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a b s t r a c t 

We study the impact of stochastic interest rates and capital illiquidity on investment and 

firm value by incorporating a widely used arbitrage-free term structure model of interest 

rates into a standard q theoretic framework. Our generalized q model informs us to use 

corporate credit-risk information to predict investments when empirical measurement is- 

sues of Tobin’s average q are significant (e.g., equity is much more likely to be mis-priced 

than debt), as in Philippon (2009). We find, consistent with our theory, that credit spreads 

and bond q have significant predictive powers on micro-level and aggregate investments 

corroborating the recent empirical work of Gilchrist and Zakrajšek (2012). We also show 

that the quantitative effects of the stochastic interest rates and capital illiquidity on in- 

vestment, Tobin’s average q , the duration and user cost of capital, and the value of growth 

opportunities are substantial. These findings are particularly important in today’s low in- 

terest rate environment. 

© 2018 Elsevier B.V. All rights reserved. 
1. Introduction 
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is that investment should respond negatively to interest 
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rates. Various macroeconomic models rely on this nega- 

tive relation. The neoclassical q theory of investment ex- 

plicitly incorporates productivity shocks and capital adjust- 

ment costs into a dynamic optimizing framework and gen- 

erates predictions between investment and interest rates. 1 

However, almost all q theoretic models assume that the 

interest rate is constant over time, which by construction 

rules out the impact of the interest rate risk and dynamics 

on investments. Moreover, limited empirical evidence sup- 

ports the widely used investment and interest rate relation 

and the q theory of investment. 2 Philippon (2009) demon- 
1 Lucas and Prescott (1971) and Abel (1979) study investment dynamics 

under uncertainty with convex adjustment costs. Hayashi (1982) provides 

homogeneity conditions under which the firm’s marginal q is equal to its 

average q . 
2 Abel and Blanchard (1986) show that marginal q , constructed as the 

expected present value of marginal profits, still leaves unexplained large 

and serially correlated residuals in the investment regressions. 
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strates that interest rates measured by bond yields have

significant predictive power for aggregate investment even

in the Modigliani–Miller (MM) world. He argues that the

superior performance of bond prices over standard total

firm value–based measures (e.g., Tobin’s average q ) for in-

vestment regressions can be plausibly attributed to mis-

pricing, in that equity being the levered claim on the firm

is more likely to be mis-priced than bonds making bond

prices more informative for investment or a potential dis-

connect (even in a rational model) between current capital

investments and future growth options. 3 

In terms of the theory, we recognize the importance

of stochastic interest rates on investment and the value

of capital by incorporating a widely used term structure

model of interest rates ( Cox et al., 1985 ) into a neoclassi-

cal q theoretic model of investment ( Hayashi, 1982 ). 4 We

show that investment decreases with interest rates and,

moreover, that the term structure of interest rates has first-

order and highly nonlinear effects on investment and To-

bin’s average q . Therefore, a firm ignoring the interest rate

risk and dynamics significantly distorts its investment and

reduces its value. Furthermore, in a low interest rate en-

vironment such as today’s, capital illiquidity, measured by

the capital adjustment costs as in the standard q theory,

has very large effects on corporate investment, Tobin’s q ,

the user cost of capital, and the value of growth oppor-

tunities. Given the wide range of parameter estimates in

the literature for capital adjustment costs, which is of-

ten premised on the constant interest rate assumption, our

analysis highlights the importance of explicitly incorporat-

ing risk-adjusted interest rate dynamics via an arbitrage-

free term structure and reestimating capital illiquidity and

adjustment cost parameters. 5 As physical capital is long

lived subject to depreciation, the duration, Tobin’s q , and

value of the firm’s growth opportunities are all sensitive to

capital adjustment costs, especially when interest rates are

low. 

We further generalize our q theory with stochas-

tic interest rates to incorporate leverage by building on

Philippon (2009) . This generalization is important for our

empirical analyses because it motivates us to use credit

risk information to predict corporate investment and also
3 Gilchrist et al. (2005) show that dispersion in investor beliefs and 

short-selling constraints can give rise to mis-pricing in the stock market 

and a weak link between investment and the market. A disconnect exam- 

ple is that when growth options differ significantly from existing opera- 

tions and near-term investment decisions are primarily driven by physical 

capital accumulation, bond prices are naturally more informative for in- 

vestments than the firm’s total value, as the equity value portion of the 

firm’s value is mostly determined by the perceived value of growth op- 

tions, which is largely uncorrelated with the value of capital stock. 
4 Abel and Eberly (1994) develop a unified neoclassical q theory of in- 

vestment with constant interest rates. McDonald and Siegel (1986) and 

Dixit and Pindyck (1994) develop the real options approach of investment 

also with constant interest rates. The q theory and the real options frame- 

work are two complementary value-maximizing approaches of modeling 

investment. These two approaches focus on different but closely related 

real investment frictions (i.e., capital adjustment costs and irreversibility, 

respectively.) 
5 See Gilchrist and Himmelberg (1995) , Hall (2004) , Cooper and Halti- 

wanger (2006) , and Eberly et al. (2012) for a wide range of estimates. We 

provide more detailed discussions in Section 3 

 

 

 

 

 

 

 

to avoid standard investment opportunity measures, e.g.,

Tobin’s q , which often have significant measurement is-

sues. The premise of our analysis that Tobin’s q can be

poorly measured is well recognized in the investment lit-

erature. Erickson and Whited (20 0 0) show that a stan-

dard neoclassic q theory without any financial imperfec-

tion, despite its simple structure, has good explanatory

power once empirical measurement error issues are prop-

erly addressed, e.g., via method of moments. 6 

We find, consistent with our theory, that the relative

bond prices positively and credit spreads negatively pre-

dict investment at both the firm and the aggregate level.

Moreover, the predictive power of credit risk–based mea-

sures for investment remains strong and robust after con-

trolling for well-known predictors. Our empirical findings

are consistent with recent work. For example, Gilchrist

et al. (2007) report that increasing the user cost of cap-

ital by 100 basis points is associated with a reduction

of investment around 50–75 basis points and a 1% re-

duction in the capital stock in the long run. Philippon

(2009) shows that aggregate corporate bond yields predict

aggregate investment substantially better than the stock

market–based measures, e.g., Tobin’s q . Gilchrist and Za-

krajšek (2012) show that their constructed corporate bond

yield index has considerable predictive power for aggregate

economic variables. In summary, our aggregate and firm-

level results corroborate these existing studies and provide

additional support for the q theory of investment. 

The remainder of the paper proceeds as follows.

Section 2 presents our q theory of investment with term

structure of interest rates. In Section 3 , we solve the model

and discuss its quantitative results. Section 4 provides the

empirical evidence for the model’s predictions for both the

firm level and the aggregate data. Section 5 concludes. Ap-

pendices contain technical details related to the main re-

sults in the paper and also a few generalizations of our

baseline model. 

2. Model 

We generalize the neoclassic q theory of investment to

incorporate the effects of stochastic interest rates and then

introduce leverage in an MM setting with the objective of

linking our model’s prediction to bond data as in Philippon

(2009) . 

2.1. Economic environment 

First, we introduce our model setup. 

2.1.1. Stochastic interest rates 

While much work in the q theory context assumes con-

stant interest rates, empirically, interest rates vary sub-

stantially over time. In addition, corporate investment pay-

offs are often long term and are sensitive to the expected

change and volatility of interest rates. 
6 Gomes (2001) makes a related point that financial constraints are nei- 

ther necessary nor sufficient in generating investment–cash flow sensitiv- 

ity by simulating a quantitative q model with financial frictions. 
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Researchers often analyze effects of interest rates via 

comparative statics (by using the solution from a dynamic 

model with a constant interest rate). However, comparative 

static analyses miss the expectation effect by ignoring the 

dynamics and the risk premium of interest rates. By explic- 

itly incorporating a term structure of interest rates, we an- 

alyze the persistence, volatility, and risk premium effects 

of interest rates on investment and firm value in a fully 

specified dynamic stochastic framework. 

We choose the widely used Cox, Ingersoll, and Ross 

(CIR) term structure model in which the short rate r fol- 

lows 

d r t = μ(r t ) d t + σ (r t ) d B t , t ≥ 0 , (1)

where B is the standard Brownian motion under the risk- 

neutral measure and the risk-neutral drift μ( r ) and volatil- 

ity σ ( r ) are, respectively, given by 

μ(r) = κ(ξ − r) (2) 

and 

σ (r) = ν
√ 

r . (3) 

Both the conditional mean μ( r ) and the conditional vari- 

ance σ 2 ( r ) are linear in r . The parameter κ measures 

mean reversion of interest rates. The implied first-order 

autoregressive coefficient in the corresponding discrete- 

time model is e −κ . The higher κ , the more mean-reverting 

the interest rate process. The parameter ξ is the long-run 

mean of interest rates. The CIR model captures the mean 

reversion and conditional heteroskedasticity (stochastic 

volatility) of interest rates belonging to the widely used 

affine models of interest rates. 7 In Section 2.3 , we explic- 

itly specify the risk premium process for the interest rate. 

2.1.2. Production and investment technology 

A firm uses its capital to produce output. 8 Let K and I 

denote its capital stock and gross investment rate, respec- 

tively. Capital accumulation is standard in that 

d K t = ( I t − δK t ) d t, t ≥ 0 , (4) 

where δ ≥ 0 is the rate of depreciation for capital stock. 

The firm’s operating revenue over time period (t , t + dt ) 

is proportional to its capital stock K t and is given by K t dX t , 

where dX t is the firm’s productivity shock over the same 

time period ( t , t + dt). After incorporating the systematic 

risk for the firm’s productivity shock, we can write the 

productivity shock dX t under the risk-neutral measure, as 

d X t = πd t + εd Z t , t ≥ 0 , (5) 
7 Vasicek (1977) is the other well known one-factor model. However, 

this process is less desirable because it implies conditionally homoskedas- 

tic (normally distributed) shocks and allows interest rates to be un- 

bounded from below. Vasicek and CIR models belong to the affine class 

of models. See Duffie and Kan (1996) for multi-factor affine term struc- 

ture models and Dai and Singleton (20 0 0) for estimation of three-factor 

affine models. Piazzesi (2010) provides a survey on affine term structure 

models. 
8 The firm can use both capital and labor as factors of production. As 

a simple example, we can embed a static labor demand problem within 

our dynamic optimization. We have an effective revenue function with 

optimal labor demand. The remaining dynamic optimality is the same as 

in the standard q theory. 
where Z is a standard Brownian motion. 9 The productivity 

shock dX t specified in Eq. (5) is independently and iden- 

tically distributed (i.i.d.). The constant parameters π and 

ε > 0 give the corresponding (risk-adjusted) productivity 

mean and volatility per unit of time. 

The firm’s operating profit dY t over the same period 

(t , t + dt ) is given by 

dY t = K t dX t − C(I t , K t ) dt , t ≥ 0 , (6) 

where C ( I , K ) is the total cost of the investment including

both the purchase cost of the capital goods and the addi- 

tional adjustment costs of changing capital stock. The firm 

can sometimes find it optimal to divest and sell its cap- 

ital, I < 0. Importantly, capital adjustment costs make in- 

stalled capital more valuable than new investment goods. 

The ratio between the market value of capital and its re- 

placement cost, often referred to as Tobin’s q , provides a 

measure of rents accrued to installed capital. The capital 

adjustment cost function C ( I , K ) plays a critical role in the

neoclassical q theory of investment. In this subsection, we 

assume that C ( I , K ) satisfies C I > 0 and C II > 0. In addition,

for simplicity, we assume that C ( I , K ) is homogeneous with

degree one in I and K , in that C(I, K) = c(i ) K, where i = I/K.

c ′ ( i ) > 0 and c ′ ′ ( i ) > 0 are implied by the monotonicity and

convexity properties of C ( I , K ) in I . In Appendix C , we gen-

eralize our baseline model to allow a much richer specifi- 

cation for C ( I , K ) by incorporating asymmetric adjustment 

costs, price wedge, and fixed costs. 

For simplicity, we assume that interest rate risk and the 

productivity shock are uncorrelated, i.e., the correlation co- 

efficient between the Brownian motion B driving the inter- 

est rate process, given by Eq. (1) , and the Brownian motion 

Z driving the productivity process, given by Eq. (5) , is zero. 

2.1.3. Liquidation option 

Capital often has an alternative use if deployed else- 

where. Empirically, significant reallocation activities exist 

between firms as well as between sectors. 10 We assume 

that the firm has an option to liquidate its capital stock at 

any time. Doing so allows the firm to recover 	 per unit 

of capital, where 0 < 	 < 1 is a constant. Let τ 	 denote the

firm’s stochastic liquidation time. This optionality signifi- 

cantly influences firm investment and the value of capital. 

2.2. Tobin’s q, investment, and liquidation 

While our model features stochastic interest rates and 

real frictions, i.e., capital adjustment costs, there are no fi- 

nancial frictions and, hence, the Modigliani–Miller theorem 

holds. The firm chooses investment I and liquidation time 

τ 	 to maximize its value: 

E 

[∫ τ	 

0 

e −
∫ t 

0 r v dv dY t + e −
∫ τ	 

0 
r v dv 	 K τ	 

]
. (7) 
9 The risk-neutral measure incorporates the impact of the interest rate 

risk on investment and firm value. In Section 2.3 , we explicitly state the 

risk premium and then infer the implied dynamics under the physical 

measure. 
10 See Eisfeldt and Rampini (2006) for equilibrium capital reallocation. 
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11 Using the Girsanov theorem, we relate the Brownian motion under 

the physical measure P , B P , to the Brownian motion under the risk- 

neutral measure, B , by d B t = d B P t + λ
√ 

r t d t . See Duffie (2002) . 
12 Because of the square-root volatility function, the CIR interest rate 

process under both measures is also referred to as a square-root process. 
13 As for the interest rate analysis, we apply the Girsanov theorem to 

link the Brownian motions for the productivity shocks under the risk- 

neutral and physical measures via d Z t = d Z P t + ω ηdt. 
While the discount rate in Eq. (7) is the risk-free rate, the

risk-free rate r and the cumulative net profits Y are both

under the risk-neutral measure. Therefore, the firm’s well-

diversified investors earn an expected return in excess of

the risk-free rate r and the implied risk premium can be

inferred. 

Let V ( K , r ) denote firm value. Using the standard prin-

ciple of optimality, we have the Hamilton–Jacobi–Bellman

(HJB) equation 

r V (K, r ) = max 
I 

( πK − C(I, K) ) + ( I − δK ) V K (K, r) 

+ μ(r) V r (K, r) + 

σ 2 (r) 

2 

V rr (K, r) . (8)

The first term on the right side of Eq. (8) gives the firm’s

risk-adjusted expected cash flows. The second term gives

the effect of net investment on firm value. The last two

terms give the drift and volatility effects of interest rate

changes on V ( K , r ). The firm optimally chooses invest-

ment I by demanding that its risk-adjusted expected return

equals r at optimality, which implies that the two sides of

Eq. (8) are equal. 

Let q ( K , r ) denote the marginal value of capital, which

is also known as the marginal q , q ( K , r ) ≡ V K ( K , r ). The first-

order condition (FOC) for investment I is 

q (K, r) ≡ V K (K, r) = C I (I, K) , (9)

which equates q ( K , r ) with the marginal cost of investing

C I ( I , K ). With convex adjustment costs, the second-order

condition (SOC) is satisfied and, hence, the FOC character-

izes investment optimality. 

We show that the optimal liquidation policy is de-

scribed by a threshold policy with the endogenously de-

termined cutoff level r ∗, in that if r ≥ r ∗, then the firm op-

timally liquidates its capital stock but otherwise continues

its operations. At the moment of liquidation τ 	 , V (K, r ∗) =
	K holds as an accounting identity, that is, the firm’s value

upon liquidation equals 	 per unit of K . In addition, the

optimal liquidation policy must satisfy the smooth past-

ing condition V r (K, r ∗) = 0 , which is the FOC for τ 	 . Intu-

itively, as the firm’s liquidation value 	 K is independent of

r (by assumption, which can be relaxed in a more general

model), the firm’s value just before liquidation must also

be insensitive to r , in that V r (K, r ∗) = 0 . 

Capital K and interest rate r are the two state variables

in our model. We show that the firm’s value is propor-

tional to its contemporaneous capital stock K , in that 

 ( K, r ) = K · q ( r ) . (10)

Here, q ( r ) is both Tobin’s average q and marginal q . The

equality between the average q and the marginal q s in

our model follows from the homogeneity property as in

Hayashi (1982) . 

Proposition 1 summarizes the solution. 

Proposition 1 . In the region r < r ∗, where r ∗ is the endoge-

nously determined liquidation threshold, Tobin’s average q ,

q ( r ), solves the ordinary differential equation (ODE): 

rq (r) = π − c(i (r)) + (i (r) − δ) q (r) 

+ μ(r) q ′ (r) + 

σ 2 (r) 
q ′′ (r) , r < r ∗ , (11)
2 
where the optimal investment i ( r ) is monotonically increasing

in q ( r ), in that 

c ′ (i (r)) = q (r) , (12)

as implied by c ′ ′ ( · ) > 0 . The firm optimally liquidates its cap-

ital stock when r ≥ r ∗, where the optimal threshold r ∗ satisfies

the value-matching condition given by 

q (r ∗) = 	 (13)

and the smooth pasting condition given by 

q ′ (r ∗) = 0 . (14)

2.3. Risk premia 

As in CIR, we assume that the interest rate risk pre-

mium is given by λ
√ 

r , where λ is a constant that mea-

sures the sensitivity of risk premium with respect to r . By

the no-arbitrage principle, we have the following dynamics

for the interest rate under the physical measure, 11 

d r t = μP (r t ) d t + σ (r t ) d B 

P 

t , (15)

where B 

P is the standard Brownian motion under the

physical measure P , the drift μP (r) is 

μP (r) = κ( ξ − r ) + νλr = κP (ξ P − r) , (16)

and 

κP = κ − λν , (17)

and 

ξ P = 

κξ

κ − λν
. (18)

The parameter κP given in Eq. (17) measures the speed

of mean reversion under the physical measure. The higher

κP , the more mean-reverting. We require κP > 0 to ensure

stationarity. The parameter ξP given in Eq. (18) measures

the long-run mean of r under the physical measure P . The

volatility function under P is given by Eq. (3) , which is the

same as that under the risk-neutral measure implied by

the diffusion invariance theorem. 12 

We now specify the risk premium associated with the

productivity shock. Let ω denote the correlation coefficient

between the firm’s productivity shock and the aggregate

productivity shock. Write the firm’s productivity shock dX t

under the physical measure P , as 

d X t = πP d t + εd Z 

P 

t , (19)

where Z 

P 

t is a standard Brownian motion driving X un-

der the physical measure. The drift for X under the phys-

ical measure, πP , is linked to the risk-neutral drift π as

πP = π + ω ηε , where η captures the aggregate risk pre-

mium per unit of volatility. 13 
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2.4. Incorporating leverage under MM 

An immediate and important empirically testable im- 

plication of Eq. (12) is that Tobin’s average q should be 

the sufficient statistic for investment. However, the em- 

pirical evidence is disappointing. 14 As equity is subordi- 

nate to debt and, moreover, debt has more predictable 

cash flows than equity, any potential mis-pricing of the 

firm’s total value implies that its equity value as the lev- 

ered claim on the firm is even more mis-priced. 15 How 

to avoid using equity market information but effectively 

use bond price information to forecast corporate invest- 

ments? By applying Black–Merton–Scholes option pricing 

framework to value corporate equity and debt in a q the- 

oretic setting, Philippon (2009) constructs an alternative 

measure capturing the firm’s investment opportunities by 

using bond prices. 

Let B t denote the market value of the firm’s debt out- 

standing at time t , and let E t denote the market value of 

the firm’s all outstanding common equity. For simplicity, 

we assume that the firm has only debt and common eq- 

uity. Let b t = B t /K t and e t = E t /K t . The accounting identity 

V t = B t + E t implies q t = b t + e t . For simplicity, we assume 

that the MM theorem holds. Our main argument that bond 

q is a better empirical proxy for investment opportuni- 

ties than Tobin’s average q remains valid even in settings 

where the MM theorem does not hold due to conflicts of 

interest, informational frictions, or tax distortions. 16 

As in Philippon (2009) , we refer to b t as the bond’s q 

and use it to measure the firm’s investment opportunity in 

a setting with a constant book-leverage policy. 17 The firm 

continuously issues and retires multiple units of bonds. 

Each unit of the newly issued bond has a principal nor- 

malized to one. For outstanding bonds issued at any date, 

a fixed fraction α of them (in terms of their principals) is 

continuously called back at par. The firm pays coupons at 

the rate of ρ on all bonds’ outstanding principals prior to 

default. 

Let � t denote the total principal (face value) of all out- 

standing bonds at time t . Before liquidation, i.e., t < τ 	 and 

over (t , t + dt ) , its bondholders receive total cash flows 

(ρ + α)�t dt, where ρ� t is the total coupon rate and α� t 

is the total bond buyback rate. Given that the time (t + dt) 

total principal on all outstanding bonds is �t+ dt , the new 

issuance over (t , t + dt ) must have a principal of �t+ dt −
(1 − αdt)�t . At the liquidation time τ 	 , bonds are treated 

pari passu and receive their share of liquidation proceeds 

proportional to their outstanding principal. The book lever- 

age is defined as � t / K t . 

Assumption 1 . The firm’s book leverage is constant over 

time in that ψ t ≡ �t /K t = ψ for t < τ 	 , where ψ is the tar- 

get (constant) book leverage. 
14 See Summers (1981) and Fazzari et al. (1988) for early contributions 

and Caballero (1999) for a survey. 
15 See Gilchrist and Himmelberg (1995) and Erickson and Whited 

(20 0 0) for example. 
16 See Section A.6 , for example. 
17 This construction is similar to the modeling of debt maturity in 

Leland (1994) , Leland (1998) and the subsequent dynamic capital struc- 

ture models. 

 

Proposition 2 characterizes the debt pricing. 

Section A.5 provides the details. 

Proposition 2 . The scaled value of corporate debt, b ( r ), solves 

r b(r ) = ρψ + α(ψ − b(r)) + μ(r) b ′ (r) 

+ 

σ 2 (r) 

2 

b ′′ (r ) , r < r ∗ , (20) 

subject to the boundary condition: 

b(r ∗) = min { ψ, 	 } , (21) 

where r ∗ is the the firm’s endogenous liquidation threshold 

given in Proposition 1 . 

Let b free ( r ) denote the value of a risk-free bond that 

pays coupons indefinitely and has the same call back and 

coupon policies as described above. For the risk-free bond, 

we use the same pricing Eq. (20) for b free ( r ) but change the

boundary condition Eq. (21) to lim r→∞ 

b f ree (r) = 0 . 

3. Solution 

We calibrate the model, provide a quantitative analysis 

of the effects of stochastic interest rates on investment and 

firm value, and analyze the model’s predictions for firms 

with leverage. 

3.1. Parameter choices 

For the interest rate process parameters, we use es- 

timates reported in Downing et al. (2009) . 18 Their an- 

nual estimates are: the persistence parameter κP = 0 . 1313 , 

the long-run mean ξP = 0 . 0574 , the volatility parameter 

ν = 0 . 0604 , and the risk premium parameter λ = −1 . 2555 .

Negative interest rate premium ( λ< 0) implies that the in- 

terest rate is more persistent ( κ < κP ) and is higher on 

average ( ξ > ξP ) after risk adjustments. Under the risk- 

neutral measure, we have the persistence parameter κ = 

0 . 0555 , the long-run mean ξ = 0 . 1359 , and the volatil- 

ity parameter ν = 0 . 0604 . Diffusion invariance implies that 

the volatility parameter remains unchanged. 

We choose the annual capital depreciation rate δ = 

0 . 09 . The annual mean and volatility of the risk-adjusted 

productivity are π = 0 . 18 and ε = 0 . 09 , respectively, which

are in line with the estimates of Eberly et al. (2012) for 

large US firms. We set the liquidation value per unit capi- 

tal at 	 = 0 . 9 as suggested in Hennessy and Whited (2007) .

For our numerical exercise, we normalize the purchase 

price of capital to one and choose a quadratic adjustment 

cost function: 

c(i ) = i + 

θ

2 

i 2 , (22) 

where θ is the capital adjustment cost parameter measur- 

ing the degree of capital illiquidity. We consider three lev- 

els for the annual adjustment cost parameter, θ = 2 , 5 , 20 ,

which span the range of empirical estimates in the litera- 
19 
ture. 

18 They use the methodology of Pearson and Sun (1994) and daily data 

on constant maturity three-month and ten-year Treasury rates for the pe- 

riod 1968–2006. 
19 The estimates of the adjustment cost parameter vary significantly in 

the literature. Procedures based on neoclassic (homogeneity-based) q the- 
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Fig. 1. The investment–capital ratio i ( r ) and Tobin’s average q , q ( r ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Investment and Tobin’s average q 

Panel A of Fig. 1 plots the optimal i ( r ) with respect to

r for θ = 2 , 5 , 20 . As one can expect, i ( r ) decreases in r .

Less obviously but importantly, in a low interest rate en-

vironment such as today’s, investment is very sensitive to

capital illiquidity. For example, as θ increases from 2 to

5, near r = 0 the firm’s investment drops significantly by

79% from 0.49 to 0.10 demonstrating very strong effects

of r on investment. Also, investment responds more with

respect to changes in r when capital is more liquid, i.e.,

a lower θ . When interest rates are high, large discounting

implies that firm value is mostly driven by its existing cap-

ital stock. Therefore, a firm with more illiquid capital opti-

mally chooses to divest less, ceteris paribus, which implies

the single-crossing feature of i ( r ) for two levels of θ . 

Panel B of Fig. 1 plots Tobin’s q for θ = 2 , 5 , 20 . The

lower the capital adjustment cost θ , the higher Tobin’s q ( r )

. Also, q ( r ) is decreasing and convex in r . Importantly, in a

low interest rate environment such as today’s, firm value

is very sensitive to capital illiquidity. For example, as θ in-

creases from 2 to 5, near r = 0 Tobin’s q drops significantly

by 24% from 1.99 to 1.51. With θ = 2 , Tobin’s q at r = 0

is q (0) = 1 . 99 , which is 71% higher than q (ξP ) = 1 . 16 at

its long-run mean, ξP = 0 . 0574 . In summary, our analyses

demonstrate that firm value is sensitive to capital illiquid-

ity θ and stochastic interest rates r . 
ory of investment (e.g. Hayashi (1982) ) and aggregate data on Tobin’s q 

and investment typically give a high estimate for the adjustment cost pa- 

rameter θ . Gilchrist and Himmelberg (1995) estimate the parameter to 

be around 3 using unconstrained subsamples of firms with bond rating. 

Hall (2004) specifies quadratic adjustment costs for both labor and capi- 

tal and finds a low average (across industries) value of θ = 1 for capital. 

Whited (1992) estimates the adjustment cost parameter to be 1.5 in a q 

model with financial constraints. Cooper and Haltiwanger (2006) estimate 

a value of the adjustment cost parameter lower than 1 in a model with 

fixed costs and decreasing returns to scale. Eberly et al. (2012) estimate a 

value θ around 7 for large US firms in a homogeneous stochastic frame- 

work of Hayashi (1982) with regime-switching productivity shocks. 

 

 

 

 

 

 

 

 

 

As physical capital is a long-lived asset subject to de-

preciation, we propose a measure that is analogous to the

concept of duration for fixed-income securities, which al-

lows us to quantify the interest rate sensitivity of the value

of capital. We also generalize the widely used concept of

the user cost of capital developed by Jorgenson (1963) and

Hall and Jorgenson (1967) to our q theoretic setting with

term structure of interest rates. 

3.3. Firm value duration and the user cost of capital 

Next, we analyze our model’s implications for firm

value duration and the user cost capital. 

3.3.1. Duration 

By analogy to bond pricing, we define duration for firm

value as 

D (r) = − 1 

V (K, r) 

dV (K, r) 

dr 
= −q ′ (r) 

q (r) 
, (23)

where the last equality follows from the homogeneity

property, V (K, r) = q (r) K. Panel A of Fig. 2 plots duration

for firm value, D ( r ), as a function of r for θ = 2 , 5 , 20 . Intu-

itively, the higher the interest rate, the lower the duration.

In addition, in low interest rates such as today’s environ-

ment, duration is very sensitive to the level of capital ad-

justment costs. For example, as θ increases from 2 to 5,

near the zero interest rate level, the firm’s duration is sig-

nificantly reduced from 16.43 to 6.17. Overall, the quantita-

tive effects of r on duration are significant. 

3.3.2. User cost of capital 

Jorgenson (1963) and Hall and Jorgenson (1967) intro-

duce the user (rental) cost of capital in their neoclassi-

cal investment framework with no adjustment costs. Abel

(1990) shows how to calculate the user cost of capital in

deterministic q models with capital adjustment costs. 

We extend Abel’s approach to our setting with stochas-

tic interest rates. Applying Ito’s Lemma to the value of
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Fig. 2. Duration for firm value D ( r ) and the user cost of capital u ( r ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

capital, q ( r t ), under the risk-neutral measure gives the ex- 

pected value change of q ( r t ): 

Hq (r) = μ(r) q ′ (r) + 

σ 2 (r) 

2 

q ′′ (r) . (24) 

Let u ( ·) denote the user cost of capital. The owner of cap- 

ital collects both the (imputed) rental payment, which is 

equal to the user cost of capital, u ( r ), and the risk-adjusted 

expected value appreciation, Hq (r) , but has to incur the 

economic depreciation cost, which is given by δq ( r ). There- 

fore, under the risk-neutral measure, the total net expected 

return from owning a unit of capital is equal to (u (r) + 

Hq (r) − δq (r)) /q (r) . By no arbitrage, it must equal to the 

risk-free rate r . That is, rq (r) = u (r) + Hq (r) − δq (r) holds.

Rewriting this gives 

u (r) = ( r + δ) q (r) − Hq (r) . (25) 

Again, Hq (r) uses the risk-neutral drift μ( r ), not the phys- 

ical drift μP (r) , in order to account for risk premia when 

calculating the user cost of capital. 

By substituting the valuation Eq. (11) for Tobin’s average 

q and the FOC for investment (12) into Eq. (25) , we obtain 

u (r) = π −
(
c(i ) − c ′ (i ) i (r) 

)
> π, (26) 

where the inequality in Eq. (26) follows from the mono- 

tonicity and convexity of the capital adjustment cost c ( ·) 
and c(0) = 0 . We can also express u (r) = π − C K (I, K) . In-

tuitively speaking, the user’s marginal benefit per unit of 

capital equals the sum of its risk-adjusted expected pro- 
ductivity π and the marginal benefit of reducing capital 

adjustment costs, i.e., −C K > 0 . For a quadratic capital ad- 

justment cost given in Eq. (22) , u (r) = π + 

(q (r) −1) 2 

2 θ
. 

Panel B of Fig. 2 plots u ( r ) for θ = 2 , 5 , 20 . u ( r ) is greater

than the risk-adjusted productivity, i.e., u (r) ≥ π = 18% for 

all r . Also, u ( r ) is highly nonlinear in r . In a low interest

rate environment, the user cost of capital is very sensitive 

to the level of capital adjustment costs. With a moderate 

level of adjustment cost θ = 2 , u (0) = 0 . 423 , which im-

plies that the benefit of reducing capital adjustment costs, 

−C K (I, K) = 0 . 243 , is the majority part of the user cost of

capital. As θ increases from 2 to 5, near the zero inter- 

est rate level, the firm’s u ( r ) is significantly reduced from 

0.432 to 0.206. 

While the standard Jorgensonian user cost of capital 

u ( r ) equals r + δ (with perfect capital liquidity and con- 

stant price for the capital good), we show that the u ( r )

is non-monotonic in r when capital is illiquid and subject 

to adjustment costs. u ( r ) decreases with r in the empiri- 

cally relevant range of r as in Fig. 2 . To understand the 

intuition behind this result, we use the formula for the 

user cost of capital u ( r ) given in Eq. (26) , which implies

u ′ (r) = c ′′ (i ) i ′ (r ) i (r ) . As capital adjustment cost is convex,

i.e., c ′ ′ ( i ) > 0, and investment decreases with r , i.e., i ′ ( r ) < 0,

u ( r ) is decreasing in r as long as the firm’s gross invest-

ment is positive, i.e., i ( r ) > 0. That is, under the normal cir-

cumstances when the firm’s gross investment is positive, 

we expect that the user cost of capital u ( r ) decreases with

the interest rate r . 

In addition, the higher the adjustment cost θ , the less 

sensitive u ( r ) with respect to r because the reduction of 

the marginal adjustment cost, −C K (I, K) , is smaller. Intu- 

itively, with infinite adjustment costs, i.e., θ → ∞ , there is 

no capital accumulation and, hence, u ( r ) is simply equal to 

the risk-adjusted productivity π = 18% . Overall, the quanti- 

tative effects of r and the capital adjustment cost θ on the 

user cost of capital u ( r ) are significant. 
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Fig. 3. The bond q , b ( r ) . Parameter values are ψ = 0 . 5 , 	 = 0 . 9 , α = 0 . 1 , 

and ρ = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 Following Philippon (2009) , we add 0.1 to both the ten-year Treasury 

rate in the numerator and the Baa bond yield in the denominator to re- 

flect that the average maturity of corporate bonds is ten years. In our 

model, this is achieved by setting α = 0 . 1 . 
3.4. Leverage 

As in Philippon (2009) , we define the relative bond

price, denoted by b relati v e (r) , as the ratio between the value

of corporate bonds and the value of risk-free bonds: 

b relati v e (r) = 

b(r) 

b f ree (r) 
, (27)

where the formulas for b ( r ) and b free ( r ) are reported in

Proposition 2 . Let y ( r ) denote the yield spread: 

y (r) = 

b f ree (r) 

b(r) 
− 1 = 

1 

b relati v e (r) 
− 1 . (28)

The firm’s average q can be expressed as 

q (r) = 

b(r) 

Le v (r) 
= 

b f ree (r) 

Le v (r) 
b relati v e (r) = 

b f ree (r) 

Le v (r) 

1 

1 + y (r) 
, 

(29)

where y ( r ) is the credit spread given in Eq. (28) and Le v is
the market leverage: 

Le v (r) = 

b(r) 

b(r) + e (r) 
= 

b( r) 

q ( r) 
. (30)

In Section 4 , we use the implications of Eq. (29) to conduct

our empirical analyses. Unlike Philippon (2009) , we focus

on the interest rate shocks. 

Fig. 3 plots b ( r ), the model-implied bond q . The bond q

decreases almost linearly in r suggesting that the inverse

of b ( r ) is a good approximation of r , which motivates us

to use the bond q to construct proxies for interest rates.

As r increases, the firm eventually gets liquidated and b ( r )

approaches to the book leverage ψ . 

Fig. 4 shows that the relative bond price b relati v e (r) and

yield spreads y ( r ) positively and negatively predict invest-

ments in Panels A and B, respectively. This figure generates

testable implications and motivates our empirical design in
Section 4 . We use bond value-based measure for invest-

ment opportunities as they are more reliable and less sub-

ject to measurement issues, as pointed out by Philippon

(2009) . The predictive relations are not necessarily driven

by the time-varying premium in the stock market and can

be solely driven by the time-varying interest rates. 

4. Empirical analyses 

Our model implies that Tobin’s q is a sufficient statistic

to predict investment and that the interest rate negatively

predicts investment via its impact on Tobin’s q . However,

the empirical predictive power of Tobin’s q for investment

is weak. Also, the empirical relation between interest rates

and investment in the literature is ambiguous. These em-

pirical results seem to challenge the validity of the stan-

dard q theory of investment. However, some recent empir-

ical work yields more promising results. 

In this section, we first use our theory to guide the

construction of our empirical proxies and then test our

model’s predictions. Using the first-order approximation of

Tobin’s average q around unity, we obtain the following ap-

proximate relations for the Tobin’s average q : 

q − 1 ≈ ln [1 + (q − 1)] = ln b f ree − ln Le v + ln b relati v e , 

(31)

= ln b f ree − ln Le v − ln ( 1 + y ) , (32)

where the two equalities follow from the identities given

in Eq. (29) . That is, after controlling for the risk-free rate

information embedded in the logarithmic risk-free bond

price ln b free and firm leverage measured by ln Le v , the

logarithmic relative bond price ln b relati v e or the corporate

credit spread ln ( 1 + y ) can be used to effectively back out

Tobin’s average q . Empirically, this is highly desirable as To-

bin’s average q heavily depends on the equity price, which

is much more subject to mis-pricing than corporate debt,

the measurement error argument in Philippon (2009) . 

Eqs. (31) and (32) motivate us to control for the risk-

free rate information and the firm’s leverage and to con-

sider the following three empirical measures of credit risk:

(1) the relative bond price ( Rela BP ) as the ratio between

the ten-year Treasury rate and the Baa corporate bond

yield, i.e., 0 . 1+10 - year Treasury rate 
0 . 1+ Baa bond yield 

, as in Philippon (2009) ; 20

(2) Moody’s Baa corporate yield in excess of the ten-year

Treasury rate ( Baa-Tb10y ); and (3) Moody’s Baa corporate

bond yields in excess of Aaa corporate bond yields ( Baa-

Aaa ). 

We find significant predictive powers by all three credit

risk proxies. That is, at both the firm and the aggregate

level, we provide empirical support for the negative rela-

tion between investment and credit spreads and the pos-

itive relation between investment and the value of cap-

ital. Our results complement recent work by Philippon
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Fig. 4. The effects of relative bond price and yield spreads on i ( r ) and firm Tobin’s q , q ( r ). Parameter values are ψ = 0 . 5 , 	 = 0 . 9 , α = 0 . 1 , ρ = 0 . 2 . 

 

 

(2009) and Gilchrist and Zakrajšek (2012) , who find that 

bond yields (prices) are informative of investment. 

4.1. Data 

Our empirical analyses use both the aggregate and 

firm-level data from 1963 to 2014. We describe the sum- 

mary statistics and the construction of various variables. 

Appendix E provides additional details. 

4.1.1. Aggregate data 

Aggregate investment is the private nonresidential fixed 

investment, and the corresponding stock of capital is the 

private nonresidential fixed assets from National Income 

and Product Accounts (NIPA.) Treasury interest rates and 

the Moody’s Baa and Aaa corporate bond yields are from 

the Federal Reserve Bank of St. Louis, Missouri. Book lever- 

age is the total liabilities of the nonfinancial corporate 

business sector from the flow of funds scaled by the stock 

of capital from NIPA. 21 

Panel A of Table 1 reports the summary statistics of the 

aggregate variables. Investment rate ( IK ) has a mean of 11% 

and volatility of 1% per annum. Relative bond price ( Rela 

BP ) has a mean of 0.89 and volatility of 0.04 per annum. 

Baa-Tb10y and Baa-Aaa have a mean of 2.03% and 1.03% 

and volatility of 0.74% and 0.42%, respectively. 

To control for the impact of idiosyncratic volatility, we 

construct a measure of idiosyncratic volatility ( IdioV ) by 
21 We use book leverage for our empirical analyses, but all our results 

remain valid with market leverage. 
calculating the cross-sectional volatility of the monthly 

stock returns as in Philippon (2009) and use IdioV in our 

empirical analysis. The mean of IdioV is 0.56 per annum. 

The mean and volatility of book leverage ( BLev ) are 0.48 

and 0.06, respectively. To control for the impact of the 

time-varying risk premium on investment, we calculate the 

price-to-dividend ratio ( PD ) of the Standard & Poor (S&P) 

composite stock price index, which has been shown to pre- 

dict the expected stock market returns. 22 The mean and 

volatility of PD are 37.28 and 16.80, respectively. 

4.1.2. Firm-level data 

Monthly market values of equities are from the Center 

for Research in Security Prices (CRSP) and accounting in- 

formation is from the CRSP and Compustat Merged Indus- 

trial Files. The sample includes firms with common shares 

(shrcd = 10 and 11) and firms traded on NYSE, AMEX, and 

NASDAQ (exchcd = 1 , 2 , and 3). We omit firms whose pri-

mary Standard Industrial Classification (SIC) codes are be- 

tween 4900 and 4999 (utility firms) or between 60 0 0 and 

6999 (financial firms). We correct for the delisting bias fol- 

lowing the approach in Shumway (1997) . 

Panel B of Table 1 reports the summary statistics of 

the annual firm-level variables. The firm-level investment- 

capital ratio ( IK ) has a mean of 0.29 and volatility of 0.25

per annum. Firms’ book leverage ( BLev ) has a mean of 

0.29 and an annual volatility of 0.24. The moments of re- 
22 Campbell and Shiller (1988) and Hodrick (1992) , among others, have 

shown that dividend yields predict stock market returns. 
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Table 1 

Descriptive statistics. 

This table reports the annual average value (mean) and standard 

deviation of the variables of interests from 1963 to 2014. Panel 

A reports the aggregate statistics. Investment rate ( IK ) is the real 

gross private nonresidential fixed investment scaled by real pri- 

vate nonresidential fixed asset. Baa-Tb10y is the Moody’s Baa cor- 

porate bond yield in excess of the ten-year Treasury rate. Baa-Aaa 

is the Moody’s Baa bond yield in excess of Moody’s Aaa yield. Rela- 

tive bond price ( Rela BP ) is defined as 0 . 1+10 - year Treasury rate 
0 . 1+ Baa bond yield 

follow- 

ing Philippon (2009) . Idiosyncratic volatility ( IdioV ) is the cross- 

sectional return volatility based on the Center for Research in Se- 

curity Prices. Book leverage ( BLev ) is the total liabilities of the non- 

financial corporate business sector from the flow of funds scaled 

by the stock of capital from National Income and Product Accounts. 

The price-to-dividend ratio ( PD ) is the ratio between Standard & 

Poor (S&P) composite stock price index and the sum of all divi- 

dends accruing to stocks in the index from Robert Shiller’s website 

( http://www.econ.yale.edu/ ∼shiller/data.htm ). Panel B reports firm- 

level statistics. Investment rate ( IK ) is capital expenditure over net 

property, plant, and equipment. Book leverage ( BLev ) is total liabil- 

ities scaled by the sum of total liabilities and the book value of 

common equity. Return on assets ( ROA ) is earnings over total assets. 

Tangibility ( Tang ) is gross property, plant, and equipment scaled by 

total assets. Firm size is measured by logarithm of sales ( Sales ). 

Variable Mean Standard deviation 

Panel A: Aggregate 

IK 0.11 0.01 

Baa-Tb10y 2.03% 0.74% 

Baa-Aaa 1.03% 0.42% 

Rela BP 0.89 0.04 

IdioV 0.56 0.15 

BLev 0.48 0.06 

PD 37.28 16.80 

Panel B: Firm level 

IK 0.29 0.25 

BLev 0.29 0.24 

ROA 0.09 0.05 

Tang 0.54 0.37 

Sales 0.49 2.31 
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turn on assets ( ROA ), tangibility ( Tang ), and the logarithm

of sales ( Sales ) are within the range of estimates in the

literature. 

4.2. Predicting firms’ investments 

We specify our baseline investment regression as fol-

lows: 

IK j,t+1 = βx t + γ Z 
′ 
j,t + ϕ j + ε j,t+1 , (33)

where IK j,t+1 denotes the investment rate of firm j in pe-

riod t + 1 , x t is the key aggregate predictive variable, ϕj

is the firm-specific fixed effect, and Z j , t denotes a vector

of control variables for firm j in period t including BLev ,

ROA , Tang , and Sales . 23 Table 2 reports the regression re-

sults. We cluster the standard errors by firm and time. Our

aggregate predictive variable x corresponds to the aggre-

gate relative bond price ( Rela BP ) in Specifications 1 and 4,
23 We do not include a time dummy because x t is an aggregate vari- 

able. Our results remain robust after controlling for the aggregate price- 

to-dividend ratio, which proxies for the time-varying risk premium. We 

also do not include the Tobin’s q as a control because our main regres- 

sors capture the effects of q as seen from Eqs. (31) and (32) . 

 

 

 

 

 

Baa corporate yield in excess of the ten-year Treasury rate

( Baa-Tb10y ) in Specifications 2 and 5, and Baa corporate

bond yields in excess of Aaa corporate bond yields ( Baa-

Aaa ) in Specifications 3 and 6. 

Consistent with the model, the aggregate relative bond

price ( Rela BP ) positively forecasts firm-level investment

rates with a slope of 0.9 and a t -statistic of 9.3 in the

univariate regression (i.e., Specification 1) Importantly, this

predictability result remains significant in the multivariate

regression (i.e., Specification 4) with various controls intro-

duced earlier. The point estimate is 0.39 with a t -statistic

at 5.2. 

In our other univariate regressions (i.e., Specifications

2 and 3), we show that the credit risk measures, Baa-

b10y and Baa-Aaa , negatively predict firm-level invest-

ment rates with an ordinary least squares coefficient of

−4 . 3 and −2 . 6 , respectively. These estimates are also

highly significant with a t -statistic of −6 . 7 , and −1 . 9 ,

respectively. In summary, all three univariate regression

results are consistent with the theory. We also report

multivariate regressions for Baa-Tb10y and Baa-Aaa with

the various control variables defined earlier in Specifi-

cation 5 and 6, respectively. Both two measures remain

significant. 

Finally, the predictability of bond value–based measures

for firms’ investments is economically significant. For ex-

ample, a one standard deviation increase of Baa-Tb10y is

associated with a 1.6 percentage decrease of the firm’s in-

vestment. 

As the aggregate credit spreads are plausibly ex-

ogenous to firms, our findings suggest that micro-

level corporate investments respond negatively to ag-

gregate interest rates, consistent with our model’s key

prediction. 

4.3. Predicting aggregate investments 

Having shown that credit risk–based measures pre-

dict firm-level investments, we now examine the time se-

ries predictability of the aggregate relative bond price and

credit spreads for future aggregate investment. (Predictive

variables are lagged by one year as in Section 4.2 ) The first

specification of Table 3 shows that the relative bond price

( Rela BP ) positively forecasts aggregate investment with a

slope of 0.11, which is significant with a t -statistic of 4.4.

This prediction is consistent with our model as Tobin’s av-

erage q measured by using bond data instead of market eq-

uity data contains information about firms’ future invest-

ment, as argued by Philippon (2009) . 

The other two measures, Baa-Tb10y and Baa-Aaa , nega-

tively predict future aggregate investment, with slopes of

−0 . 7 and −1 . 2 , respectively (Specifications 2 and 3). They

are also highly significant with a t -statistic of −4 . 8 and

−2 . 7 , respectively. 

Specifications 4 to 6 present the multivariate regres-

sions with various controls. These regressions show that

Rela BP , Baa-Tb10y , and Baa-Aaa still predict aggregate in-

vestments after we control for the three-month Treasury

http://www.econ.yale.edu/~shiller/data.htm
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Table 2 

Predicting firm-level investments. 

This table reports the predictive regression results of firm-level investments. Relative bond price ( Rela BP ) 

is defined as 0 . 1+10 - year Treasury rate 
0 . 1+ Baa bond yield 

following Philippon (2009) . Baa-Tb10y is the Moody’s Baa corporate bond 

yield in excess of the ten-year Treasury rate. Baa-Aaa is the Moody’s Baa bond yield in excess of Moody’s 

Aaa yield. Investment rate ( IK ) is capital expenditure over net property, plant, and equipment. Book leverage 

( BLev ) is total liabilities scaled by the sum of total liabilities and the book value of common equity. Return 

on assets ( ROA ) is earnings over total assets. Tangibility ( Tang ) is gross property, plant, and equipment scaled 

by total assets. Firm size is measured by logarithm of sales ( Sales ). All the regressions include the firm fixed 

effect. Standard errors are clustered by firm and by time. Sample is from 1963 to 2014. t -statistics are in 

parentheses. 

Variable (1) (2) (3) (4) (5) (6) 

Rela BP 0.906 0.390 

(9.310) (5.229) 

Baa-Tb10y −4.326 −2.229 

( −6.710) ( −5.627) 

Baa-Aaa −2.627 −2.865 

( −1.891) ( −4.253) 

BLev −0.158 −0.157 −0.156 

( −14.523) ( −14.541) ( −14.698) 

ROA 0.649 0.660 0.690 

(22.434) (22.524) (23.139) 

Tang −0.238 −0.240 −0.244 

( −19.917) ( −19.903) ( −20.047) 

Sales −0.035 −0.037 −0.041 

( −12.517) ( −13.461) ( −16.817) 

Observations 166,293 166,293 166,293 127,528 127,528 127,528 

R 2 0.02 0.02 0.00 0.14 0.14 0.14 

Table 3 

Predicting aggregate investments. 

This table reports the predictive regression results of aggregate investment. Investment rate ( IK ) is the 

real gross private nonresidential fixed investment scaled by real private nonresidential fixed asset. Relative 

bond price ( Rela BP ) is defined as 0 . 1+10 - year Treasury rate 
0 . 1+ Baa bond yield 

following Philippon (2009) . Baa-Tb10y is the Moody’s 

Baa corporate bond yield in excess of the ten-year Treasury rate. Baa-Aaa is the Moody’s Baa bond yield 

in excess of Moody’s Aaa yield. Tb3m is the real three-month Treasury rate. Idiosyncratic volatility ( IdioV ) 

is the cross-sectional return volatility based on the Center for Research in Security Prices. Book leverage 

( BLev ) is the total liabilities of the nonfinancial corporate business sector from the flow of funds scaled by 

the stock of capital from National Income and Product Accounts. The price-to-dividend ratio ( PD ) is the 

ratio between Standard & Poor (S&P) composite stock price index and the sum of all dividends accruing to 

stocks in the index from Robert Shiller’s website ( http://www.econ.yale.edu/ ∼shiller/data.htm ). The slopes 

of PD are multiplied by a hundred. In parentheses are heteroskedasticity and autocorrelation consistent 

t -statistics (Newey-West.) Sample is from 1963 to 2014. 

Variable (1) (2) (3) (4) (5) (6) 

Rela BP 0.107 0.102 

(4.373) (2.554) 

Baa-Tb10y −0.678 −0.598 

( −4.825) ( −3.335) 

Baa-Aaa −1.197 −0.984 

(-2.693) ( −4.453) 

Tb3m 0.152 0.176 0.231 

(2.107) (3.334) (5.229) 

IdioV −0.001 0.006 0.004 

( −0.113) (0.552) (0.461) 

BLev −0.042 −0.053 −0.076 

( −1.728) ( −2.642) ( −4.203) 

PD 0.040 0.030 0.030 

(4.916) (4.202) (3.066) 

R 2 0.271 0.305 0.294 0.620 0.653 0.682 
bill rate ( Tb3m ), idiosyncratic volatility ( IdioV ), book lever- 

age ( BLev ), and the price-to-dividend ratio ( PD ). 24 

In summary, our empirical findings are economically 

and statistically significant, and are consistent with our 
24 The results for book leverage are also significant after controlling for 

market leverage. The predictability of aggregate investment by interest 

rates remains significant after we control for the time-varying aggregate 

risk premium, which is proxied by the aggregate price-to-dividend ratio. 
model’s theoretical predictions on the relation between 

credit-risk-based measures and investments at both the 

firm level and the aggregate level. 

5. Conclusion 

We recognize the importance of stochastic interest rates 

and incorporate a widely used term structure model of 

interest rates into a neoclassic q theory model of in- 

http://www.econ.yale.edu/~shiller/data.htm
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vestment. We show that the term structure of interest

rates significantly alter both the qualitative and quantita-

tive effects of interest rates on investment and the value

of capital. Empirically, we show that our theory-guided

bond information–based measures of firms’ investment op-

portunities have strong predictive powers for both the

firm level and the aggregate investments, complementing

Gilchrist et al. (2007) , Gilchrist and Zakrajšek (2012) and

Philippon (2009) by providing additional empirical support

for the q theory. 

For simplicity, we have chosen a one-factor model for

the term structure of interest rates. Much empirical work

has shown that multi-factor term-structure models fit the

yield curve much better. 25 As a result, different factors

contributing differently to various interest rates should

also have different effects on investments and firm value.

For example, a multi-factor term structure model allows

us to analyze the different effects of long-term and short-

term interest rates on investments. 

Also, extending our model to incorporate financial con-

straints allows us to analyze how the term structure of

interest rates influences a firm’s interdependent invest-

ment and financing (e.g., cash holdings, leverage, and risk

management) policies. 26 Finally, structurally estimating our

model with both term structure and corporate investment

information could allow us to generate additional insights,

provide quantitative predictions, and better understand the

what-if counterfactuals. 27 

Appendix A. Technical details 

A.1. Unlevered firm under stochastic interest rates 

We use the homogeneity property of the firm’s value

function in capital stock K to simplify our analysis. We

write the firm’s value function as 

 ( K, r ) = K · q ( r ) , (34)

and Proposition 1 characterizes the solution for q ( r ). Below

we briefly sketch out a proof for Proposition 1 . 

Substituting Eq. (34) , and various implied relations into

the partial differential equation (PDE) (8) for V ( K , r ) and

simplifying, we obtain the ODE Eq. (11) . The FOC for in-

vestment I given in Eq. (9) implies that the optimal i sat-

isfies Eq. (12) . Next, we turn to the boundary conditions.

Upon the liquidation of capital at τ 	 , the firm collects its

liquidation value 	K τ	 
and, hence, the value-matching con-

dition V (K τ	 
, r ∗) = 	K τ	 

. Also, the optimal liquidation de-

cision gives the smooth pasting condition, V r (K τ , r ∗) = 0 .

	 

25 See Piazzesi (2010) for a survey. 
26 See Cooley and Quadrini (2001) , Gomes (2001) , and Whited (1992) , 

among others, for quantitative assessments of financial frictions on corpo- 

rate investment. See Gourio and Michaux (2011) on the effects of stochas- 

tic volatility on corporate investment under imperfect capital markets. 
27 Cooper and Haltiwanger (2006) estimate both convex and noncon- 

vex adjustment costs parameters in a dynamic neoclassical investment 

model but with constant interest rates. See also Strebulaev and Whited 

(2012) for a review of the recent research development in dynamic mod- 

els of finance and investment and structural estimation in corporate fi- 

nance. 

 

 

 

 

 

 

 

 

 

 

Simplifying these two conditions, we obtain Eqs. (13) and

(14) . 

Finally, we report the natural boundary condition at

r = 0 . Eq. (8) implies the following condition at r = 0 :

max I πK − C(I, K) + ( I − δK ) V K (K, 0) + κξV r (K, 0) = 0 . 

A.2. The benchmark with constant interest rates 

We provide closed-form solutions for i and Tobin’s

q when r t ≡ r for all t . This special case is Hayashi

(1982) with i.i.d. productivity shocks. We summarize the

main results with constant interest rates. The ODE (11) is

simplified to 

rq = max 
i 

( π − c(i ) ) + ( i − δ) q, (35)

where i satisfies c ′ (i ) = q . Equivalently, we can write the

average q under optimal i as 

q = max 
i 

π − c(i ) 

r + δ − i 
, (36)

provided that the following condition holds: 

π < c(r + δ) . (37)

Eq. (37) ensures that firm value is finite. Let ̂  r denote the

interest rate level with the firm indifferent between liq-

uidating and operating as a going concern, in that Tobin’s

average q satisfies q ( ̂  r ) = 	, where q ( ·) is given by Eq. (36) .

For the case with quadratic adjustment costs, when c ( i )

is quadratic and given in Eq. (22) , the convergence condi-

tion Eq. (37) takes the explicit expression 

( r + δ) 
2 − 2 ( π − ( r + δ) ) /θ > 0 . (38)

If r > ̂

 r , the firm liquidates itself and its value is V = 	K. If

r ≤ ̂ r , V = qK, where 

q = 1 + θ i , (39)

and the optimal investment-capital ratio i = I/K is constant

and given by 

i = r + δ −
√ 

( r + δ) 
2 − 2 

θ
( π − ( r + δ) ) . (40)

The cutoff ̂ r at which the firm is indifferent between liqui-

dation and continuation satisfies: 

	 − 1 

θ
= ̂

 r + δ −
√ 

( ̂  r + δ) 
2 − 2 

θ
( π − ( ̂  r + δ) ) . (41)

A.3. The user cost of capital 

Incorporating risk premia into Abel (1990) , we define

the user cost of capital u via the present value formula 

q t = E t 

[ ∫ ∞ 

t 

e −
∫ s 

t (r v + δ) dv u s ds 

] 
. (42)

Eq. (42) states that time t marginal q equals the risk-

adjusted present value of the stream of marginal cash

flows attributable to a unit of capital installed at time t .

Because capital depreciates at the rate of δ, a unit of cap-

ital purchased at time t only is worth e −δ(s −t) unit at time

s , explaining (r + δ) in the exponent in Eq. (42) . Our defi-

nition of user cost of capital is after the risk adjustment in

that the expectation operator E t [ · ] in Eq. (42) is under the

risk-neutral measure, which incorporates the effects of risk

premia for interest rate and productivity shocks. 



632 X. Lin et al. / Journal of Financial Economics 130 (2018) 620–640 

Fig. A1. Valuing assets in place a ( r ) and growth opportunities g ( r ). 

 

 

 

 

 

 

 

 

 

A.4. Decomposition: assets in place and growth opportunities 

We separate the impact of interest rates on assets in 

place and growth opportunities, and we quantify their sep- 

arate contributions to firm value. 

A.4.1. Assets in place 

Let A ( K , r ) denote the value of assets in place, which is 

the present discounted value of future cash flows gener- 

ated by existing capital stock without any further invest- 

ment or divestment in the future, by permanently setting 

I = 0 . We use the following standard HJB equation for A ( K , 

r ): 

r A (K, r ) = πK − δKA K (K, r) + μ(r ) A r (K, r ) 

+ 

σ 2 (r) 

2 

A rr (K, r) . (43) 

Using the homogeneity property A (K, r) = K · a ( r ) and sub- 

stituting it into Eq. (43) , we obtain the following ODE 

(44) for a ( r ): 

( r + δ) a (r) = π + μ(r ) a ′ (r ) + 

σ 2 (r ) 

2 

a ′′ (r ) . (44) 

The value of assets in place A ( K , r ) vanishes as r → ∞ , i.e.,

lim r→∞ 

A (K, r) = 0 , which implies lim r→∞ 

a (r) = 0 . Finally, 

Eq. (44) implies that the natural boundary condition at r = 

0 can be simplified as π − δa (0) + κξa ′ (0) = 0 . 

Intuitively, the value of assets in place (per unit of cap- 

ital) for an infinitely lived firm can be viewed as a perpet- 

ual bond with a discount rate given by (r + δ) , the sum 

of interest rate r and capital depreciation rate δ. Using the 

perpetual bond interpretation, the effective coupon for this 

asset in place is the firm’s constant expected productiv- 

ity π after the risk adjustment (i.e., under the risk-neutral 

measure). 

Panel A of Fig. A1 plots the value of assets in place, 

a ( r ). By definition, a ( r ) is independent of growth and the 

adjustment cost parameter θ . By the perpetual bond inter- 

pretation, we know that a ( r ) is decreasing and convex in 

r . Quantitatively, a ( r ) accounts for a significant fraction of 
firm value. For example, at its long-run mean ξP = 0 . 0574 , 

a (ξP ) = 1 . 117 , which accounts for about 96% of total firm

value, i.e., a (ξP ) /q (ξP ) = 0 . 96 for θ = 2 . 

The value of assets in place generally is not equal to 

the book value or replacement costs of capital, contrary to 

the conventional wisdom. The value of assets in place is 

A (K, r) = a (r) K, and the book value of capital is K . In gen-

eral, a ( r ) � = 1. However, the value of assets in place does not

account for growth opportunities. 

A.4.2. Growth opportunities 

The value of growth opportunities, G ( K , r ) given by 

G (K, r) = V (K, r) − A (K, r) , accounts for the value of opti-

mally adjusting investment in response to changes in in- 

terest rates. The scaled value, g(r) = G (K , r) /K , is given by

g(r) = q (r) − a (r) . (45) 

Panel B of Fig. A1 plots g ( r ) for θ = 2 , 5 , 20 . The quan-

titative effects of interest rates and capital illiquidity on 

g ( r ) are strong. At a low interest rate environment such 

as today’s, the value of growth opportunities is very sen- 

sitive to the level of adjustment cost θ and interest rates. 

With a moderate value of θ = 2 , the value of growth op- 

portunities is about 55.2% of the existing capital stock, i.e., 

g(0) = 0 . 552 . As the interest rate increases from zero to its

long-run mean ξP = 0 . 0574 , the value of growth opportu- 

nities per unit of capital stock drops by more than 90%, 

from 0.552 to 0.047. As θ increases from 2 to 5, at r = 0 ,

the value of growth opportunities decreases by 0.472, from 

0.552 to 0.080. In summary, both interest rates and capital 

illiquidity have first-order effects on the value of growth 

opportunities. 

A.5. Levered firm under stochastic interest rates 

For simplicity, we assume that the investment decision 

I and the liquidation time τ 	 are chosen to maximize the 

firm’s total value. That is, we assume that the MM the- 

orem holds and leverage simply requires us to do valua- 
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tion given the leverage policy. Therefore, the firm’s (invest-

ment and liquidation) decisions and Tobin’s q are given in

Proposition 1 . We thus need to report only the bond pric-

ing results given corporate policies. 

Given investment and liquidation decisions in

Proposition 1 , the firm’s total debt (bond) value B ( K ,

r ) satisfies the following pricing equation when r < r ∗: 

r B (K, r ) = ρ� − α(B − �) − (I − δK) ψ 

B 

�

+ (I − δK) B K + μ(r ) B r + 

σ 2 (r ) 

2 

B rr . (46)

The first term on the right side of Eq. (46) gives the to-

tal coupon payments. The second term reflects the net

gains or losses due to the rollover of the existing bonds

� t and the new bond issue at the market price B t . By fix-

ing the firm’s book leverage � t / K t at a constant level ψ ,

the net change of the face value for the bond is d�t =
ψ dK t = (I t − δK t ) ψ dt and, thus the shareholders collect

B t d�t / �t = (I t − δK t ) ψ B t dt/ �t by adjusting the outstand-

ing debt amount, which is captured by the third term. Fi-

nally, the last three terms illustrate the effects of the phys-

ical capital stock K and interest rate r on B ( K , r ). Upon liq-

uidation, given the debt holders’ seniority over equity in-

vestors, we must have 

B (K τ	 
, r ∗) = min { �τ	 

, 	K τ	 
} = min { ψ, 	 } K τ	 

. (47)

Using the homogeneity property b t = B t /K t and the

pricing Eq. (46) , we obtain the ODE (20) for b . Eq. (47) im-

plies (21) . Equity pricing is given by e (r) = q (r) − b(r) ,

where q ( r ) and b ( r ) are given by Propositions 1 and 2 , re-

spectively. 

A.6. A non-MM model 

As in Leland (1994) , we can generalize our model for

levered firms by allowing the firm to choose its default

policy with the objective of maximizing its equity value. By

doing so, equity investors face a time-inconsistency prob-

lem as incentives before and after debt issue differ. The

pricing formulae for equity and debt will thus be different,

but the key idea that bond’s q is still a more robust mea-

sure than the Tobin’s q for firms’ investment opportunities

remains valid. We summarize the main results when in-

vestment and default decisions are chosen sequentially by

the firm’s equity holders, in the Proposition 3 . 

Proposition 3 . The scaled bond value b ( r ), equity value e ( r ),

and investment i ( r ) jointly satisfy the following equations in
the continuation region where r < r ∗: 

r b(r ) = ρψ + α(ψ − b(r)) + μ(r) b ′ (r) + 

σ 2 (r) 

2 

b ′′ (r) , 

(48)

(r + δ − i (r )) e (r ) 

= π − c(i (r)) − ρψ + α(b(r) − ψ) + (i (r) − δ) b(r) 

+ μ(r) e ′ (r) + 

σ 2 (r) e ′′ (r) 

2 

, (49)

and 

c ′ (i (r)) = b(r) + e (r) , (50)

subject to the following boundary conditions: 

b(r ∗) = min { ψ, 	 } , (51)

e (r ∗) = max { 0 , 	 − ψ} (52)

and 

e ′ (r ∗) = 0 . 

And the firm’s Tobin’s q is given by q (r) = b(r) + e (r) . 

Eq. (50) reflects that the firm’s investment policy is

chosen to maximize Tobin’s q . The optimal default deci-

sion is chosen to maximize equity value, as one see from

e ′ (r ∗) = 0 . 

Appendix B. Stationary distributions of r and q ( r ) 

We now report the stationary distributions of the inter-

est rate r and Tobin’s q . The stationary distributions of the

interest rate in the CIR model under both the physical and

risk-neutral measures are the Gamma distribution with dif-

ferent parameter values. The probability density function

(pdf) under the risk-neutral measure, f r ( r ; κ , ξ ), is given

by 

f r (r;κ, ξ ) = 

1 

�
(
2 κξ/ ν2 

)(
2 κ/ ν2 

)2 κξ/ ν2 

r 2 κξ/ ν2 −1 e −2 κr / ν2 

, 

(53)

where �( ·) is the Gamma function. The pdf for r under the

physical measure is then f r (r;κP , ξP ) . 

Applying the standard probability density transforma-

tion technique, we have the following probability density

function for Tobin’s q under a given measure, 

f q (q ) = 

f r (r) 

| q ′ (r) | . (54)

Intuitively, the pdf f q ( q ) depends on the pdf f r ( r ) for the

interest rate and inversely depends on the sensitivity of

Tobin’s q with respect to r . We plot the stationary distri-

butions for Tobin’s q under both measures in Panel B of

Fig. B1 . The distribution of r after risk adjustments shifts

to the right, as interest rates are on average higher and

more transitory under the risk-neutral measure than un-

der the physical measure. As a result, the distribution of

q after risk adjustments shifts to the left due to the risk

premium. 
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Fig. B1. Stationary distributions for r and Tobin’s average q . 

 

 

 

 

 

 

 

Appendix C. Asymmetry, price wedge, and fixed costs 

C.1. Model 

We extend the convex adjustment cost C ( I , K ) in our 

baseline model along three important dimensions. First, 

empirically, downward adjustments of capital stock are of- 

ten more costly than upward adjustments. We capture this 

feature by assuming that the firm incurs asymmetric con- 

vex adjustment costs in investment ( I > 0) and divestment 

( I < 0) regions. Hall (2001) uses the asymmetric adjustment 

cost in his study of aggregate market valuation of capital 

and investment. Zhang (2005) uses this asymmetric adjust- 

ment cost in studying investment-based cross-sectional as- 

set pricing. 

Second, as in Abel and Eberly (1994) , we assume a 

wedge between the purchase and sale prices of capital, for 

example due to capital specificity and illiquidity premium. 

Much empirical work shows the size of the wedge between 

the purchase and sale prices. Arrow (1968 , p. 2) states that 

“there will be many situations in which the sale of capital 

goods cannot be accomplished at the same price as their 

purchase.” The wedge naturally depends on the business 

cycles and market conditions. 28 Let p + and p − denote the 

respective purchase and sale prices of capital. An econom- 

ically sensible assumption is p + ≥ p − ≥ 0 with an implied 

wedge p + − p − . 

Third, investment often incurs fixed costs. Fixed costs 

can capture investment indivisibilities, increasing returns 

to the installation of new capital, and organizational re- 

structuring during periods of intensive investment. In ad- 

dition, fixed costs significantly improve the empirical fit of 

the model with the micro data. Inaction becomes optimal 

in certain regions. To ensure that the firm does not grow 
28 The estimates range from 0.6 to 1, depending on data sources, estima- 

tion methods, and model specifications. See Pulvino (1998) , Hennessy and 

Whited (2005) , Cooper and Haltiwanger (2006) , and Warusawitharana 

(2008) , for example. 
out of fixed costs, we assume that the fixed cost is pro- 

portional to its capital stock. See Hall (2004) , Cooper and 

Haltiwanger (2006) , and Riddick and Whited (2009) for the 

same size-dependent fixed cost assumption. 

Following Abel and Eberly (1994) , we write the region- 

dependent function c ( i ) as 

c(i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 , if i = 0 , 

φ+ + p + i + 

θ+ 
2 

i 2 , if i > 0 , 

φ− + p −i + 

θ−
2 

i 2 , if i < 0 , 

(55) 

where φ+ and φ− parameterize the fixed costs of investing 

and divesting, p + and p − are the price of purchasing and 

selling capital, and θ+ and θ− are the asymmetric convex 

adjustment cost parameters. For i > 0, c ( i ) is convex in i . For

i < 0, c ( i ) is also convex. Panels A and B of Fig. C1 plot c ( i )

given in Eq. (55) , and the marginal cost of investing c ′ ( i ),
respectively. c ( i ) is not continuous at i = 0 and, hence, c ′ ( i )
is not defined at the origin ( i = 0 ). For illustrative simplic-

ity, we set the liquidation value to zero, i.e., 	 = 0 . 

C.2. Solution 

In general, the model solution has three distinct re- 

gions: (positive) investment, inaction, and divestment. We 

use q + (r) , q 0 ( r ) and q −(r) to denote Tobin’s q in these

three regions, respectively. Proposition 4 summarizes the 

main results. 

Proposition 4 . Tobin’s q in investment, inaction, and divest- 

ment regions, q + (r) , q 0 ( r ), and q −(r) , respectively, solve the

following three linked ODEs, 

( r + δ) q + (r) = π − φ+ + 

(q + (r) − p + ) 2 

2 θ+ 
+ μ(r) q ′ + (r) 

+ 

σ 2 (r) 
q ′′ + (r) , if r < r , (56) 
2 
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Fig. C1. The cost of investing c ( i ) and marginal cost of investing c ′ ( i ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(r + δ) q 0 (r) = π + μ(r) q ′ 0 (r) + 

σ 2 (r) 

2 

q ′′ 0 (r) , 

if r < r < r , (57)

and 

( r + δ) q −(r) = π − φ− + 

(q −(r) − p −) 2 

2 θ−
+ μ(r) q ′ −(r) 

+ 

σ 2 (r) 

2 

q ′′ −(r) , if r > r . (58)

The endogenously determined cutoff interest rate levels for

these three regions, r and r , satisfy the boundary conditions 

π − φ+ − δq + (0) + 

(q + (0) − p + ) 2 

2 θ+ 
+ κξq ′ + (0) = 0 , (59)

q + ( r ) = q 0 ( r ) , q 0 ( r ) = q −( r ) , (60)

q ′ + ( r ) = q ′ 0 ( r ) , q ′ 0 ( r ) = q ′ −( r ) , (61)

q ′′ + ( r ) = q ′′ 0 ( r ) , q ′′ 0 ( r ) = q ′′ −( r ) , (62)

and 

lim 

r→∞ 

q −(r) = 0 . (63)

The optimal investment-capital ratios, denoted as i + (r) , i 0 ( r ),

and i −(r) , are given by 

i + (r) = 

q + (r) − p + 
θ+ 

, if r < r , (64)

i 0 (r) = 0 , if r ≤ r ≤ r , (65)

and 

i −(r) = − p − − q −(r) 

θ−
, if r > r . (66)

When r is sufficiently low ( r < r ), the firm optimally

chooses to invest, I > 0. Investment is proportional to
q + (r) − p + , the wedge between Tobin’s q and purchase

price of capital, p + . Tobin’s q in this region, q + (r) , solves

the ODE (56) . Condition (59) gives the firm behavior at

r = 0 . The right boundary r is endogenous. Tobin’s q at r ,

q + ( r ) , satisfies the first set of conditions in (60) –(62) , i.e.

q ( r ) is twice continuously differentiable at r . 

When r is sufficiently high ( r > r ), the firm divests, I < 0.

Divestment is proportional to p − − q −(r) , the wedge be-

tween the sale price of capital, p −, and Tobin’s q . Tobin’s q

in the divestment region, q −(r) , solves the ODE (58) . Con-

dition (63) states that the firm is worthless as r → ∞ , the

right boundary condition. The left boundary for the divest-

ment region r is endogenous. Tobin’s q at r , q −( r ) , satis-

fies the second set of the conditions in (60) –(62) , i.e. q ( r )

is twice continuously differentiable at r . 

For r in the intermediate range ( r ≤ r ≤ r ), the firm op-

timally chooses to be inactive, i (r) = 0 , and, hence incurs

no adjustment costs. Tobin’s q in this region thus behaves

likes assets in place and solves the linear ODE (57) . The op-

timal thresholds r and r are endogenously determined by

conditions (60) –(62) , as we discussed previously. 

Proposition 4 focuses on the case in which all three re-

gions exist, i.e. 0 < r < r . 

C.3. Three special cases 

We next study the impact of each friction on invest-

ment and Tobin’s q . For the baseline case, we set θ+ = θ− =
2 (symmetric convex costs), p + = p − = 1 (no price wedge)

and φ+ = φ− = 0 (no fixed costs). For each special case,

we change only the key parameter of interest and keep all

other parameters the same as in the baseline case just de-

scribed. 

C.3.1. Asymmetric convex adjustment costs 

Much empirical evidence suggests that divestment is

generally more costly than investment, i.e., θ− > θ+ . We

set the adjustment cost parameter θ+ = 2 for investment

( I > 0) and θ− = 2 , 5 , 20 for divestment ( I < 0). 
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Fig. C2. Tobin’s average q and i ( r ) with asymmetric convex adjustment costs. 

Fig. C3. Tobin’s q and the investment-capital ratio i ( r ) with price wedges. 

 

 

 

Fig. C2 shows that the divestment adjustment cost pa- 

rameter θ− has a strong impact on Tobin’s q and i ( r ) in the 

divestment region (high r ), but almost no impact on q ( r ) 

and i ( r ) in the positive investment region. When r is suf- 

ficiently high, the firm divests and changing θ− has first- 

order effects on divestment. The higher the value of θ−, 

the more costly divestment and the less divestment activ- 

ity. With θ− = 20 , the firm is close to facing an irreversible 

investment option and, hence, the optimal divestment level 

is close to zero. When r is sufficiently low, it is optimal to 

invest. The divestment option is far out of the money and 

thus changing θ− has negligible effects on valuation and 

investment. 

C.3.2. The wedge between purchase and sale prices of capital 

We now turn to the effects of price wedge. We nor- 

malize the purchase price at p + = 1 and consider two sale 

prices, p − = 0 . 8 , 0 . 9 , with implied wedge being 0.2 and 0.1,
respectively. We also plot the baseline case with no price 

wedge as a reference. 

Fig. C3 plots Tobin’s q and the investment-capital ratio 

i ( r ) for a firm facing a price wedge. The price wedge leads

to three distinct investment regions: investment ( I > 0), 

inaction (zero), and divestment ( I < 0). With low interest 

rates, the firm invests for growth and the asset sales option 

is sufficiently out of the money. Hence, price wedge has 

negligible effects on Tobin’s q and investment. However, 

with high interest rates, the asset sales option becomes 

in the money and divestment is optimal. The price wedge 

thus has significant effects on divestment and value. With 

the wedge being p + − p − = 0 . 2 , the firm invests when

r ≤ 0.082 and divests when r ≥ 0.141. For intermediate 

values of r (0.082 ≤ r ≤ 0.141), inaction is optimal. In this 

range, the marginal cost of investment or divestment justi- 

fies neither purchasing nor selling capital due to the price 

wedge. Inaction is generated here by the price wedge, 

not fixed costs. Finally, investment/divestment activities 



X. Lin et al. / Journal of Financial Economics 130 (2018) 620–640 637 

Fig. C4. Tobin’s q and i ( r ) with fixed adjustment costs. 
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and inaction significantly depend on the price wedge. For

example, the inaction region narrows from (0.082, 0.141)

to (0.082, 0.109) when the price wedge decreases from 20

to 10%. 

C.3.3. Fixed costs and optimal inaction 

We now study two settings with fixed costs: fixed costs

for divestment only ( φ+ = 0 , φ− = 0 . 01 ) and symmetric

fixed costs for both investment and divestment ( φ+ = φ− =
0 . 01 ). We also plot the case with no fixed costs ( φ+ = φ− =
0 ) as a reference. 

Fig. C4 plots Tobin’s average q and the investment-

capital ratio i ( r ) under fixed costs. With fixed costs for di-

vestment, φ− > 0 , we have three regions for i ( r ). For suf-

ficiently low interest rates ( r ≤ 0.082), optimal investment

is positive and is almost unaffected by φ−. For sufficiently

high r ( r ≥ 0.142), divestment is optimal. The firm divests

more aggressively with fixed costs of divestment than

without. Intuitively, the firm’s more aggressive divestment

strategy economizes fixed costs of divestment. In addition,

fixed costs generate an inaction region, 0.082 ≤ r ≤ 0.142.

The impact of fixed costs of divestment is more significant

on Tobin’s q in medium to high r region than in the low r

region. 

Now we incrementally introduce fixed costs for invest-

ment by changing φ+ from 0 to 0.01, while holding φ− =
0 . 01 . We have three distinct regions for i ( r ). For high r ,

r ≥ 0.142, the firm divests. Tobin’s q and i ( r ) in this region

remain almost unchanged by φ+ . For low r , r ≤ 0.038, the

firm invests less with φ+ = 0 . 01 than with φ+ = 0 . 

Introducing the fixed costs φ+ discourages investment,

lowers Tobin’s q , shifts the inaction region to the left, and

widens the inaction region. The lower the interest rate, the

stronger the effects of φ+ on Tobin’s q , investment, and the

inaction region. 
C.4. Irreversibility 

Investment is often irreversible, or at least costly to re-

verse after capital is installed. Much work is motivated by

the irreversibility of capital investment. Arrow (1968) is

a pioneering study in a deterministic environment. Our

model generates irreversible investment as a special case.

We have three ways to deliver irreversibility within our

general framework. Intuitively, they all work to make di-

vestment very costly. We can set the resale price of in-

stalled capital to zero ( p − = 0 ), making capital completely

worthless if liquidated. Alternatively, we can set the ad-

justment cost for either convex or lumpy divestment to

infinity, (i.e., θ− = ∞ , φ− = ∞ ). The three cases all de-

liver identical solutions for both the divestment and the

positive investment regions. Fig. C5 plots Tobin’s q and

the optimal investment-capital ratio i ( r ) under irreversibil-

ity. As in our baseline model, investment varies signifi-

cantly with the level of the interest rate. Ignoring interest

rate dynamics induces significant error for Tobin’s q and

investment. 

To explain the derivation for Proposition 4 , with homo-

geneity property, we conjecture that there are three re-

gions (positive, zero, and negative investment), separated

by two endogenous cutoff interest rate levels r and r . Firm

value in the three regions can be written as 

 (K, r) = 

⎧ ⎨ 

⎩ 

K · q −( r ) , i f r > r , 

K · q 0 ( r ) , i f r ≤ r ≤ r , 

K · q + ( r ) , i f r < r , 

At r and r , V ( K , r ) satisfies value-matching, smooth past-

ing, and super contact conditions, which imply Eqs. (60) ,

(61) , and (62) , respectively. Eq. (59) is the natural bound-

ary condition at r = 0 , and Eq. (63) reflects that firm value

vanishes as r → ∞ . Other details are essentially the same

as those in Proposition 1 . 

When the fixed cost for investment φ+ is sufficiently

large, there is no investment region, i.e., r = 0 . In addition,
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Fig. C5. Tobin’s q and i ( r ) with irreversible investment. 

 

 

 

 

 

 

the condition at r = 0 , Eq. (59) , is replaced by the condi- 

tion 

π − δq 0 (0) + κξq ′ 0 (0) = 0 . (67) 

In sum, for the case with inaction and divestment regions, 

the solution is given by the linked ODEs (57) –(58) subject 

to Eq. (67) , the free-boundary conditions for the endoge- 

nous threshold r given as the second set of conditions in 

Eqs. (60) –(62) , and the limit condition (63) . 

Similarly, if the cost of divestment φ− is sufficiently 

high, the firm has no divestment region, i.e. r = ∞ . The 

model solution is given by the linked ODEs (56) –(57) sub- 

ject to (59) , the free-boundary conditions for r given as the 

first set of conditions, and lim r→∞ 

q 0 (r) = 0 . 

Appendix D. Serially correlated productivity shocks 

We now extend our baseline convex model to allow 

for serially correlated productivity shocks. Let s t denote 

the state (regime) at time t . The expected productivity 

in state s at any time t , π ( s t ), can take on only one of

the two possible values, i.e., π ( s t ) ∈ { π L , πH }, where π L > 0 

and πH > π L are constant. Let s ∈ { H , L } denote the current 

state and s − refer to the other state. Over the time pe- 

riod (t , t + �t ) , under the risk-neutral measure, the firm’s 

expected productivity changes from π s to πs − with proba- 

bility ζ s �t and stays unchanged at π s with the remaining 

probability 1 − ζs �t . The change of the regime could be re- 

current. That is, the transition intensities from either state, 

ζ H and ζ L , are strictly positive. The incremental productiv- 

ity shock dX after risk adjustments (under the risk neutral 

measure) is given by 

d X t = π(s t−) d t + ε(s t−) d Z t , t ≥ 0 . (68)

The firm’s operating profit dY t over the same period (t, t + 

dt) is also given by Eq. (6) as in the baseline model. The 

homogeneity property continues to hold. Again, for illus- 

trative simplicity, we set the liquidation value to zero, i.e., 

	 = 0 . We summarize the results in Proposition 5 . 
Proposition 5 . Tobin’s q in two regimes, q H ( r ) and q L ( r ), solves

the linked ODEs 

rq s (r) = πs − c(i s (r)) + (i s (r) − δ) q s (r) + μ(r) q ′ s (r) 

+ 

σ 2 (r) 

2 

q ′′ s (r) + ζs (q s −(r) − q s (r)) , s = H, L, 

(69) 

subject to the boundary conditions 

πs − c(i s (0)) + (i s (0) − δ) q s (0) + κξq ′ s (0) 

+ ζs (q s −(0) − q s (0)) = 0 , (70) 

and 

lim 

r→∞ 

q s (r) = 0 . (71) 

The optimal investment-capital ratios in two regimes i H ( r ) 

and i L ( r ) is by 

i s (r) = 

q s (r) − 1 

θ
, s = H, L. (72) 

Fig. D1 plots Tobin’s average q and the investment- 

capital ratio i ( r ) for both the high- and the low- 

productivity regimes. We choose the expected (risk- 

neutral) productivity, πH = 0 . 2 and πL = 0 . 14 , set the

(risk-neutral) transition intensities at ζL = ζH = 0 . 03 . The 

expected productivity has first-order effects on firm value 

and investment. Both q H ( r ) and i H ( r ) are significantly larger

than q L ( r ) and i L ( r ), respectively. In addition, both q H ( r ) and

q L ( r ) are decreasing and convex as in the baseline model. 

Our model with serially correlated productivity shocks can 

be extended to allow for richer adjustment cost frictions 

such as the price wedge and fixed costs as we have done 

in Appendix C , and multiple-state Markov chain processes 

for productivity shocks. 
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Fig. D1. Tobin’s q and i ( r ) with serially correlated productivity shocks. 
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Appendix E. Data construction 

E.1. Aggregate data 

We use data for aggregate investment I and capital

stock K from the national account and fixed asset tables

available from the Bureau of Economic Analysis (BEA). We

construct annual series of the aggregate investment rate,

denoted by IK , as IK t = 

I t 
0 . 5 ×(K t−1 + K t ) , where investment I

is gross private nonresidential fixed investment from NIPA

Table 1.1.5 and capital K is nonresidential fixed asset from

NIPA fixed asset Table 1.1. Investment I and capital K are

scaled by the annual implicit price deflator for the gross

private nonresidential fixed investment, reported in NIPA

Table 1.1.9. 

We obtain financial information from Compustat for US

publicly held companies with information for two or more

consecutive years. We use fiscal year annual company data

from balance sheets, income statements, and cash flow

statements, and we omit observations with negative total

assets ( AT ) or current assets ( ACT ). Utilities and financial

firms are excluded from the sample. Specifically, We omit

firms whose primary SIC code is between 4900 and 4999

(utility firms) or between 60 0 0 and 6999 (financial firms). 

E.2. Firm-level data 

The firm-level investment rate (i.e., the change in gross

capital stock) is defined as IK i,t = 

CAPX i,t 
0 . 5 ×(K i,t−1 + K i,t ) where K is

the firm’s net property, plant and equipment ( PPENT ) and

CAPX is its capital expenditure. Both K and CAPX are scaled

by the annual implicit price deflator of gross private non-

residential fixed investment, reported in NIPA Table 1.1.9.

Our firm-level control variables are book leverage, defined

as BLe v = (DLC + DLT T ) / (DLC + DLT T + CEQ ) , where DLC is

debt in current liabilities, DLTT is long-term debt, and CEQ

is the Compustat common book equity; return on assets

( ROA ), calculated as ROA = Earnings/AT , where Earnings is

defined as the sum of income before extraordinary items
( IB ), interest expense ( XINT ), and income statement de-

ferred taxes ( TXDI ); and Tang = PPEGT / AT , where PPEGT

is gross property, plant, and equipment. We further con-

trol for firm size, proxied via the logarithm of sales. In

the unreported robustness checks, we control for the To-

bin’s q , which is computed as MV / AT , where MV is the

market value of assets and is given by M V = AT + M E −
EQ − T XDB, ME is the CRSP market value of equity (calcu-

lated as the December stock price times shares outstand-

ing), and TXDB denotes the balance sheet deferred taxes.

All the variables are winsorized at the 0.5 and 99.5 per-

centiles. 
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