean Standard Deviation Median 10 Percentile 90 Percentile

RealRF (%) 1�43 4�32 1�32 −4�40 6�91
ERP (%) 5�26 24�26 5�61 −27�47 37�36
TobinQ 2�49 4�84 1�51 0�60 3�65
VolRET (%) 26�57 8�26 26�38 15�24 37�52

Panel B: Asset Market Reaction to Landfalls

RealRF ERP TobinQ

Landfall −0�090 0�307 −0�101
(0�039) (0�124) (0�048)

Note: Panel A provides the summary statistics of the financial variables used in our study. RealRF is real interest rate (nominal
interest rate minus inflation rate). ERP is equity risk premium (stock market return net of nominal interest rate). TobinQ is Tobin’s
average q. VolRET is volatility of annual stock market return. Annual risk-free nominal interest rate, inflation rate, and stock market
return data at the country level are from the IMF and the World Bank. Panel B reports regression of these asset-pricing moments
on cyclone landfalls. Estimates for RealRF and ERP are in percentages. Clustered robust standard errors are shown in parentheses
below the estimates. The period for the cyclone sample is 1990–2010.

Z ∈ (0�1):

�
(
Z;xd

) =Zβ(xd)�

where β(xd) is the exponent function that depends on scaled disaster distribution mitiga-
tion xd . To ensure that our model is well-defined, we require β(xd) > γ− 1.

Conditional on a jump arrival, the expected fractional capital loss for a firm is given by

�(π) =N(
xe

)(
1 −E

xd (Z)
) = N

(
xe

)
β

(
xd

) + 1
�

The larger the value of β(·), the smaller the expected fractional loss E
xd (1 − Z) even

absent the firm’s disaster exposure mitigation xe. To capture the benefit of public mitiga-
tion, we assume that β(xd) is increasing in xd: β′(xd) > 0. The benefit of public disaster
distribution mitigation xd is to increase the capital stock recovery (upon the arrival of a
disaster) in the sense of first-order stochastic dominance in that �(Z;xd) decreases with
xd .

Let gt = g(πt) denote a firm’s expected growth rate including the jump effect. The
homogeneity property implies that growth is independent of the aggregate capital K and

g(π) = i(π) − δK − λ(π)�(π) = i(π) − δK − λ(π)N
(
xe

)
β

(
xd

) + 1
�

We specify the firm’s exposure mitigation technology N(xe) as follows:

N
(
xe

) = 1 − (
xe

)ζ
�

where 0< ζ < 1. That is, the more exposure mitigation spending xe the smaller the (frac-
tional) damage, that is, the lower the level of N(xe). Additionally, the marginal benefit of
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xe on reducing damages diminishes. We use the following linear specification for β(xd),
which governs the public disaster distribution mitigation technology:

β
(
xd

) = β0 +βxxd� (41)

with β0 ≥ max{γ − 1�0} and βx > 0. The coefficient β0 is the exponent for the distribu-
tion function of the fractional recovery Z in the absence of mitigation. The coefficient
βx is a key parameter and measures the efficiency of the aggregate disaster distribution
mitigation technology. Finally, we use a quadratic adjustment cost function (e.g., Hayashi
(1982)):

φ(i) = θi2

2
�

where the parameter θ measures how costly it is to adjust capital.

7.2. Calibration and Parameter Choices

Our model has 13 parameters. We calibrate these parameters by targeting 13 moments
described in Section 6. The calibrated values of these parameters are given in Table IV.

The new parameters in our analyses are the three for the learning process (λG, λB, and
π0) and the other three for the adaptation technologies (β0, βx, and ζ). In order to de-
termine these six parameters, we use six moments from our panel data on the frequencies
of tropical cyclone landfalls, their impact on GDP growth and asset prices (risk-free rate,
equity risk premium, and Tobin’s average q), and the levels of private and public adap-
tation spendings that we obtained and reported in Section 6, that is, around 0.1% and
0.04% of capital stock, respectively. To rationalize the empirical findings, we need quite a
large spread in λG and λB, consistent with the considerable uncertainty in climate science
projections (Knutson et al. (2020)).

A number of the macro-finance moments we are targeting, such as the risk-free rate
and equity risk premium (panel A of Table III) are similar to those targeted in the asset

TABLE IV

PARAMETER VALUES.

Parameters Symbol Value

Disaster jump arrival rate in State G λG 0.1
Disaster (jump) arrival rate in State B λB 0.8
Prior of being in State B π0 0.08
Power law exponent absent adaptation β0 39
Distribution adaptation technology parameter βx 1800
Exposure adaptation technology parameter ζ 0�4
Elasticity of intertemporal substitution ψ 1.5
Time rate of preference ρ 5%
Productivity parameter A 27%
Quadratic adjustment cost parameter θ 17
Coefficient of relative risk aversion γ 8
Capital diffusion volatility σK 8%
Depreciation rate of capital δK 6%

Note: All parameter values, whenever applicable, are continuously compounded
and annualized.
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pricing literature. Hence, our preference parameters, for example, the EIS ψ and coeffi-
cient of relative risk aversion γ, are similar to those used in this literature. For instance,
Bansal and Yaron (2004) show that setting the coefficient of relative risk aversion γ to
a value between 7 to 10 and an EIS ψ to be larger than one is necessary to match the
equity risk premium and the risk-free rate. Similarly, the parameters for the production
part of our model, for example, productivity, capital adjustment costs, and the capital
depreciation rate, are chosen to match the aggregate output and production targets dis-
cussed in Section 6.1. The calibrated values turn out to be close to those in the literature
(e.g., Eberly, Rebelo, and Vincent (2012)), suggesting that our calibration strategy yields
sensibly robust parameter values for our quantitative analysis.

Next, we use these parameters to analyze a few economies. In Figure 2, we plot and
compare the solutions for three economies: (1) the planner’s first-best solution (solid
lines), (2) the market economy (dashed lines), and (3) the planner’s solution with no
learning (dotted lines). In the next two subsections, we do two pairwise comparisons.

7.3. Comparing First-Best With Competitive-Market Solutions

In this subsection, we compare the first-best with competitive-market solutions. A key
feature that both economies share is learning. In panel A of Figure 2, we see that public
mitigation xd (solid line) rapidly increases with the disaster arrival rate λ in the first-best
economy. In contrast, the market solution features no public mitigation spending (dashed
line) regardless of beliefs due to externalities. Panel B shows that private mitigation xe in
both economies increases with λ. Since there is no xd in the competitive economy, private
adaptation has to take up the slack. But the total adaptation spendings given by the sum,

FIGURE 2.—This figure compare the solutions for three economies: (1) the planner’s first-best solution
(solid lines), (2) the market economy (dashed lines), and (3) the planner’s solution with no learning (dotted
lines). The first two economies feature Bayesian learning. The parameters values are given in Table IV.
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FIGURE 3.—This figure compare the solutions for three economies: (1) the planner’s first-best economy
(solid lines), (2) the market economy (dashed lines), and (3) the planner’s economy with no learning (dotted
lines). The first two economies feature Bayesian learning. The parameters values are given in Table IV.

xe + xd , are lower in the market economy than in the first-best economy, meaning that the
combined risk mitigation is still underprovided in the laissez-faire market economy.

Now we turn to Figure 3. We define WTP ζp(π) and ζm(π) as the fraction of capital
the market economy with no adaptation is willing to give up to transition to the planner’s
first-best economy and the market economy with just private adaptation, respectively.33

Panel A shows that both WTPs increase with belief π.34 The WTP wedge ζp(π) − ζm(π)
measures the additional welfare gain of having access to the tail-risk public adaptation
technology in a market economy. This additional welfare gain increases with λ and is
quite substantial for the real-world relevant range of values for λ.

In panel B of Figure 3, we show that the conditional damage �(λ) in both the first-best
and market economies decrease with λ. Additionally, the conditional damage �(λ) in the

33To calculate the WTP measures, ζp(π) and ζm(π), we use the representative household’s value functions
(welfare measures proportional to the certainty equivalent wealth) for the three economies. Formally, we use

ζp(π) = 1 − b(π)
bfb(π)

and ζm(π) = 1 − b(π)

b̂(π)
> 0�

where bfb, b̂, and b are the welfare measures (proportional to certainty equivalent wealth) in the (planner’s)
first-best economy, the market economy (with access to both adaptation technologies but only private mitiga-
tion technology will be adapted in equilibrium), and the market economy (with access to neither adaptation
technology), respectively.

34We can decompose the WTPs into the risk premium and timing premium components by building on the
idea and extending the procedure proposed in Epstein, Farhi, and Strzalecki (2014). We show that for our
calibrated baseline, while the timing premium is also important, the risk premium component is the major
contributor to the total WTP.
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first-best economy is lower than in the market economy. Moreover, as λ increases, the
wedge between �(λ) in the two economies widens. Because of larger risk mitigation and
smaller conditional damage �(λ) in the first-best economy than in the market economy,
the expected growth rate g(λ) is higher in the first-best economy than the market economy
(panel C). This is because the society is more prepared in the first-best economy than in
the market economy. The growth-rate difference in the two economies increases with λ
and is quantitatively large for the real-world relevant range of λ.

In panels D, E, and F of Figure 3, we show that in both the first-best and market
economies, Tobin’s average q decreases as belief worsens, however, the interest rate and
risk premium are nonlinear and nonmonotonic in λ. This is because while the mean
growth prospect gets worse as λ increases, uncertainty is the highest for the intermedi-
ate range of λ. As both, the mean and higher-order-moment effects are important in the
first-best and market economies, the impact of λ on the interest rate and risk premium
are nonlinear and nonmonotonic.

7.4. Learning versus No-Learning Counterfactual

In this subsection, we assess the value of learning by comparing the solution of our first-
best model with learning (of Section 3) with the solution of a counterfactual planner’s
model with no learning. In the counterfactual no-learning model, we assume that the
disaster arrival rate is fixed at a given value of λ and then solve the model. We find that
adaptation spendings (in panels A and B of Figure 2) for π ∈ (0�1) are larger in our
learning model (solid lines) than in our counterfactual no-learning model (dotted lines).
As the π = 0 state (where λ = λG = 0�1) and the π = 1 state (where λ = λB = 0�8) are
absorbing, the solutions for the first-best learning model (solid lines) and the planner’s no-
learning model (dotted lines) are the same at π = 0 and π = 1 states. That is, adaptation
spendings are the highest in the learning model where there is uncertainty over climate
states (intermediate values of λ). Investment in our learning model is also lower than in
our no-learning counterfactual model (panel C), but consumption differences in the two
economies are limited (panel D).

7.5. Comparative Statics

In Online Appendix OC, we conduct comparative static analyses with respect to four
key parameters: the EIS (ψ), the disaster arrival rate in state B (λB), the time rate of
preference (ρ), and the coefficient of relative risk aversion (γ). Our main mitigation find-
ings are robust across these four parameter values. The main difference lies in valuation
ratios, for example, the price-dividend ratio.35 Finally, in the last subsection of Online
Appendix OC (Section OC.5), we provide a welfare decomposition using our model to
further reinforce the importance of learning in determining welfare.

7.6. Generalized Learning Model With Stochastic Arrival Rate λt
The disaster arrival rate in our baseline model (Section 2), while unobservable, is con-

stant. In Online Appendix OA, we generalize our baseline model to allow for the unob-
servable disaster arrival rate to be stochastic, by using a two-state Markov Chain (see, e.g.,

35When EIS ψ= 1, the price-dividend ratio, q/c, equals 1/ρ, the inverse of the time rate of preference, for
all levels of π, which is known in the asset-pricing literature, for example, Wachter (2013). When ψ is greater
(less) than one, this q/c ratio decreases (increases) with π. That is, equity valuation ratios react negatively to
bad (e.g., disaster arrival) news consistent with the reason why the long-run risk literature chooses ψ> 1.
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Wachter and Zhu (2019)). We show that our main quantitative results and conclusions
continue to hold in the generalized model of Online Appendix OA where the transition
rates between states G and B are small.

7.7. External Habit Model

In Online Appendix OB, we replace the Epstein–Zin recursive utility used in our base-
line model of Section 2 with another widely-used risk preference—the external habit
model proposed by Campbell and Cochrane (1999). For brevity, we focus on the plan-
ner’s solution. We calibrate our external habit model by targeting the same moments as
we do for our baseline model whenever feasible. The quantitative implications on mitiga-
tion spendings and welfare in our external habit model are similar to those in our base-
line model with Epstein–Zin preferences. However, the two models generate opposite
predictions on how investment i and Tobin’s average q respond as belief becomes more
pessimistic (π increases). While both i and q increase with π in our habit model, the op-
posite holds in our baseline Epstein–Zin model. The intuition follows from our discussion
regarding comparative statics with respect to ψ.36

8. IMPLICATIONS FOR THE SOCIAL COST OF CARBON

In this section, we generalize our baseline model (Section 2) to draw out the implica-
tions for the social cost of carbon (SCC) as the society learns about the severity of climate
disasters and adapts to the challenges it faces. We show how the planner can attain the
first-best outcome by optimally using taxes on carbon, investments, and capital. We cali-
brate our generalized model so as to provide quantitative predictions for projections of
SCC over time.

8.1. Generalized Model: Fossil Fuels, Carbon Stock, and Disasters

First, we introduce fossil fuel usage caused emissions, Ht , as an additional factor of
production at the micro-level, so that a firm’s output equals AKα

t H
1−α
t , with 0 < α < 1,

as in Golosov et al. (2014) and Van den Bremer and Van der Ploeg (2021). The stock of
(aggregate) atmospheric carbon (in Gitatons) that exceeds the pre-industrial atmospheric
carbon stock associated with man-made emissions, which we denote by St , evolves

dSt = (Ht− − δSSt−) dt + σSSt− dWS
t �

where Ht is the aggregate fossil fuel emissions by all firms: Ht =
∫
Hν
t dν, δS is the decaying

rate of the atmospheric carbon stock, WS
t is a standard Brownian motion, and the param-

eter σS is the volatility of atmospheric carbon. Let ϑ denote the correlation coefficient
between WS

t and the standard Brownian motion WK
t . We measure both the firm-level H

and the aggregate H in units of carbon and, therefore, also measure S in units of carbon
(e.g., tons of carbon). The aggregate resource condition is

AKα
t H1−α

t = Ct + It +	(It �Kt) + Xd
t + Xe

t +pHHt � (42)

36From the long-run risk literature and the comparative static analysis for our baseline Epstein–Zin model
with respect to ψ in Section OC of the Online Appendix, we know that an EIS (lower than one) causes the
valuation ratios, for example, the price-dividend ratio, to go up in response to bad news. Our habit model
inherits this property, which explains the key differences between the two utility models.
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where pH denotes the price of carbon per ton (tc) in units of consumption good, the
numeraire.

To model the damage of the aggregate carbon stock St , we assume that the distribu-
tion of the post-jump fractional recovery Z depends on St . We assume that the damage
of weather disaster shocks while uncertain increases in expectation with St . As in our
baseline model, firms and households learn from disaster arrivals over time regarding the
severity of climate risk. To maintain the homogeneity structure of our model, we assume
that the distribution function of the post-jump fractional recovery Z, �, depends on both
aggregate adaptation spending, xt−, and the scaled carbon stock, st− = St−/Kt−, that is,
�(Z;xdt−� st−). The higher the carbon stock st−, the lower the expected recovery caused
by a disaster.

The carbon-to-productive-capital ratio s = S/K evolves as follows:

dst = μs(πt−� st−) dt + st−
[
σS dWS

t − σK dWK
t +Nt−(1 −Z) dJt

]
�

where μs(πt−� st−) is given by

μs(πt−� st−) = ht− − (
it− − δK + δS − σ2

K +ϑσKσS
)
st−�

8.2. First-Best Solution

Let V (K�S�π) denote the representative household’s value function. The planner
chooses {C� I�xexd�H} to solve the following HJB equation:

0 = max f (C� V ) + (I − δKK)VK +μπ (π)Vπ + (H − δSS)VS + σ2
KK2VKK

2
+ σ2

SS2VSS

2

+ϑσKσSKSVKS + λ(π)Exd
[
V

((
1 −N(

xe
)
(1 −Z)

)
K�S�πJ ) − V (K�S�π)

]
� (43)

subject to the aggregate resource additivity condition (42).
As in Cai and Lontzek (2019) and Van den Bremer and Van der Ploeg (2021), we de-

fine the social cost of carbon (SCC), as the marginal disutility/disvalue of emitting an
additional ton of carbon divided by the marginal utility of consumption:

mt ≡ −VS(Kt �St �πt)
fC(Ct � Vt)

� (44)

We may use the SCC, mt defined in (44), to express the FOC for the fossil fuel usage Ht

as

(1 − α)AKα
t H−α

t = pH +mt� (45)

Rewriting (45), we obtain the following expression for the scaled fossil fuel usage hfb
t :

hfb
t =

(
(1 − α)A
pH +mt

)1/α

�

We show that the value function V is homogeneous with degree (1 − γ) in K and S:

V (K�S�π) = 1
1 − γ

(
b(π� s)K

)1−γ
� (46)
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where s = S/K and b(π� s) is a measure of welfare proportional to the household’s cer-
tainty equivalent wealth under optimality. Using the first-best policies and b(πt� st), we
obtain the following expression for the SCC measure mt defined in (44) in the first-best
economy:37

m(πt� st) = −bs(πt� st)
ρ

(
c(π� st)
b(πt� st)

)ψ−1

� (47)

In Online Appendix OD, we solve the model characterized by the PDE system for
b(π� s).

8.3. Market Economy With Optimal Taxes Attains First-Best

In this subsection, we show that the planner attains the first-best outcome via optimal
taxation and a lump-sum transfer. Let τxt , τht , and τit denote the tax rates on a firm’s capital
Kt , fossil-fuel usage and investment, respectively. Let Lt denote the lump-sum transfer to
the firm, which only depends on the aggregate variables. A firm’s payout at t, Yt , is then
given by

Yt =AKα
t H

1−α
t − (

It +	t +Xe
t +Xd

t +pHHt

)
− [
τxt Kt + τht Ht + τit (It +	t)

] + Lt � (48)

Taking the equilibrium SDF Mt and the three tax rates as given, each firm maximizes its
value given in (3) by choosing {I�Xe�Xd�H}.

The key idea here is that the planner can attain the first-best by implementing Pigouvian
taxes (for investment and fossil fuel usage) in our dynamic model in addition to taxing
capital to fund aggregate adaptation spending (as in the baseline model of Section 2).

The FOC for a firm’s fossil fuel usage, h, is (1 − α)Ah(π� s)−α = pH + τh, where τh is
the Pigouvian tax on fossil fuel usage h. By setting τht =m(πt� st) at all t, wherem(π� s) is
given in (47), we obtain the same FOC for ht as in the planner’s problem. By taxing fossil
fuel at SCC under the first-best m(π� s), the planner (locally) addresses the externality
caused by carbon emissions. However, this is not enough.

This is because our model features capital adjustment costs, which means capital stock
K is a state variable rather than a choice variable as in Golosov et al. (2014). This has
important implications on the optimal tax plan. To attain the first-best, the planner needs
to ensure that both carbon stock S and capital stock K to follow the same trajectory as in
the first-best economy. Hence, in addition to using a fossil fuel tax τh to manage carbon
accumulation, the planner also needs to use an investment tax τi to manage capital stock
accumulation.

Specifically, facing an investment tax τi, a firm chooses i to satisfy the FOC:

q(π� s) = (
1 +φ′(i(π� s)

))(
1 + τi)� (49)

By optimally choosing τi, the planner increases a firm’s marginal cost of investing from
(1 + φ′(i(π� s))) as in the standard q theory to the term on the right-hand side of (49),
which includes the additional marginal cost to the society τi(1 +φ′(i(π� s))). Taking the

37Using the first-best solution, we can calculate the first-best c(π� s) by using the resource constraint:
c(π� s) =Ah(π� s)1−α − i(π� s) −φ(i(π� s)) − xd(π� s) − xe(π� s) −pHh(π� s).
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investment tax as given, the firm optimally equates its marginal q (marginal benefit of
investing) on the left-hand side of (49) with its cum-tax marginal cost of investing on the
right-hand side.

Similar to the analysis for the market economy under government intervention for our
baseline model (Section 5), we show that it is optimal for the planner to tax capital at the
rate τxt that equals the aggregate adaptation spending, that is, τxt = xdt at all time t and
use the aggregate proceeds from capital taxes to fund the aggregate public adaptation
spending Xd

t .
Finally, we show that the lump-sum transfer associated with optimal Pigouvian taxes is

given by Lt =m(πt� st)Hfb
t + τi(πt� st)(Ifb

t +�fb
t ), where τit = τi(πt� st) and

τi(πt� st) = stbs(πt� st)
b(πt� st) − stbs(πt� st)

� (50)

To ensure that the market economy tracks the capital stock accumulation in the first-best
economy, the planner links the optimal tax rate to the welfare measure b(πt� st) and its
derivative in the first-best economy, as (50) shows.

To further deepen our understanding of the mechanism, we substitute the lump-sum
transfer expression for Lt into a firm’s payout process (48) and obtain

Yt =AKα
t H

1−α
t − (

It +	t +Xe
t +Xd

t +pHHt

)
− [

xdfb(πt� st)Kt +m(πt� st)
(
Ht − Hfb

t

) + τi(πt� st)
(
It +	t −

(
Ifb
t +�fb

t

))]
� (51)

Recall that Xd = 0, as a firm is infinitesimal and reducing aggregate disaster risk brings
no benefit but only cost to itself as in our baseline model. Now we have expressed a firm’s
fossil fuel tax payment as the carbon tax rate m(πt� st) multiplied by a firm’s excess fossil
fuel usage relative to the first-best level, Ht − Hfb

t . This means when Ht − Hfb
t < 0, the

firm receives a subsidy. Similarly, a firm’s investment tax payment equals the investment
tax rate τi(πt� st) multiplied by its total investment costs exceeding the first-best level,
(It +	t − (Ifb

t +�fb
t )). This is because the planner only optimally penalizes a firm’s devi-

ation from the first-best. Our carbon and investment taxes are Pigouvian taxes in general
equilibrium.

Finally, by combining the investment and carbon taxes with the optimal capital tax τx
to fund the aggregate adaptation spending, the planner fully addresses all externalities
and attains the first-best. Next, we summarize the three tax rates chosen by the planner to
attain the first-best in a market economy. Online Appendix OD provides a proof.

PROPOSITION 5: The planner attains the first-best outcome in a market economy by setting:
(1) τxt = xdfb(πt� st), where xdfb(πt� st) is the scaled first-best public (distribution) adaptation;
(2) τht =m(πt� st), where m(πt� st) is SCC in the first-best economy given in (47); and (3)
τit = τi(πt� st), where τi(πt� st) is given in (50).

8.4. Calibration

Next, we calibrate our generalized model with carbon stock. The solution of this gen-
eralized model boils down to a PDE system even after we use the homogeneity property
to simplify our analysis. After incorporating fossil fuel and carbon dynamics, our model
has 20 parameters (Table V) while our baseline model of Section 7 has 13 parameters
(Table IV).
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TABLE V

PARAMETER VALUES FOR GENERALIZED MODEL WITH CARBON.

Parameters Symbol Value

Disaster (jump) arrival rate in State G λG 0.1
Disaster (jump) arrival rate in State B λB 0.8
Prior of being in State B π0 0.08
Power law exponent absent adaptation β0 39
Distribution adaptation technology parameter βx 2500
Exposure adaptation technology parameter ζ 0�25
Damage parameter from atmospheric carbon βs 10,000
Carbon decaying rate δS 3%
Return-to-scale parameter α 0�96
Volatility of carbon stock growth σS 7.5%
Price of carbon per ton (tC) pH 540
Initial value of pHs pHs0 13�6%
Elasticity of intertemporal substitution ψ 1.5
Time rate of preference ρ 5%
Productivity parameter for Cobb–Douglas function A 43%
Quadratic adjustment cost parameter θ 17
Coefficient of relative risk aversion γ 8
Capital diffusion volatility σK 8%
Depreciation rate of capital δK 6%
Correlation between capital and carbon stocks ϑ 0

Note: All parameter values, whenever applicable, are continuously compounded and annualized.

First, we assume that the β function that describes the disaster damage distribution
depends on not only Xd and K but also S in our carbon model as follows:

β
(
xd� s

) = β0 +βxxd −βss�

where xd = Xd/K, s = S/K, and βx and βs are positive parameters. Compared with (41),
we now incorporate the effect of carbon stock s on disaster damages, which is captured by
βs. Generalizing our calibration procedure for the baseline model, we determine the eight
parameters in the first panel of Table V (λG, λB, β0, βx, βs, ζ, δS , and π0) by targeting the
GDP growth, asset prices (risk-free rate, equity risk premium, and Tobin’s average q), the
levels of private and public adaptation spendings (reported in Section 6), and the steady
state of s at 0�05%.

The four parameters in the second panel of Table V (α, σS , pH , and s0) are related to
fossil fuels and carbon stock dynamics in our model and damage from carbon stock. We
use the parameter values from the carbon economics literature for these parameters (see,
e.g., Van den Bremer and Van der Ploeg (2021)).

For the three preference parameters (the EIS ψ, risk aversion γ, and the time rate of
preference ρ) and the four production parameters (productivity A, the quadratic adjust-
ment cost θ, capital diffusion volatility σK , and capital depreciation rate δK) reported in
the last panel of Table V, we use the same values as those in Table IV for our baseline
model without carbon (of Section 2). Finally, we set the correlation coefficient between
capital shocks and carbon stock shocks to zero: ϑ= 0.
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FIGURE 4.—Panel A plots SCC m(π� s) as a function of π fixing s = s0. Panel B plots SCC as a function of
s fixing π = π0. The parameters values are in Table V.

8.5. Social Cost of Carbon Projections

In this subsection, we discuss the Social Cost of Carbon (SCC) projections over time
using the first-best solution. It is helpful to first plot how SCC m(π� s) varies with the
two-state variables: π and s.

SCC as a Function of Belief π and s. Panel A of Figure 4 shows that SCC, m(π� s0), is
increasing and concave in π. As the world becomes riskier, that is, as π increases, SCC
increases as we expected. However, the rate at which SCC increases,mπ (π� s0), decreases
with π. This is because the society endogenously increases adaptation spendings xd and
xe as π increases (Section 7). Panel B of Figure 4 shows that SCC, m(π� s0), is increasing
in s.

Next, we simulate our model (from year 0) and analyze predicted SCC projections. To
highlight the role of learning, we first consider the no-learning counterfactual environ-
ment.

SCC Projections Under No-Learning Counterfactual. In Figure 5, we see that both the
mean and quantiles of SCC increase over time. This is because carbon accumulates over
time in expectation and SCC increases with (scaled) carbon stock s. The qualitative pre-
diction of our model is similar to other recent integrated assessment models (Jensen and
Traeger (2014) and Cai and Lontzek (2019)). However, unlike these models with no adap-
tation margins, active adaptations in our model reduce the slope of SCC projections over
time.

SCC Projections in Our Learning Model. Figure 6 shows that the mean of SCC projec-
tions in our learning environment first decreases over time, bottoms out around 10 years,
and then increases over time (panel A). This prediction fundamentally differs from those
in no-learning counterfactual environments, such as the one we just analyzed in Figure 5
and models in the literature, which have no learning.

Why in a learning model does SCC first decrease before increase over time? This is
due to the interaction of (1) belief dynamics and (2) the endogenous adaptation response
to changing beliefs. First, belief π, being a martingale, spreads out stochastically over
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FIGURE 5.—The mean (panel A) and quantiles (panel B) of social cost of carbon (SCC) over time in the
counterfactual no-learning environment. The parameters values are in Table V.

time and eventually settles either at state G or at state B with probability one.38 Second,
because of endogenous adaptation response to changing beliefs, SCC is concave in π,
which we just discussed using panel A of Figure 4. Therefore, due to Jensen’s inequality,
SCC first decreases over time in our learning model.

Quantitatively, our calibrated calculation shows that the learning effect dominates the
standard carbon emission effect for the first 10 or so years and the standard carbon stock
effect dominates for the later years, generating the inverse-hump shaped SCC transition
dynamics.39 The interquantile SCC range (for a given pair of quantiles) in our learning

FIGURE 6.—The mean (panel A) and quantiles (panel B) of social cost of carbon (SCC) over time in our
learning model. The parameters values are in Table V.

38This result follows from the martingale convergence theorem (Liptser and Shiryaev (2001)).
39Note that SCC projections are also about 20% lower in our learning model than in the no-learning coun-

terfactual model (Figure 5). This is consistent with our model’s prediction that it is more valuable to adapt
when agents learn from disaster arrivals (Section 7.4).
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model is much wider than the range in the no-learning counterfactual (comparing Fig-
ures 5 and 6). In sum, we show that the interaction of learning and adaptation generates
new qualitative predictions and large quantitative effects for SCC projections.

9. CONCLUSION

We develop a model of adaptation to mitigate weather disaster risks arising from global
warming. Optimal adaptation—a mix of private efforts and public spending—depends on
learning about the consequences of global warming for disaster arrivals. The planner’s
solution can be implemented via a combination of taxes on capital and carbon. We apply
our model to major tropical cyclones and calibrate the learning process using empirical
findings on the response of asset prices to disaster arrivals. There are a number of impli-
cations, including the dependence of social-cost-of-carbon projections on the interaction
of uncertainty resolution and endogenous response of adaptation. To obtain these results,
we made simplifying assumptions on adaptation technologies. Relaxing them, which we
leave for future research, would yield additional insights for policymakers.

APPENDIX A: THE FIRST-BEST ECONOMY IN SECTION 3

A.1. Planner’s Resource Allocation

Substituting the value function (17) into the FOC (14) for investment, the FOC (15)
for the aggregate disaster distribution adaptation spending, and the FOC (16) for the
aggregate disaster exposure adaptation spending, we obtain

b(π) = c(π)1/(1−ψ)
[
ρ
(
1 +φ′(i(π)

))]−ψ/(1−ψ)
� (A.1)

ρc(π)−ψ−1
b(π)ψ

−1−1 = λ(π)
1 − γ

(
b
(
πJ )
b(π)

)1−γ

×
∫ 1

0

[
∂ξ

(
Z;xd

)
∂xd

(
1 −N(

xe(π)
)
(1 −Z)

)1−γ
]
dZ� (A.2)

ρc(π)−ψ−1
b(π)ψ

−1−1 = λ(π)
[
b
(
πJ )
b(π)

]1−γ
N ′(xe(π)

)
×E

xd (π)
[
(Z − 1)

(
1 −N(

xe(π)
)
(1 −Z)

)−γ]
� (A.3)

where the post-jump πJ is given in (9) as a function of the pre-jump π. Substituting the
resource constraint, c(π) =A− i(π) − φ(i(π)) − xd(π) − xe(π), into (A.1), we obtain
(19). Substituting (A.1) into (A.3), we obtain (20) and substituting (A.1) into (A.2), we
obtain (21). Finally, substituting the value function (17) and the FOC (19) into the HJB
equation (13), we obtain the ODE (18).

In sum, we now have fully characterized the model solution summarized in Proposi-
tion 1.

A.2. Asset Pricing Implications in the First-Best Economy

Duffie and Epstein (1992) show that the SDF {Mt : t ≥ 0} implied by the planner’s
solution is

Mt = exp
[∫ t

0
fV (Cs� Vs)ds

]
fC(Ct � Vt)�



MITIGATING DISASTER RISKS 1797

Using the FOC for investment (14), the value function (17), and the resource constraint,
we obtain

fC(C� V ) = 1
1 +φ′(i(π)

)b(π)1−γK−γ = 1
q(π)

b(π)1−γK−γ

and

fV (C� V ) = ρ

1 −ψ−1

[
(1 −ω)C1−ψ−1(

(1 − γ)
)ω−1 V

−ω − (1 − γ)
]

= −ε(π)�

where

ε(π) = −ρ(1 − γ)
1 −ψ−1

[(
c(π)
b(π)

)1−ψ−1(
ψ−1 − γ

1 − γ
)

− 1
]
� (A.4)

Using the equilibrium relation between b(π) and c(π), we simplify (A.4) as

ε(π) = ρ+ (
ψ−1 − γ)[

i(π) − δK − γσ2
K

2
+μπ (π)

b′(π)
b(π)

]

+ (
ψ−1 − γ)[λ(π)

1 − γ
((
b
(
πJ )
b(π)

)1−γ
E

xd
[(

1 −N(
xe

)
(1 −Z)

)1−γ] − 1
)]
�

where the post-jump belief πJ given in (9) is a function of the pre-jump belief π. For
expected utility where ψ = 1/γ, we have ε(π) = ρ. Using Itô’s lemma and the optimal
allocation, we obtain

dMt

Mt−
= −ε(π) dt − γ[(

i(π) − δK
)
dt + σK dWK

t

] + γ(γ+ 1)
2

σ2
K dt

+
(

(1 − γ)
b′(π)
b(π)

− q′(π)
q(π)

)
μπ(π) dt

+
[

q(π)
q
(
πJ )(

b
(
πJ )
b(π)

)1−γ(
1 −N(

xe
)
(1 −Z)

)−γ − 1
]
dJt �

As the expected percentage change of Mt equals −rt per unit of time (Duffie (2001)),
we obtain the following expression for the equilibrium interest rate:

r(π) = ρ+ψ−1
(
i(π) − δK

) − γ
(
ψ−1 + 1

)
σ2
K

2

−
[(

1 −ψ−1
)b′(π)
b(π)

− q′(π)
q(π)

]
μπ (π)

− λ(π)
[

q(π)
q
(
πJ )(

b
(
πJ )
b(π)

)1−γ
E

xd
((

1 −N(
xe

)
(1 −Z)

)−γ) − 1
]

− λ(π)
[
ψ−1 − γ

1 − γ
(

1 −
(
b
(
πJ )
b(π)

)1−γ
E

xd
((

1 −N(
xe

)
(1 −Z)

)1−γ))]
�
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Recall that Dt = Ct and Mt−Dt− dt + d(MtQt) is a martingale under the physical mea-
sure (Duffie (2001)). Applying Itô’s lemma to Mt−Dt− dt + d(MtQt) and setting its drift
to zero, we obtain

c(π)
q(π)

= ρ− (
1 −ψ−1

)[
i(π) − δK − γσ2

K

2
+μπ (π)

b′(π)
b(π)

]

+ λ(π)
1 −ψ−1

1 − γ

×
[

1 −
(
b
(
πJ )
b(π)

)1−γ
E

xd
[
1 −N(

xe
)
(1 −Z)

]1−γ
]
� (A.5)

We obtain the aggregate Tobin’s average q from (A.5). For the special case with ψ = 1
and any risk aversion γ > 0, the dividend yield (and equivalently the consumption-wealth
ratio) is c(π)/q(π) = ρ.

APPENDIX B: MARKET EQUILIBRIUM SOLUTION IN SECTION 4

B.1. Firm Value Maximization

First, using Itô’s lemma, we obtain the following dynamics for Qt =Q(Kt�πt):

dQt =
(

(I − δKK)QK + 1
2
σ2
KK

2QKK +μπ (π)Qπ

)
dt + σKKQK dWK

t

+ (
Q

((
1 −N(

xe
)
(1 −Z)

)
K�πJ ) −Q(K�π)

)
dJt �

No arbitrage implies that the drift of Mt−(AKt− − It− − 	(It−�Kt−) −Xe
t− −Xd

t−) dt +
d(MtQt) is zero under the physical measure (Duffie (2001)). Applying Itô’s lemma to this
martingale, we obtain

0 = max
I�xe�xd

M
(
AK − I −	(I�K) − xeK − xdK)

+M

(
(I − δKK)QK + 1

2
σ2
KK

2QKK +μπ (π)Qπ

)

+Q[−r(π) − λ(π)
(
E

xd
(
η

(
π;Z�xe

)) − 1
)]
M−Mγσ2

KKQK

+ λ(π)Exd
[
η

(
π;Z�xe

)
Q

((
1 −N(

xe
)
(1 −Z)

)
K�πJ )

−Q(K�π)
]
M� (B.6)

And then by using the homogeneity property Q(K�π) = q(π)K, we obtain the simplified
HJB equation (23). Simplifying the FOC for the exposure mitigation spending implied
by (B.6), we obtain (24). Similarly, simplifying the investment FOC implied by (B.6), we
obtain (25).
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B.2. Household’s Optimization Problem

By following the cum-dividend return of the aggregate asset market given in (12), the
representative household accumulates wealth as40

dWt = r(πt−)Wt− dt +
(
μQ(πt−) − r)�t− dt + σK�t− dWK

t −Ct− dt

+
(

QJ
t

Qt−
− 1

)
�t− dJt � (B.7)

By using the Wt process given in (B.7), we obtain the HJB equation (27) for the house-
hold’s value function. The FOCs for consumption C and the market portfolio allocation
� are given by

fC (C�J) = JW (W�π)� (B.8)

σ2
K�JWW (W�π) = −(

μQ(π) − r(π)
)
JW (W�π)

+ λ(π)Exd
[(

1 − QJ

Q

)
JW

(
W J �πJ )]

� (B.9)

Subsituting (26) into (B.8), we obtain the optimal consumption rule given by (29). Simpli-
fying the FOC for � given by (B.9), we obtain (30).

B.3. Market Equilibrium

First, the firm’s (scaled) disaster exposure adaptation spending is positive and equals
the aggregate exposure mitigation spending: xe = xe > 0. Second, in equilibrium, the
household invests all wealth in the market portfolio and holds no risk-free asset, �=W
and W = Q. Simplifying the FOCs, (29) and (30), and using the value function (26), we
obtain

c(π) = ρψu(π)1−ψq(π)� (B.10)

μQ(π) = r(π) + γσ2
K

+ λ(π)
[
E

xd
(
η

(
π;Z�xe

))

− q
(
πJ )

q(π)
E

xd
((

1 −N(
xe

)
(1 −Z)

)
η

(
π;Z�xe

))]
� (B.11)

40The first four terms in (B.7) are standard as in the classic portfolio-choice problem with no insurance
or disasters. The last term is the loss of the household’s wealth from her portfolio’s exposure to the market
portfolio. (We leave out the disaster insurance demand as they net out to zero in equilibrium and do not
change the equilibrium analysis.) Pindyck and Wang (2013) provide a detailed description of their dynamically
complete markets setting (with various diffusion and stage-contingent actuarially fair jump hedging contracts).
Our dynamically complete markets setting builds on Pindyck and Wang (2013).
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Then substituting (26) into the HJB equation (27), we obtain (33). Using these equilib-
rium conditions, we simplify the HJB equation (27) as follows:

0 = 1
1 −ψ−1

(
c(π)
q(π)

− ρ
)

+
(
μQ(π) − c(π)

q(π)

)
− γσ2

K

2
+μπ(π)

u′(π)
u(π)

+ λ(π)
1 − γ

[
q
(
πJ )

q(π)
E

xd
((

1 −N(
xe

)
(1 −Z)η

(
π;Z�xe

))) − 1
]
� (B.12)

Third, by substituting c(π) =A− i(π) −φ(i(π)) − xe(π) into (23), we obtain

0 = c(π)
q(π)

− r(π) + i(π) − δK +μπ(π)
q′(π)
q(π)

− γσ2
K

− λ(π)
[
E

xd
(
η

(
π;Z�xe

))

− q
(
πJ )

q(π)
E

xd
((

1 −N(
xe

)
(1 −Z)

)
η

(
π;Z�xe

))]
� (B.13)

By using the homogeneity property and comparing (12) and (B.6), we obtain

μQ(π) = c(π)
q(π)

+ i(π) − δK +μπ (π)
q′(π)
q(π)

� (B.14)

Then substituting (B.14) into (B.12), we obtain

c(π)
q(π)

= ρ− (
1 −ψ−1

)[
i(π) − δK − γσ2

K

2
+μπ (π)

(
u′(π)
u(π)

+ q′(π)
q(π)

)]

+ λ(π)
(

1 −ψ−1

1 − γ
)

×
[

1 − q
(
πJ )

q(π)
E

xd
((

1 −N(
xe

)
(1 −Z)

)
η

(
π;Z�xe

))]
� (B.15)

Substituting (B.15) into (B.13), we obtain the following expression for the equilibrium
risk-free rate:

r(π) = ρ+ψ−1
(
i(π) − δK

) − γ
(
ψ−1 + 1

)
σ2
K

2

−
[(

1 −ψ−1
)(u′(π)
u(π)

+ q′(π)
q(π)

)
− q′(π)

q(π)

]
μπ(π)

− λ(π)
[
E

xd
(
η

(
π;Z�xe

)) − 1
]

− λ(π)
[
ψ−1 − γ

1 − γ
(

1 − q
(
πJ )

q(π)
E

xd
((

1 −N(
xe

)
(1 −Z)

)
η

(
π;Z�xe

)))]
�
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Using (12) and (B.11), we obtain the following expression for the market risk premium
rp(π):

rp(π) = μQ(π)+λ(π)
(

QJ

Q
−1

)
−r(π) = γσ2

K−λ(π)Exd
[(
η

(
π;Z�xe

)−1
)(QJ

Q
−1

)]
�

which implies (40).
In sum, we have derived the equilibrium resource allocations and the asset pricing im-

plications summarized in Proposition 2 and Proposition 4.
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