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Rare Disasters, Financial Development, and
Sovereign Debt

SERGIO REBELO, NENG WANG, and JINQIANG YANG

ABSTRACT

We propose a model of sovereign debt in which countries vary in their level of finan-
cial development, defined as the extent to which they can issue debt denominated in
domestic currency in international capital markets. We show that low levels of finan-
cial development generate the “debt intolerance” phenomenon that plagues emerging
markets: it reduces overall debt capacity, increases credit spreads, and limits the
country’s ability to smooth consumption.

AN INTRIGUING FACT ABOUT SOVEREIGN debt markets is that emerging
economies pay high credit spreads on their sovereign debt, despite gener-
ally having much lower debt-output ratios than developed countries. Reinhart,
Rogoff, and Savastano (2003) call this phenomenon “debt intolerance.”

In this paper, we propose a model of sovereign debt in which countries vary
in their level of financial development. By “financial development,” we re-
fer to the extent to which a country can issue debt denominated in domestic
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currency in international capital markets.1 We show that low levels of financial
development generate debt intolerance.2

The intuition is as follows. Countries with less ability to issue domestic-
currency debt endure more volatile consumption. These countries are also
more likely to default, so lenders charge them a higher credit spread to cover
the expected default losses. Low levels of financial development reduce debt
capacity, increase credit spreads, and limit the ability to smooth consumption.

As in the literature on rare disasters, we assume that there are sporadic
downward jumps in output.3 In our model, output follows the jump-diffusion
process estimated by Barro and Jin (2011) in which the size distribution of
jumps is governed by a power law. This process is consistent with the evidence
presented in Aguiar and Gopinath (2007) that permanent shocks are the pri-
mary source of fluctuations in emerging markets.

Since domestic currencies generally depreciate in disaster periods (Farhi
and Gabaix (2016)), the dollar value of domestic-currency debt falls in these
periods. This property makes domestic-currency debt a natural partial hedge
against rare disasters. Countries that can borrow more in domestic currency
have greater ability to manage disaster risk. As a result, they have higher debt
capacity and pay lower spreads on foreign-currency debt. In other words, they
have less “debt intolerance.”

We assume that countries face exogenous limits to their ability to issue
domestic-currency debt in international capital markets. This assumption is
motivated by the key finding of the literature on the original-sin hypothesis:
the ability to borrow in domestic currency is more closely related to the size of
the economy than to the soundness of fiscal and monetary policy or other fun-
damentals (Hausmann and Panizza (2003) and Bordo, Meissner, and Redish
(2004)).

Our key result is that the more limited is a country’s ability to issue debt in
domestic currency, the lower is its overall debt capacity and the more severe
is its debt intolerance. In other words, domestic-currency debt and foreign-
currency debt are complements. This implication is consistent with the key
finding in Du, Pflueger, and Schreger (2020) that countries that can issue more
domestic-currency debt also issue more debt denominated in foreign currency.

An important question is: how much better would a country be if it could
hedge rare-disaster risk with a full set of state-contingent hedging contracts?
To answer this question, we compare two economies. The first has a high level

1 Another aspect of financial development is a country’s access to commitment mechanisms such
as posting collateral or depositing money in escrow accounts that can be seized by creditors. We do
not consider these mechanisms because sovereign debt is generally unsecured in practice.

2 In their analysis of the trade-off between domestic- and foreign-currency debt, Bolton (2016)
and Bolton and Huang (2018) argue that fiat money plays the role of equity in corporations.

3 This framework has proved useful in modeling many asset-pricing and macroeconomic phe-
nomena. Examples include the equity premium (Rietz (1988); Barro (2006); Barro and Jin (2011),
and Gabaix (2012)), business cycles (Gourio (2012)), the predictability of excess stock returns
(Wachter (2013)), investment, interest rates, and equity returns (Pindyck and Wang (2013)), and
the returns to the carry trade (Burnside et al. (2011) and Farhi and Gabaix (2016)).
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of financial development and uses domestic-currency debt to hedge its rare-
disaster risk. The second is a “full-spanning” economy that uses a full set of
state-contingent hedging contracts to hedge its rare-disaster risk, as in Kehoe
and Levine (1993) and Kocherlakota (1996).

We find that the limited commitment, full-spanning economy has higher
welfare than the economy that hedges rare-disaster risk by issuing debt de-
nominated in domestic currency. But this difference is quantitatively small. In
contrast, the welfare gain from increasing the ability of economies with low
financial development to issue more domestic currency debt in international
capital markets is much larger. These results suggest that expanding the abil-
ity of emerging markets to issue domestic currency debt might be an effective
and expedient way to improve their welfare.4

We write our sovereign debt model in continuous time. This approach has
several significant advantages. First, our model can be solved in closed form
for both the value function and the policy rules up to an ordinary differen-
tial equation (ODE) for certainty-equivalent wealth with intuitive boundary
conditions. Second, the analytical expressions for optimal consumption, debt
issuance, and default policies yield valuable insights into the key mechanisms
at work in our model. Third, we obtain a sharp characterization of the prop-
erties of our model as the country approaches its debt capacity: the diffusion
volatility of the debt-output ratio approaches zero, and the country’s endoge-
nous risk aversion approaches infinity.

Our method for characterizing global nonlinear dynamics is similar to that
used in the dynamic optimal contracting and macrofinance diffusion-based lit-
erature (e.g., DeMarzo and Sannikov (2006), Bolton, Chen, and Wang (2011),
Bolton, Chen, and Wang (2013), He and Krishnamurthy (2013), Brunnermeier
and Sannikov (2014), and Bolton, Wang, and Yang (2019)). Since our model
features jump shocks that cannot be fully hedged and equilibrium credit risk
pricing, we generalize the numerical solution methodology used in these pa-
pers to accommodate these features.

The representative agent has the continuous-time version of the Epstein-
Zin-Weil preferences proposed by Duffie and Epstein (1992). These preferences
allow our model to generate empirically plausible average debt-to-output ra-
tios without resorting to the high discount rates used in the literature. Our
calibration combines a conventional value of the discount rate (5.2% per year)
with a low elasticity of intertemporal substitution (EIS = 0.025) and a con-
ventional value for relative risk aversion (γ = 2). We interpret the low EIS as
reflecting expenditure commitments that are difficult to change, as in Bocola
and Dovis (2016). Recursive preferences are key to making this calibration
work. With standard expected utility, a low EIS implies a high risk aversion
that creates an incentive to avoid the debt region, generating a low average
debt-to-output ratio.

4 The creation of emerging market bond funds and the simplification of withholding taxes are
examples of measures that can increase the participation of global investors in domestic-currency
debt markets. See, for example, Romero et al. (2020).
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Following Aguiar and Gopinath (2006) and Arellano (2008), we assume that,
upon default, the country suffers a decline in output and loses access to inter-
national capital markets. It then regains access to these markets with constant
probability per period. Outside of the default state, the country can issue debt
denominated in both domestic and foreign currency that can be defaulted upon.
The country can also invest at a risk-free rate and can hedge diffusion shocks.

As emphasized by Bulow and Rogoff (1989), autarky might be difficult to
sustain because the rest of the world cannot commit ex ante to excluding the
defaulting borrower from ex post risk-sharing arrangements. In our model,
the permanent output loss that occurs upon default is sufficient to sustain the
existence of sovereign debt. In this sense, our model is immune to the Bulow-
Rogoff critique.

One virtue of our model is that it does not require the nonlinear default costs
commonly used in the literature to generate plausible average debt-output ra-
tios. Our linear specification of default costs is consistent with recent evidence
by Hébert and Schreger (2017) and Trebesch and Zabel (2017).

In response to large jump shocks, it is optimal for countries to default on
their debt. In response to moderate jump shocks, the country fully repays
its domestic- and foreign-currency debt. However, the domestic currency de-
preciates, reducing the dollar value of domestic-currency debt. The larger is
the shock, the larger is the rate of depreciation, and the lower is the ex post
dollar value of domestic currency debt. Domestic currency debt serves as a
natural partial hedge against rare disasters because the dollar value of out-
put and domestic currency debt move in the same direction when disasters
occur.

The equilibrium credit spread on foreign-currency debt reflects its default
risk. The equilibrium credit spread on domestic-currency debt reflects both
default and currency depreciation risk.

We consider two variants of our model. In the first variant, lenders de-
mand a credit risk premium calibrated using estimates in Longstaff et al.
(2011). In this setting, it is more costly to service debt, so debt capacity is
lower. In the second variant, the output cost of defaulting is temporary instead
of permanent. Since the overall cost of default is lower, the country is more
tempted to default. As a result, debt capacity is lower than in our benchmark
model.

The paper is organized as follows. Section I presents a limited commitment
model in which the country can issue domestic currency debt up to a limit. Sec-
tion II discusses the solution of this benchmark model. Section III calibrates
our benchmark model and explores its quantitative properties. Section IV com-
pares our benchmark model with a model in which the country also has limited
commitment but can hedge with a set of full-spanning hedging contracts. Sec-
tion V generalizes our benchmark model to a setting with credit risk premia.
Section VI presents a version of our benchmark model with transitory default
costs. Section VII concludes. Appendices contain derivations and related tech-
nical details.



Rare Disasters, Financial Development, and Sovereign Debt 2723

I. Model Setup

We consider a continuous-time model in which the country’s infinitely lived
representative agent receives a perpetual, stochastic output stream and can
issue both domestic- and foreign-currency debt.

A. Output Processes

Output Process in the Normal Regime. In the normal regime, the country
can borrow and lend in international capital markets as well as hedge its dif-
fusion shocks.

We model output in this regime, Yt , as a jump-diffusion process. Diffusion
shocks represent normal economic fluctuations. Large jump shocks represent
rare disasters. The law of motion for output is given by

dYt

Yt−
= μdt + σdBt − (1 − Z)dJt , Y0 > 0, (1)

where μ is the drift parameter, σ is the diffusion volatility parameter, B is
a standard Brownian motion process, and J is a pure jump process with a
constant arrival rate, λ. Let τJ denote the jump arrival time. Since Brownian
motion is continuous, if a jump does not occur at t (dJt = 0), we have Yt =
Yt−, where Yt− ≡ lims↑t Ys denotes the left limit of output. If a jump occurs at
t (dJt = 1), output falls from Yt− to Yt = ZYt−. We call Z ∈ (0,1) the fraction of
output recovered after a jump arrival. We assume that Z follows a well-behaved
cumulative distribution function, F (Z).

Since the expected percentage output loss upon the arrival of a jump is 1 −
E(Z), the expected growth rate of output in levels is given by

g = μ− λ(1 − E(Z)). (2)

Here, the term λ(1 − E(Z)) represents the reduction in the expected growth
rate associated with jumps.

We can write the dynamic equation for the logarithm of output, lnYt , in dis-
crete time as follows:

lnYt+� − lnYt =
(
μ− σ 2

2

)
�+ σ

√
�εt+� − (1 − Z)νt+�, (3)

where the time-t conditional distribution of εt+� is a standard normal and
νt+� = 1 with probability λ� and zero with probability (1 − λ�). Equation (3)
implies that the expected change in lnY over a time interval � is (μ−
σ 2/2)�− λ(1 − E(Z))�. The term σ 2/2 is the Jensen inequality correction as-
sociated with the diffusion shock.

The Exchange Rate Process. Let St denote the spot exchange rate, defined as
dollars per unit of domestic currency. We measure output, Yt , and consumption,
Ct , in U.S. dollars.
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We assume that absolute purchasing power parity holds and that the price
of output in U.S. dollars is constant and equal to one. Given these assump-
tions, there is no drift in the exchange rate process. The law of motion for St is
therefore given by the martingale process

dSt

St−
= σSdBt − π (Z)dJt + λE[π (Z)]dt, (4)

where σS is a positive constant and π (Z) ∈ (0,1) with π ′(Z) < 0 and π (1) = 0.
When a jump shock arrives at time t, the exchange rate changes from St− to
St = (1 − π (Z))St−.

Specification (4) is consistent with empirical evidence that it is difficult to
beat the random walk as a short-term forecast of the exchange rate (see Rossi
(2013) for a recent survey of this evidence). This specification is also consistent
with the joint fluctuations between rare disasters and exchange rates modeled
by Farhi and Gabaix (2016) and the role of exchange rates in the financial
adjustment considered by Gourinchas and Rey (2007). The assumption that
St = (1 − π (Z))St− is consistent with the notion that, if a downward output
jump arrives at time t, it can cause fiscal distress, giving the country an incen-
tive to inflate away part of the debt.

Output Process If the Country Defaults on its Debt. We assume that if the
country decides to default, it defaults on both foreign-currency and domestic-
currency debt.5 After default, the country immediately enters autarky. Let 1Dt
be an indicator function that takes the value of one if the country defaults on
its debt at t and zero otherwise. Let τD denote the endogenous time when the
country chooses to default. Below, we show that, because markets are incom-
plete, jump shocks that cause sufficiently large output losses lead the country
to optimally default on its debt.

Defaulting entails two costs. The first is that the country loses access to
international capital markets and enters a state of autarky in which consump-
tion equals output. The second is an output loss that proxies for the disruptions
of economic activity associated with default. We assume that upon default, out-
put drops permanently from YτD− ≡ lims↑τD Ys, the output in the normal regime
just prior to default, to αZYτD−, where α ∈ (0,1).

Let Ŷt denote the level of output in the autarky regime. We assume that Ŷt
follows the same process as output in the normal regime:

dŶt

Ŷt−
= μdt + σdBt − (1 − Z)dJt . (5)

This process starts at time τD with the value of ŶτD = αZYτD−.
While in autarky, the country regains access to international capital markets

with probability ξ per unit of time. Let τ E denote the stochastic exogenous
exit time from autarky. The stochastic duration of the autarky regime is τ E −
τD. Upon randomly exiting from autarky at time τ E, the country starts afresh

5 See Reinhart and Rogoff (2011) for evidence of outright default on domestic-currency debt.
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with no debt and regains access to international capital markets. Output then
follows the process given by equation (1) starting with Yτ E , which is equal to
Ŷτ E−, the preexit output level under autarky: Yτ E = Ŷτ E−.

In this formulation, default results in the permanent loss of a fraction 1 − α

of output. In Section VI, we discuss a version of the model in which the output
loss associated with default is temporary.

B. Preferences

We assume that the lifetime utility of the representative agent, Vt , has the
recursive form proposed by Kreps and Porteus (1978), Epstein and Zin (1989),
and Weil (1990). We use the continuous-time version of these preferences de-
veloped by Duffie and Epstein (1992),

Vt = Et

[∫ ∞

t
f (Cu,Vu)du

]
, (6)

where f (C,V ) is the normalized aggregator for consumption C and utility V .
This aggregator is given by

f (C,V ) = ρ

1 − ψ−1

C1−ψ−1 − (
(1 − γ )V

)χ
((1 − γ )V )χ−1 . (7)

Here, ρ is the subjective discount rate and

χ = 1 − ψ−1

1 − γ
. (8)

This recursive, nonexpected utility formulation allows us to separate the
coefficient of relative risk aversion (CRRA), γ , from the EIS, ψ . This separa-
tion plays an important role in our quantitative analysis. The time-additive
separable CRRA utility is a special case of recursive utility in which the
CRRA, γ , equals the inverse of the EIS, γ = ψ−1, implying χ = 1. In this
case, f (C,V ) = U (C) − ρV , which is additively separable in C and V , with
U (C) = ρC1−γ /(1 − γ ).

C. Foreign- and Domestic-Currency Debt

Both domestic- and foreign-currency debt markets are perfectly competitive.
In the normal regime, the country chooses to (i) issue domestic currency debt,
Bt , (ii) issue foreign currency debt (denominated in U.S. dollars), B∗

t , and (iii)
insure against diffusion shocks using hedging contracts.

The country’s wealth measured in dollars, Wt , is

Wt = −(BtSt + B∗
t

)
. (9)

When BtSt + B∗
t < 0, the country is a net saver. We assume that the country

can save in foreign currency but not in domestic currency (i.e., Bt ≥ 0).
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As in discrete-time settings, both domestic- and foreign-currency debt
are borrower-specific, noncontingent, unsecured, and short term.6 Foreign-
currency debt is continuously repaid and reissued at the dollar interest rate
r + δ∗

t , where δ∗
t is the endogenous credit spread. The country either fully re-

pays its debt or defaults.
Similarly, domestic-currency debt is continuously repaid and reissued at the

nominal interest rate r + δt , where δt is the endogenous credit spread in local
currency. Since the exchange rate is a martingale, there is no expected currency
depreciation and the two spreads coincide, δt = δ∗

t . Upon default, both foreign-
and domestic-currency debt holders receive nothing.

As emphasized by Eaton and Gersovitz (1981), Zame (1993), and Dubey,
Geanakoplos, and Shubik (2005), the possibility of default provides a par-
tial hedge against risks that cannot be insured because of limited financial
spanning.7

Financial Development.
Following the original-sin literature, we assume that the ability to issue debt

in local currency in international capital markets is limited. The dollar value
of domestic-currency debt, BtSt , has to satisfy the following constraint for all
time t:

BtSt ≤ κYt . (10)

Here, κ is a parameter that represents the level of financial development.8 The
lower is κ, the less developed are financial markets.

Foreign- and domestic-currency debt are priced in competitive markets
by well-diversified foreign investors. The maximal amount of foreign- and
domestic-currency debt that the country can issue is stochastic and endoge-
nously determined in equilibrium by the creditors’ break-even conditions.

Diffusion Risk Hedging Contracts. We assume that diffusive shocks are id-
iosyncratic and that markets for contracts that hedge these shocks are per-
fectly competitive. The ability to hedge diffusion shocks makes the model
consistent with the observation that countries do not default in response to
small shocks, even when they are near their debt capacity. An investor who
holds one unit of the hedging contract at time t receives no up-front payment,
since there is no risk premium for bearing idiosyncratic risk, and receives a
gain or loss equal to σdBt = σ (Bt+dt − Bt ) at time t + dt. We normalize the
volatility of this hedging contract so that it is equal to the diffusion volatility

6 Auclert and Rognlie (2016) show that sovereign debt models with short-term debt have
a unique Markov-perfect equilibrium. Sovereign debt models with long-maturity debt include
Hatchondo and Martinez (2009), Arellano and Ramanarayanan (2012), and Chatterjee and Eyi-
gungor (2012).

7 For simplicity, we only consider the possibility of complete default. Our model can easily be
generalized to allow for partial default. See Yue (2010) and Asonuma, Niepelt, and Ranciere (2017)
for models with partial default.

8 To simplify, we take κ as exogenous but there is evidence that κ is related to country size
(Hausmann and Panizza (2003)).
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parameter, σ . This hedging contract is analogous to a futures contract in stan-
dard no-arbitrage models (see, e.g., Cox, Ingersoll, and Ross (1981)). We denote
the country’s holdings of diffusion risk contracts at time t by �t .

Optimality. The country chooses its consumption, Ct , diffusion risk hedg-
ing demand, �t , domestic- and foreign-currency debt issuances, Bt and B∗

t ,
and default timing, τ, to maximize the agent’s utility defined by equations (6)
and (7), given the output processes specified in equations (1) and (5), the ex-
change rate process given in equation (4), the financial development constraint
in equation (10), and equilibrium pricing of domestic and foreign-currency
debt.

II. Model Solution

We solve our model using dynamic programming. Let V (Wt,Yt ) and V̂ (Ŷt )
denote the representative agent’s value function for the normal and autarky
regime, respectively. The autarky value function depends only on contempora-
neous output because financial wealth is always zero in autarky.

A. Normal Regime

In the normal regime, financial wealth expressed in dollars, W , evolves ac-
cording to

dWt = [
Yt− − Ct− − (r + δ∗

t−)B∗
t− − (r + δt−)Bt−St−

]
dt − Bt−dSt + σ�t−dBt − 1Dt Wt−dJt . (11)

The first term on the right side of equation (11) is the drift in financial wealth
that occurs in the absence of jumps. This drift is equal to output minus the sum
of consumption and interest payments for both domestic- and foreign-currency
debt. The second term, −Bt−dSt , is the realized gain or loss from exchange
rate movements. When the domestic currency depreciates (dSt < 0), the dollar
value of domestic-currency debt falls. Since the domestic currency depreciates
in disaster periods, domestic-currency debt is a natural hedge against rare
disasters. The third term, σ�t−dBt , is the realized gain or loss from diffusion
risk-hedging contracts. Given that diffusion shocks are idiosyncratic with zero
mean, the country incurs no up-front payment. The last term states that upon
default, the country enters autarky and starts with Wt = 0.

Since the diffusion shock influences both the output and exchange rate pro-
cess, it is convenient to define and work with the following effective diffusion
risk hedging demand:

�̃t− = �t− + σSσ
−1(Wt− + B∗

t−
)
. (12)

Given solutions for �̃t− and B∗
t−, we can back out the diffusion risk hedging

demand �t−.
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Using the effective diffusion risk hedging demand, �̃t−, defined in (12), we
rewrite equation (11) as

dWt = [
Yt− − Ct− + (r + δ∗

t−)Wt− + (Wt− + B∗
t−)λE[π (Z)]

]
dt + σ�̃t−dBt

−(Wt− + B∗
t−)π (Z)dJt − 1Dt Wt−dJt . (13)

Equation (13) shows that �̃t− controls the country’s total exposure to the dif-
fusion shock, which takes into account the partial natural hedge against the
diffusion shock provided by domestic-currency debt.

Next, we use dynamic programming to solve for optimal consumption, Ct ,
effective diffusion hedging demand, �̃t , and domestic- and foreign-currency
debt issuances, Bt and B∗

t .
Dynamic Programming. Let Wt denote the country’s optimal default bound-

ary. In the normal regime (W ≥ W ), the country chooses Ct−, �̃t−, Bt−, and
B∗

t− to maximize the value function V (W,Y ) by solving the Hamilton-Jacobi-
Bellman (HJB) equation9:

0 = max
Ct−, �̃t−,B∗

t−
f (Ct−,Vt−)

+ [
Yt− − Ct− + (r + δ∗

t−)Wt− + (Wt− + B∗
t−)λE[π (Z)]

]
VW (Wt−,Yt−)

+ σ 2�̃2
t−

2
VWW (Wt−,Yt−) + μYt−VY (Wt−,Yt−) + σ 2Y 2

t−
2

VYY (Wt−,Yt−)

+ σ 2 �̃t−Yt−VWY (Wt−,Yt−) + λEt−
[
VJ(Wt,Yt ) − V (Wt−,Yt−)

]
(14)

subject to the financial development constraint (10).
The HJB equation (14) states that at the optimum, the sum of the normal-

ized aggregator, f (C,V ), and the expected change in the value function V (W,Y )
(the sum of all other terms on the right side of equation (14)) must equal zero.

The second and third terms of equation (14) describe the drift and diffusion
volatility effects of wealth W on V (W,Y ). The fourth and fifth terms reflect the
drift and volatility effects of output, Y , on V (W,Y ). The sixth term captures the
effect of the intertemporal diffusion risk hedging demand on V (W,Y ). Diffusion
shocks do not trigger default because it is always more efficient to hedge them
with actuarially fair insurance contracts than default and incur default costs.

The last term, which appears in the third line of equation (14), represents
the effect of jumps. We show that there are two possible outcomes upon a jump
arrival at time t (dJt = 1) depending on the fractional output loss (1 − Z), the
debt-output ratio, and the level of financial development (κ). The first is no
default. The second is default on both domestic- and foreign-currency debt. We
characterize these state-contingent outcomes using an endogenous stochastic
threshold, Zt .

9 Duffie and Epstein (1992) generalize the standard HJB equation for the expected-utility case
to allow for nonexpected recursive utility such as the Epstein-Weil-Zin utility used here.
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If the output loss is sizable (i.e., Z < Zt), the country defaults on both
domestic- and foreign-currency debt and enters autarky. Its output falls to
Ŷt = αZYt− and its wealth drops to zero, so the value function at t = τD is
VJ(Wt,Yt ) = V̂ (Ŷt ) = V̂ (αZYt−).

If Z ≥ Zt , the country repays both its domestic- and foreign-currency debt.
But the dollar value of domestic-currency debt discretely falls so that the
country’s wealth changes from Wt− to Wt = Wt− − (Wt− + B∗

t−)π (Z) and the
value function changes from the prejump value, V (Wt−,Yt−), to VJ(Wt,Yt ) =
V (Wt− − (Wt− + B∗

t−)π (Z),ZYt−).
To summarize, the value function upon a jump arrival at time t is

VJ(Wt,Yt ) = V (Wt− − (Wt− + B∗
t−)π (Z),ZYt−)1Z≥Zt + V̂ (αZYt−)1Z<Zt . (15)

First-Order Conditions (FOCs).
As in Duffie and Epstein (1992), the FOC for C is

fC(C,V ) = VW (W,Y ). (16)

This condition equates the marginal benefit of consumption, fC(C,V ), to the
marginal utility of savings, VW (W,Y ). With expected utility, fC(C,V ) = U ′(C),
we recover the standard FOC for consumption: U ′(C) = VW (W,Y ).

The FOC for the effective diffusion risk hedging demand is

�̃ = −YVWY (W,Y )
VWW (W,Y )

. (17)

Equation (17) is similar to the intertemporal hedging demand in Merton (1971)
for expected utility and in Duffie and Epstein (1992) for recursive preferences.

The country chooses foreign-currency debt issue, B∗
t−, to solve the problem

max
B∗

t−

[
(r + δ∗

t−)Wt− + λE(π (Z))(Wt− + B∗
t−)
]
VW (Wt−,Yt−) + λEt−

[
VJ(Wt,Yt )

]
(18)

subject to the financial development constraint (10), which we write as B∗
t− ≥

−Wt− − κYt−. Both VJ(Wt,Yt ), given in (15), and the credit spread δ∗
t− depend

on B∗
t−.

Domestic-currency debt investors require a higher rate of return (in dol-
lars) absent jumps to compensate for the depreciation of local currency that
occurs when disasters hit. As a result, it is more costly for the country to ser-
vice domestic-currency debt than foreign-currency debt in normal times. The
first term in equation (18) captures the cost of issuing domestic currency debt.
The second term shows that domestic-currency debt is a partial hedge against
output losses caused by disasters. The country optimally chooses domestic-
currency debt issuance, Bt−St− = −(Wt− + B∗

t−), to maximize (18) subject to the
financial development constraint (10).
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After obtaining B∗ from (18) and �̃ from (17), we obtain the diffusion risk
hedging demand, �, by using

� = −YVWY (W,Y )
VWW (W,Y )

− σS

σ
(W + B∗). (19)

Equation (19) has two terms. The first is the standard Merton intertemporal
hedging demand. Since the country is endowed with a long position in domestic
output, this hedging demand is negative. The second term is always positive
because domestic-currency debt issuance is weakly positive.

Value Function.
We show that the value function in the normal regime, V (W,Y ), is given by

V (W,Y ) = (aP(W,Y ))1−γ

1 − γ
, (20)

where the coefficient a is given by

a = ρ

[
r + ψ (ρ − r)

ρ

] 1
1−ψ
. (21)

To ensure that utility is finite, we impose the following regularity condition:

ρ > (1 − ψ−1) r. (22)

We can interpret P(W,Y ) as the certainty-equivalent wealth, which is the
total wealth that makes the agent indifferent between the status quo (with
financial wealth W and output process Y ) and having a wealth level P(W,Y )
and no output for all of the indefinite future:

V (W,Y ) = V (P(W,Y ),0). (23)

Next, we turn to the autarky regime.

B. Autarky Regime

In the autarky regime, wealth is zero and the country cannot borrow or lend,
so consumption equals output and wealth is not an argument of the value
function. This function, V̂ (Ŷ ), satisfies the differential equation

0 = f (Ŷ , V̂ ) + μŶV̂ ′(Ŷ ) + σ 2Ŷ 2

2
V̂ ′′(Ŷ ) + λE

[
V̂ (ZŶ ) − V̂ (Ŷ )

]
+ ξ

[
V (0, Ŷ ) − V̂ (Ŷ )

]
. (24)

The first term on the right side of equation (24) is the net utility flow, often
referred to as the normalized aggregator. The second and third terms represent
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the impact of the output drift and diffusion volatility, respectively. The fourth
term describes the possibility of output jumping from Ŷt to ZŶt− while the coun-
try is in autarky. The last term reflects the possibility of exiting from autarky,
which occurs at an exogenous rate, ξ . Upon exiting from autarky at time τ E and
entering the normal regime, the country’s value function is V (0,Yτ E ), where
Yτ E = Ŷτ E−.

We show that the value function in the autarky regime, V̂ (Ŷ ), is

V̂ (Ŷ ) = (a p̂Ŷ )1−γ

1 − γ
, (25)

where the coefficient a is given by equation (21) and p̂ is the endogenous
(scaled) certainty-equivalent wealth in the autarky regime.

C. Characterizing Default Decisions

The value functions V (W,Y ) and V̂ (Ŷ ) are connected by recurrent transitions
between the normal and autarky regimes (see the two HJB equations, (14) and
(24)).

Upon a jump arrival at t, output drops from Yt− to Yt = ZYt−. If the coun-
try then defaults on domestic- and foreign-currency debt, output drops further
from Yt = ZYt− to αYt = αZYt− and the country enters autarky. Therefore, the
value of wealth at t, Wt, that makes the country indifferent between repaying
its debt and defaulting, which we denote by Wt, satisfies the following value-
matching condition:

V (Wt,Yt ) = V̂ (αYt ), (26)

where Yt = ZYt−. Condition (26) defines the default boundary Wt as a function
of Yt :

Wt = W (Yt ). (27)

We refer to −Wt as the country’s debt capacity since it is the maximum amount
of debt that the country can issue without triggering default in equilibrium.
We need one more condition to determine Wt , which is a free boundary. We
present this condition in Section II.D after we simplify the model solution.

Whenever the country’s total debt exceeds its endogenous debt capacity (i.e.,
when Wt <Wt), the country defaults and enters autarky. The value function in
this region satisfies

V (Wt,Yt ) = V̂ (αYt ) , when Wt <Wt . (28)

Next, we characterize the default threshold expressed in terms of the recov-
ery fraction, Z, upon a jump arrival at t. The country defaults on its foreign-
and domestic-currency debt provided that the following condition holds:

V (Wt,Yt ) ≤ V̂ (αYt ), (29)
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where Yt = ZYt−. Let Zt denote the highest fractional recovery Z at t that sat-
isfies equation (29) (i.e., Zt is the supremum for the set of Z satisfying equa-
tion (29)).

D. Simplifying the Model Solution

It is useful to define a scaled state variable, scaled financial wealth, wt , as

wt = Wt

Yt
. (30)

Similarly, we define scaled versions of the control variables: consumption
ct = Ct/Yt , diffusion hedging demand θt = �t/Yt , effective diffusion risk hedg-
ing demand θ̃t = �̃t/Yt , foreign-currency debt issuance b∗

t = B∗
t /Yt , domestic-

currency debt bt = BtSt/Yt , and debt capacity −wt = −Wt/Yt . The scaled
certainty-equivalent wealth, p(wt ), is equal to P(Wt,Yt )/Yt . Euler’s theorem
implies that PW (Wt,Yt ) = p′(wt ). The value of p′(w) plays a crucial role in our
analysis.

The default boundary, Zt , is given by

Zt = Z(wt−) = wt− − π (Zt )(wt− + b∗(wt−))
w

. (31)

Using the homogeneity property, we express δ∗
t− as a function of prejump scaled

wealth wt−, which we characterize below.
Equilibrium Credit Spreads. When the country issues foreign currency debt

(B∗
t− > 0), the competitive market zero profit condition for diversified investors

implies that the credit spread, δ∗
t−, satisfies

B∗
t−(1 + rdt) = B∗

t−(1 + (r + δ∗
t−)dt)

[
1 − λF (Z(wt−))dt

]+ λF (Z(wt−))dt × 0.
(32)

The first term on the right side of equation (32) is the expected total pay-
ment to investors, which is the product of the probability of repayment,
[1 − λF (Z(wt−))dt], and the cum-interest value of debt repayment, B∗

t−(1 + (r +
δ∗

t−)dt). The second term on the right side of equation (32) corresponds to the
zero payment that occurs upon default. The left side of equation (32) is the
investors’ total expected payoff (including principal B∗

t−) at t + dt.
Equation (32) shows that jumps are necessary to generate default in our

model. To see this result, suppose that there are no jumps. Then equation (32)
implies that the credit spread δ∗

t is zero. This result requires that diffusion
shocks be hedgeable so that they do not trigger default.10

10 Short-term debt in pure diffusion models has to be risk-free as creditors cannot break even
for any defaultable short-term debt. The intuition is as follows. For a small time increment, dt, dif-
fusion shocks can cause losses of order

√
dt with strictly positive probability. These losses cannot

be compensated with a finite credit spread, as this compensation is only of order dt, which is much
lower than

√
dt. For this reason, other diffusion-based debt models work with term debt to gener-

ate default (see, e.g., Leland (1994), Nuño and Thomas (2015), and Tourre (2017)). DeMarzo, He,
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Simplifying equation (32), we obtain the following expression for δ∗
t− =

δ∗(wt−), where

δ∗(wt−) = λF (Z(wt−)). (33)

This equation ties the equilibrium credit spread to the country’s default strat-
egy. For a unit of debt per unit of time, the left side of equation (33) is the
compensation for bearing credit risk and the right side is the expected loss
given default. Both terms are of order dt. Because there is zero recovery upon
default, investors are perfectly diversified, and default risk is idiosyncratic, the
credit spread is equal to the probability of default.11

The competitive market zero-profit condition for domestic-currency debt
(Bt− > 0) is given by

Bt−St−(1 + rdt) = Et−
[
Bt−St (1 + (r + δt−)dt)

][
1 − λF (Z(wt−))dt

]
+ λF (Z(wt−))dt × 0. (34)

Since Et−(St ) = St−, simplifying equation (34), we obtain δt− = δ(wt−) =
λF (Z(wt−)).

Time-Varying Endogenous Relative Risk Aversion γ̃t .
To better understand our results, it is useful to introduce the following mea-

sure of endogenous relative risk aversion, denoted by γ̃t . We show that γ̃t is a
function of wt , which we write as γ̃ (wt ):

γ̃t ≡ −VWW (Wt,Yt )
VW (Wt,Yt )

× P(Wt,Yt ) = γ p′(wt ) − p(wt )p′′(wt )
p′(wt )

= γ̃ (wt ). (35)

The first part of equation (35) defines γ̃t . The second part follows from the
homogeneity property.

The economic interpretation of γ̃t given in equation (35) is as follows. Because
limited commitment and incomplete markets result in endogenous market in-
completeness, the country’s endogenous risk aversion is given by the curvature
of the value function V (W,Y ) rather than by the risk aversion parameter, γ .
We use the value function to characterize the coefficient of endogenous abso-
lute risk aversion: −VWW (W,Y )/VW (W,Y ).

We can build a measure of relative risk aversion by multiplying
−VWW (W,Y )/VW (W,Y ) with “total wealth.” There is no well-defined market
measure of the total wealth under either incomplete markets or limited com-
mitment. However, the certainty-equivalent wealth P(W,Y ) is a natural mea-
sure, so we use it in our definition of γ̃t in equation (35).

and Tourre (2021) show that it is optimal to have smooth debt issuance in their model. Bornstein
(2020) generates default by assuming that output follows a Poisson process in a continuous-time
version of Arellano (2008). Mehrotra and Sergeyev (2020) build a continuous-time model to study
debt sustainability in a low interest rate world.

11 When scaled wealth is positive, there is no debt outstanding, so the probability of default
is zero.
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The marginal certainty-equivalent value of wealth exceeds one (i.e.,
PW (W,Y ) = p′(w) ≥ 1). Also, in our model, p′′(w) < 0, which implies that
γ̃ (w) > γ (see equation (35)). That is, the representative agent is endogenously
more risk-averse than indicated by the CRRA, γ . Moreover, as we show below,
the endogenous risk aversion increases as the country becomes more indebted
(i.e., as wt becomes more negative). In contrast, in the first-best (FB) solution
described below, the country fully hedges against diffusion and jump shocks
and γ̃ (wt ) = γ for all levels of wt .

Using the homogeneity property, we obtain the following expression for the
scaled effective diffusion risk hedging demand, θ̃ (w):

θ̃ (w) = w − γ p(w)p′(w)
γ (p′(w))2 − p(w)p′′(w)

= w − γ p(w)
γ̃ (w)

, (36)

where γ̃ (w) is the endogenous relative risk aversion given by equation (35).
The scaled diffusion risk hedging demand, θ (w), is then given by

θ (w) = θ̃ (w) − σS

σ
(w + b∗(w)) = w − γ p(w)

γ̃ (w)
− σS

σ
(w + b∗(w)). (37)

Equation (37) determines the hedging demand with respect to diffusion
shocks. The country hedges to avoid defaulting in response to diffusive
shocks and to preserve the option to default in response to large downward
jump shocks.

Dynamics for Scaled Financial Wealth, wt . Using Ito’s lemma, we obtain the
following law of motion for wt in the normal regime:

dwt = μw(wt−) dt + σw(wt−) dBt + (
wJ

t − wt−
)

dJt . (38)

The first term in equation (38) is

μw(wt−) = (
r + δ∗(wt−) − μ+ σ 2)wt− − σ 2θ̃ (wt−)

+ 1 + λE[π (Z)](wt− + b∗(wt−)) − c(wt−). (39)

The second term in equation (38) is the volatility function, σw(wt−), given by

σw(wt−) = (
θ̃ (wt−) − wt−

)
σ = (

θ (wt−) − wt−
)
σ + σS(wt− + b∗(wt−)). (40)

The third term in equation (38) captures the effect of jumps on w, where the
postjump scaled financial wealth, wJ

t , is given by

wJ
t = wt− − π (Z)(wt− + b∗(wt−))

Z
. (41)

Substituting equation (37) into equation (40), we obtain

σw(w) = (
θ̃ (w) − w

)
σ = −σ γ p(w)

γ̃ (w)
< 0. (42)
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The absolute value of the volatility of w is proportional to the ratio between
p(w) and endogenous risk aversion, γ̃ (w).

Scaled Debt Capacity w. To maximize the country’s debt capacity, the coun-
try hedges diffusion shocks so that they do not trigger default. However,
even though the representative agent is risk averse, it is not optimal to fully
hedge diffusion shocks, making certainty-equivalent wealth immune to diffu-
sion shocks. The reason is that limited commitment and incomplete financial
spanning make the FB risk-sharing outcome infeasible. Technically speaking,
the country optimally sets the volatility of w to zero at its endogenous debt
capacity:12

σw(w) = 0. (43)

The intuition for this result is as follows. Suppose that the diffusion volatil-
ity σw(wt ) evaluated at wt = w is not zero. Then over a small interval dt, the
realized value of wt+dt can cross the default boundary w with strictly positive
probability in response to a small diffusive shock, triggering default. Such de-
fault is clearly inefficient since diffusive shocks can be hedged at an actuarially
fair price. Optimality therefore requires σw(w) = 0.

Substituting the zero-volatility condition (43) into equation (40), we obtain
θ̃ (w) = w, which is the effective diffusion risk hedging demand at w. While
this hedging strategy eliminates the volatility of w at w, it does not in general
eliminate the idiosyncratic volatility of unscaled consumption and unscaled
certainty-equivalent wealth. In this sense, hedging is incomplete. We provide
intuition for this incomplete-hedging result in Section II.E after describing the
FB and limited commitment solutions.

Finally, to ensure that w weakly moves toward zero and away from w in
the absence of jumps, it is necessary to verify that μw(w) ≥ 0. Substituting
equation (43) into (39), we show that μw(w) ≥ 0 is equivalent to the following
constraint at w < 0:

c(w) ≤ 1 + μ · (−w) − [(
r + δ∗(w)

) · (−w) + λE[π (Z)](−w − b∗(w))
]
. (44)

Evaluating equation (42) at w and using σw(w) = 0 and p(w) > 0, we see that
endogenous relative risk aversion, γ̃ (w), approaches infinity as w → w.

E. Summary

The following proposition summarizes the main properties of the solution.

12 Bolton, Wang, and Yang (2019) derive a similar boundary condition in a corporate finance
continuous-time diffusion model in which the entrepreneur has inalienable human capital.
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PROPOSITION 1: The scaled certainty-equivalent wealth in the normal (p(w))
and autarky (p̂ ) regimes jointly satisfy the following two interconnected ODEs:

0 =
(
ζ (p′(w))1−ψ − ψρ

ψ − 1
+ μ− γ σ 2

2

)
p(w)

+ [
(r + δ∗(w) − μ) w + 1 + λE[π (Z)](w + b∗(w))

]
p′(w)

+ γ 2σ 2 p(w)p′(w)
2 γ̃ (w)

+ λ

1 − γ
E

⎡⎣(Zp
(
wJ)

p(w)

)1−γ
− 1

⎤⎦p(w), (45)

0 =
ρ
[
(a p̂ )−(1−ψ−1 ) − 1

]
1 − ψ−1 + μ+ λ(E(Z1−γ ) − 1)

1 − γ
− γ σ 2

2
+ ξ

1 − γ

[(
p(0)

p̂

)1−γ
− 1

]
,

(46)

where wJ is given by equation (41). When w < w, the country defaults and hence

p(w) = α p̂. (47)

In addition, we have the following boundary conditions:

p(w) = α p̂, (48)

p′′(w) = −∞, (49)

lim
w→∞ p(w) = w + h, (50)

where h is given by

h = 1
r − g

. (51)

The equilibrium credit spreads for foreign- and domestic-currency debt,
δ(wt−) = δ∗(wt−), are given in (33). The country defaults when τD = inf{t : wt <

w}.
In the no-default region in which w ≥ w, the following policy rules apply. The

optimal consumption-output ratio, c(w), is

c(w) = ζ p(w)(p′(w))−ψ, (52)

where ζ is given by

ζ = r + ψ (ρ − r). (53)

The scaled foreign-currency debt issuance, b∗, maximizes

max
b∗≥−w−κ

[δ∗(w)w + λE(π (Z))(w + b∗(w))]p′(w) + λp(w)
1 − γ

E

(
Zp
(
wJ)

p(w)

)1−γ
. (54)
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The scaled diffusion risk hedging demand, θ (w), is given by equation (37). The
optimal default threshold, Z(w), is given by equation (31).

Equation (48) follows from the value-matching condition, (26). Equation (49)
follows from the zero-volatility condition, (43) evaluated at w, and p(w) > 0.
Equations (48) and (49) characterize the properties of the economy when −w
equals the country’s debt capacity, −w. Equation (50) states that, as w → ∞,
the effect of limited commitment wanes and p(w) converges to w + h, the value
of p(w) in the FB solution (see Appendix C).

Equation (52) shows that consumption is a nonlinear function of w, which de-
pends on both the certainty-equivalent wealth, p(w), and its derivative, p′(w).
Below we show that p′(w) ≥ 1 and p′(w) decreases with w. These properties
imply that c(w) is lower than the product of certainty-equivalent wealth p(w)
and the marginal propensity to consume (MPC) in the FB solution, ζ (i.e.,
c(w) < ζ p(w)). Equation (54) determines the country’s foreign-currency debt
issuance, b∗(w).

The FB solution of our model is a natural benchmark. This solution can
be implemented under full commitment and full spanning. We discuss this
benchmark in Appendix C.

III. Quantitative Results

To explore the quantitative properties of our model, we calibrate it with the
11 parameter values reported in Table I. We divide these parameters into two
groups. The seven parameters in the first group are set to values that are stan-
dard in the literature. The four parameters in the second group are calibrated
to match key features of data for Argentina.

A. Baseline Calibration

We first describe the parameters drawn from the literature.
Parameters from the Literature. Following Aguiar and Gopinath (2006), we

set the CRRA (γ ) to 2, the annual risk-free rate (r) to 4%, and the rate at
which the country exits autarky (ξ ) to 0.25 per annum. This choice of ξ implies
that after default, the country stays in autarky for four years on average. This
implication is consistent with the empirical estimates reported in Gelos, Sahay,
and Sandleris (2011).

Following Barro (2009), we set the annual subjective discount rate (ρ) to
5.2%. Since ρ > r, the country wants to borrow to front-load consumption,
holding everything else constant. This ability to front-load consumption is lost
when the country defaults and enters autarky.

As in the rare-disasters literature, we assume that the cumulative distribu-
tion function of the recovery fraction, F (Z), is governed by a power law:

F (Z) = Zβ, 0 ≤ Z ≤ 1. (55)



2738 The Journal of Finance®

Table I
Parameter Values

This table summarizes the parameter values for our baseline analysis. Whenever applicable, pa-
rameter values are continuously compounded and annualized.

Parameter Symbol Value

Risk aversion γ 2
Subjective discount rate ρ 5.2%
Risk-free rate r 4%
Jump arrival rate λ 0.073
Power law parameter β 6.3
Autarky exit rate ξ 0.25
Financial development parameter κ 10%

Parameters chosen to target observables
Output drift (in the absence of jumps) μ 2.7%
Output diffusion volatility σ 4.5%
Output recovery post default α 97%
Elasticity of intertemporal substitution ψ 0.025

Targeted observables
Average output growth rate g 1.7%
Output growth volatility 6.85%
Average debt-output ratio 15%
Unconditional default probability 3%

We choose β = 6.3, which is the point estimate obtained by Barro and Jin
(2011). Since large disasters are rare, Barro and Jin (2011) obtain these esti-
mates by pooling long time series for different countries. Barro and Jin (2011)
also estimate the probability of disasters to be 3.8% per annum. This estimate
is based on their definition that a disaster is a macroeconomic contraction
(measured in consumption or output) that exceeds 10%. Since the stochastic
recovery fraction upon a jump arrival, Z, can take values from zero to one, our
estimate of λ is given by λF (0.9) = λF (0.9) = λ× 0.9β = 0.038 with β = 6.3. We
obtain an annual jump arrival rate of λ = 0.073. Consistent with Lucas (1982),
in the spirit of quantity theory of money, we assume that π (Z) = 1 − Z.

Calibrated Parameters from Argentinean Data.
We set the financial development parameter κ to 10%. This choice results

from the following calculations. Coppola et al. (2020) report that the share of
gross Latin American domestic currency debt that foreigners hold is relatively
low: 22% in Argentina, 23% in Chile, and 33% in Brazil and Mexico. During the
period from 1992 to 2001, Argentina’s gross domestic debt fluctuated between
25% and 48% of gross domestic product (GDP). Combining a domestic gross
debt of 48% of GDP with a foreign ownership share of 22% yields a value of κ
of about 10%.

Next, we choose the parameters that control the drift in the absence of jumps
(μ), the diffusion volatility (σ ), the default distress cost (1 − α), and the EIS
(ψ) to target the following four moments estimated with Argentinean data:
an average growth rate of output of 1.7% per annum, a standard deviation of
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the growth rate of output of 6.8%, an average debt-to-GDP ratio of 15%, and
an unconditional default probability of 3% per annum. We obtain estimates of
the average and standard deviation of the annual growth rate of real GDP for
Argentina using Barro and Ursúa (2008) data for the period from 1876 to 2009.

Our model consolidates the expenditure and borrowing decisions of the pri-
vate sector and the government. For this reason, we calibrate it to match the
ratio of net debt to GDP. In Argentina, as in most countries, a significant frac-
tion of government debt is owned by the domestic private sector, so debt held
by foreigners is much smaller than the country’s total debt. We compute our
target for the debt-to-output ratio by calculating the difference between Ar-
gentina’s debt liabilities and debt assets using the data compiled by Lane and
Milesi-Ferretti (2007) for the period from 1970 to 2011. The average net debt-
to-GDP ratio during this period is 15%. Since defaults are rare, it is helpful to
use as much data as possible to estimate the probability of default. Argentina
defaulted six times in roughly 200 years, so we target an annual default prob-
ability of 3%.13

Our calibration procedure yields the following parameter values: ψ = 0.025,
μ = 2.7% per annum, σ = 4.5% per annum, and α = 97%. The calibrated value
of α implies that the direct cost of defaulting is 3% of output. This cost of de-
fault is conservative relative to the estimates reported by Hébert and Schreger
(2017) for Argentina.

In this calibration, the value of the EIS (ψ = 0.025) is low, so the represen-
tative agent has a strong preference for smooth consumption paths.14

We can interpret the low value of the EIS as resulting from rigidities in
spending patterns and expenditure commitments that are difficult to change.

B. Debt Intolerance

We now discuss how a country’s average debt-output ratio, average default
probability, and debt capacity vary with financial development, κ. We fix all
other parameters at the values reported in Table I.

Table II illustrates the key result in our paper: the higher is financial de-
velopment, κ, the higher are debt capacity and the average debt-output ratio
and the lower is the probability of default. As discussed above, the intuition
for these results is that domestic-currency debt is a natural hedge against
disaster risk. A country that can issue more domestic-currency debt has
greater ability to manage its disaster risk, takes on more debt, and de-
faults less.

13 Argentina defaulted in 1830, 1890, 1915, 1930, 1982, and 2001. See Sturzenegger and Zettle-
meyer (2006) for a discussion.

14 There is currently no consensus on what are empirically plausible values for the EIS (see
Attanasio and Weber (2010) for a discussion). Our choice is consistent with Hall (1988), who argues
that the EIS is close to zero. It is also consistent with the recent estimates by Best et al. (2017),
which are based on mortgage data.
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Table II
The Effect of Financial Development, κ

This table presents the comparative static effect of financial development (κ) on the average debt-
output ratio, default probability, and equilibrium debt capacity. All parameter values other than κ
are reported in Table I.

κ Average Debt-Output Ratio Default Probability Debt Capacity |w|
10% 14.5% 2.9% 18.4%
20% 18.4% 0.6% 23.4%
50% 42.0% 0 42.4%

Figure 1. Scaled certainty-equivalent wealth. p(w), marginal certainty-equivalent value
of wealth, p′(w), consumption-output ratio, c(w), and c′(w), for four levels of financial de-
velopment: κ = 10%, 20%, 50%, and 100%. (Color figure can be viewed at wileyonlinelibrary.com)

C. Quantitative Results and Economic Mechanisms

In this subsection, we use the calibration described above to explore the
quantitative properties of our model. Figures 1, 2, and 3 illustrate these prop-
erties for four levels of financial development: κ = 10%, 20%, 50%, and 100%.
In our benchmark calibration, we set κ = 10%, which means that the country
can issue domestic-currency debt only up to 10% of its output.

It is useful to first discuss the FB solution. In this solution, the coun-
try fully uses its debt capacity, which is the present discounted value of

https://onlinelibrary.wiley.com
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Figure 2. Scaled foreign-currency debt. b∗(w), scaled currency-domestic debt, b(w) =
−(w + b∗(w)), default boundary, Z(w), and credit spread, δ∗(w), for four levels of finan-
cial development: κ = 10%, 20%, 50%, and 100%. (Color figure can be viewed at wileyonlineli-
brary.com)

output, h = 1/(r − g), and never defaults. Given our calibration, the country
borrows 4,348% of its current output in the FB solution, an implication that is
clearly unrealistic.

Certainty-Equivalent Wealth, Marginal Certainty-Equivalent Value of
Wealth, and Consumption.

Improving financial development by increasing κ from 10% to 50% has a
large impact on debt capacity, average debt-output ratio, and default probabil-
ity: debt capacity rises from 18.4% to 42.4% of output, the average debt-output
ratio increases from 15% to 42%, and the probability of default drops from 3%
to zero.

Further improving financial development by increasing κ from 50% to 100%
has a negligible impact on debt capacity and average debt-output ratio. The
reason for this small impact is that the ability to issue domestic-currency debt
up to 50% of output already provides the country with a sizable hedge against
disaster shocks.

Panels A and B of Figure 1 display the scaled certainty-equivalent wealth,
p(w), and the marginal certainty-equivalent value of wealth, PW (W,Y ) = p′(w),

https://onlinelibrary.wiley.com
https://onlinelibrary.wiley.com
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Figure 3. The effective diffusion risk hedging. θ̃ (w), volatility of w, σw(w), drift of w,
μw(w), and endogenous risk aversion, γ̃ (w), for four levels of financial development: κ =
10%, 20%, 50%, and 100%. (Color figure can be viewed at wileyonlinelibrary.com)

respectively. The function p(w) is increasing and concave, which implies that
p′(w) is decreasing in w and p′(w) is greater than one.15 Panels C and D display
the consumption-output ratio, c(w), and the MPC out of wealth, c′(w), respec-
tively. The function c(w) is increasing and concave, which implies that c′(w) is
decreasing in w. As w goes to infinity, p(w) approaches pFB(w) = w + h, p′(w)
approaches one, c(w) approaches cFB(w) = ζ (w + h), and c′(w) approaches the
MPC obtained in the FB, ζ = 0.0403.

We see that the higher is financial development, κ, the higher is p(w).
The ability to issue more domestic-currency debt, which is a natural hedge
against disaster risk, increases the country’s debt capacity, |w|. As a result, the
marginal certainty-equivalent value of wealth, p′(w), is lower. Consumption is
higher because both a higher p(w) and a lower p′(w) cause c(w) to be higher

15 Wang, Wang, and Yang (2012, 2016) and Sargent, Wang, and Yang (2021) derive similar prop-
erties for certainty-equivalent wealth in a self-insurance model in which labor income shocks are
uninsurable and the agent can only save via a risk-free asset. The marginal value of liquidity
is also at the core of corporate liquidity management (e.g., Bolton, Chen, and Wang (2013) and
Hugonnier, Malamud, and Morellec (2015)) and dynamic financial contracting (e.g., DeMarzo and
Sannikov (2006) and DeMarzo et al. (2012)).

https://onlinelibrary.wiley.com
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(see equation (52)). Consider w = −15%, which is the average debt-to-output
ratio in our baseline calibration. The net marginal certainty-equivalent value
of wealth, p′(−0.15) − 1, is 7.92 in the economy with κ = 10%. This value is
130% higher than the value of p′(−0.15) − 1 in the economy with κ = 50%.

The MPC out of wealth, c′(−0.15), is equal to 63.4% in the economy with
κ = 10%. This value is 382% higher than the value of c′(−0.15) in the economy
with κ = 50%.

Domestic and Foreign Currency Debt, Default Threshold, and Credit
Spreads.

Panels A and B of Figure 2 plot, as a function of w, the dollar value of
domestic- and foreign-currency debt, b(w) and b∗(w), respectively. Consider the
case in which κ = 0.10. In this case, the country’s debt capacity is −w = 18.4%.
The country issues domestic-currency debt, b(w) = 0.1, and saves (0.1 + w) > 0
in foreign-currency assets in the region where w ∈ (−0.1,0). In the region
in which w ∈ (−w,−0.1) = (−0.184,−0.1), the country issues foreign-currency
debt, b∗(w) = −(w + 0.1) > 0, and exhausts its domestic currency debt issuance
capacity (κ = 0.1).

With κ = 0.5, the country only issues domestic-currency debt, b(w) = 0.5,
for all levels of w up to its debt capacity, −w = 0.424, and saves the amount
−(w + 0.424) > 0 in foreign-currency assets.

With κ = 1, the financial development constraint (10) binds in the region in
which w ∈ (−0.4,0) but does not bind in the region in which w ∈ (−0.43,−0.4).
The reason is that the “implicit” jump insurance premium from using domestic-
currency debt, which is the domestic-currency appreciation that occurs absent
jumps, becomes much more costly when the country is near its debt capacity
(very large p′(w)).

Panels C and D plot the optimal default threshold, Z(w), and the credit
spread δ∗(w), respectively. Low values of κ are associated with debt intoler-
ance. Debt capacity is lower, default is more likely, and the credit spread, δ∗(w),
is higher for a given level of w.

The country never defaults when κ ≥ |w| because all of its debt is denom-
inated in domestic currency, which is a natural hedge against disaster risk.
For example, when κ = 50%, the country’s debt capacity is 42.4%. The country
never defaults, so its credit spread is zero.

Diffusion Hedging Demand, Drift and Volatility of w, and Endogenous Risk
Aversion.

Panel A of Figure 3 shows that the scaled effective hedging demand, θ̃ (w), is
negative and that its absolute value increases with w. That is, a less indebted
country hedges more diffusive risk. Hedging and financial wealth are comple-
ments. The higher is the level of financial development, the more the country
hedges for a given value of w. So hedging and financial development are also
complements. Even though the country incurs no up-front cost to hedge diffu-
sion shocks, it is not optimal to fully hedge the diffusion risk.

Panel B plots the volatility function, σw(w). Because a less indebted country
has a higher p(w) and a lower endogenous relative risk aversion, γ̃ (w), the
absolute value of σw(w) increases with w (see equation (42)). In the limit, as
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w → w, the absolute value of σw reaches zero, σw(w) = 0. The intuition for this
property, which is visible in Panel B, is that it is inefficient for the country
to use default to manage diffusive shocks. Since these shocks do not trigger
default, σw(w) = 0.

Panel C shows the drift function for w, μw(w), which is negative for most
values of w. This result follows from two observations. First, the country’s con-
sumption is often larger than output (see Figure 1). Second, interest payments
for domestic- and foreign-currency debt drain the country’s financial wealth.
Both forces increase the country’s average debt level. However, as debt ap-
proaches debt capacity, −w, the country voluntarily adjusts its consumption,
diffusion hedging demand, and domestic- and foreign-currency debt issuances
so that μw(w) ≥ 0. The property μw(w) ≥ 0 together with σw(w) = 0 are neces-
sary to ensure that the country does not default in response to diffusive shocks.

Panel D shows the behavior of endogenous risk aversion, γ̃ (w). We see that
the less indebted is the country, the lower is its endogenous risk aversion. In
addition, the higher is the level of financial development, the lower is its en-
dogenous risk aversion. As w approaches the lower bound, w, γ̃ (w) approaches
infinity. This result follows from equation (42), p(w) > 0, and the zero-volatility
condition at the boundary, σw(w) = 0.

IV. Domestic-Currency Debt versus Hedging Contracts

So far, we have discussed the role of domestic-currency debt as a natural
hedge against jump shocks. An alternative approach to managing rare-disaster
risk, emphasized by Cantú and Chui (2020), is to use state-contingent hedg-
ing contracts.

In this section, we compare two economies. The first economy hedges its
disaster risk using domestic-currency debt and has a sufficiently high level of
financial development, κ, that the financial development constraint, (10), does
not bind.

The second economy hedges its disaster risk with a set of full-spanning,
state-contingent hedging contracts that are actuarially fair. This economy has
limited commitment and full spanning, so it corresponds to the case con-
sidered by Kehoe and Levine (1993) and Kocherlakota (1996). In this econ-
omy, it is more cost effective to manage risk by hedging than by using de-
fault.16 As a result, the country never defaults and its credit spread is zero.
The country’s debt capacity is reduced to a level such that, in equilibrium,
the country weakly prefers repaying its outstanding debt over defaulting
on it.17

16 We are able to take advantage of the tractable continuous-time dynamic trading analysis
pioneered by Merton (1971) and Black and Scholes (1973), which allows us to provide a sharp
characterization for the full-spanning limited-commitment case. Because of full spanning, we ef-
fectively work with the continuous-time counterpart of the one-period-ahead Arrow securities.

17 Other work that emphasizes the importance of limited commitment includes Alvarez and
Jermann (2000, 2001), Kehoe and Perri (2002), Albuquerque and Hopenhayn (2004), Cooley, Mari-
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We find that the full-spanning economy has higher certainty-equivalent
wealth than the domestic-currency economy, but this difference is not large.
The domestic-currency economy hedges less diffusion and jump risk than the
full-spanning economy. The full-spanning economy hedges the risk of large dis-
asters much more than the domestic-currency economy.

Jump Insurance Contracts and Insurance Premium Payments. We assume
that jump shocks are idiosyncratic and that markets for contracts that hedge
these shocks are perfectly competitive. Bulow and Rogoff (1989) define a “cash-
in-advance” contract as a “conventional insurance contract under which a
country makes a payment up front in return for a state contingent, nonneg-
ative future payment.” Following Bulow and Rogoff (1989), we consider an in-
surance contract initiated at time t that covers the following jump event: the
first stochastic arrival of a downward jump in output with a recovery fraction
in the interval (Z,Z + dZ) at jump time τJ > t.

The buyer of a unit of this insurance contract makes continuous insurance
premium payments. Once the jump event occurs at time τJ, the buyer stops
making payments and receives a one-time unit lump-sum payoff. The insur-
ance premium payment is equal to λdF (Z), the product of the jump intensity,
λ, and the probability dF (Z) that the recovery fraction falls inside the inter-
val (Z,Z + dZ). Conceptually, this insurance contract is analogous to one-step-
ahead Arrow securities in discrete-time models. In practice, this insurance con-
tract is similar to a credit default swap.18

We denote the country’s holdings of jump-risk insurance contracts at time t
contingent on a recovery fraction Z by Xt (Z). The country pays an insurance
premium to hedge jump risk at a rate Xt (Z)λdF (Z) before the first jump with
recovery fraction Z arrives at time τJ. At this time, the country receives a
lump-sum payment Xt (Z) if the recovery fraction is in the interval (Z,Z + dZ).
The total jump insurance premium payment per unit of time is given by

�t = λ

∫ 1

0
Xt (Z)dF (Z) ≡ λE

[
Xt (Z)

]
, (56)

where the expectation, E[ · ], is calculated with respect to the cumulative dis-
tribution function, F (Z).

In the normal regime, financial wealth, Wt, evolves according to

dWt = [(r + δ∗
t−)Wt− + Yt− − Ct− −�t−]dt + σ�t−dBt + Xt−(Z) dJt − 1Dt Wt−dJt .

(57)
The jump insurance premium payment, �t−, is deducted in the first term in
equation (57). The last two terms reflect the effect of a jump arrival. The first
term is the jump-insurance payment to the country, Xt−(Z), for the insurance
purchased at t−. The second term captures the effect of default.

mon, and Quadrini (2004), Krueger and Perri (2006), Krueger and Uhlig (2006), Chien and Lustig
(2010), and Lustig, Syverson, and Van Nieuwerburgh (2011).

18 Pindyck and Wang (2013) discuss a similar insurance contract in a general equilibrium set-
ting with economic catastrophes.
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The value function V (W,Y ) in the normal regime satisfies the following HJB
equation:

0 = max
C,�

f (C,V (W,Y )) + [
(r + δ∗)W + Y − C −�

]
VW (W,Y )

+ �2σ 2

2
VWW (W,Y ) + μYVY (W,Y ) + σ 2Y 2

2
VYY (W,Y ) +�σ 2YVWY (W,Y )

+ λE
[
V (W + X,ZY )1Z≥Z + V̂ (αZY )1Z<Z − V (W,Y )

]
. (58)

If Z < Z, the country defaults and enters autarky. Its output falls to Ŷt = αYt ,
where Yt = ZYt−, so the value function at t = τD is V̂ (Ŷt ) = V̂ (αZYt−).

Since the country can always use hedging contracts to manage risk in this
full-spanning economy, it is never optimal for the country to default and hence
Z = 0, which implies δ∗ = 0.

First-Order Conditions.
The FOCs for consumption and diffusion risk hedging are the same as in the

benchmark model. The optimal jump-risk hedging demand for each value of Z,
Xt−(Z) ≡ X (Z;Wt−,Yt−), solves the problem

max
Xt−(Z)

V (Wt− + Xt−,ZYt−) − Xt−VW (Wt−,Yt−). (59)

Equation (59) applies for all values of Z, and this flexibility in choosing Z-
contingent hedging demand Xt−(Z) enhances the country’s ability to manage
risk, creating value.

The FOC for X (Z;W,Y ) is

VW (W + X (Z;W,Y ),ZY ) = VW (W,Y ). (60)

Without jump insurance, output falls upon a jump arrival, VW (W,Y ) <
VW (W,ZY ). The country chooses X (Z;W,Y ) > 0 to equate the pre- and
postjump marginal utility of wealth.

The homogeneity property allows us to solve p(w) using the equation

0 =
(
ζ (p′(w))1−ψ − ψρ

ψ − 1
+ μ− γ σ 2

2

)
p(w) + [

(r − μ) w + 1 − λE[x(Z,w)]
]
p′(w)

+ γ 2σ 2 p(w)p′(w)
2 γ̃ (w)

+ λ

1 − γ
E

⎡⎣(Zp
(
wJ)

p(w)

)1−γ
− 1

⎤⎦p(w), (61)

where x(Z,w) = X (Z;W,Y )/Y is the scaled jump-risk hedging demand,

wJ
t = wt− + x(Z,w)

Z
, (62)
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and the FOC for x(Z,w) is

p′(w)
p′(wJ)

=
(

Zp(wJ)
p(w)

)−γ
. (63)

Summary.
The scaled certainty equivalent wealth in the normal regime (p(w)) and au-

tarky (p̂ ) jointly satisfy the two interconnected ODEs (61) and (46) subject to
the boundary conditions given by (47) to (51). The optimal consumption-output
ratio is given by (52) and the optimal jump-risk hedging demand satisfies (63).

To compare the two economies, stating the following result is useful. The
domestic-currency economy is observationally equivalent to a full-spanning
economy that is constrained to using a hedging policy such that x(Z,w) is
proportional to the percentage depreciation of domestic currency upon a jump
arrival, π (Z), where the constant of proportionality is the level of domestic
currency debt:

x(Z,wt−) = b(wt−)π (Z). (64)

The corresponding scaled jump insurance premium is φt− = λb(wt−)E[π (Z)].
This premium reflects the domestic-currency appreciation that occurs in
nondisaster states. This appreciation makes domestic-currency debt more
costly to service in U.S. dollars in these states.

Panel A of Figure 4 shows that the full-spanning economy has higher net
certainty-equivalent wealth (e.g., for w = 0, p(0) = 28.31) than the domestic-
currency economy (e.g., for w = 0, p(0) = 28.14). As we can see, this difference
is modest (less than 0.6% for p(0)). Recall that p(0) = 27.22 for the domestic-
currency economy with κ = 0.1. Improving financial development from κ = 0.1
up to the point where the domestic-currency debt issuance constraint, (10), is
not binding increases welfare by about 3.3%.

Figure 4 also shows that, for a given w, the full-spanning economy has higher
debt capacity, lower marginal value of wealth, higher consumption-output ra-
tio, and lower MPC than the domestic-currency economy. These results are
consistent with our intuition that improving risk management opportunities
makes the country better off.

Panel A of Figure 5 compares the state-contingent jump hedging policy
in the full-spanning economy to the effective hedging demand delivered by
domestic-currency debt issuance (equation (64)). We see that the two policies
are similar for small jump shocks. However, the optimal hedging policy in the
full-spanning economy involves much higher hedging of large disasters (low-Z
states).

Panel B of Figure 5 shows the effective jump hedging costs (φt− =
λb(wt−)E[π (Z)]) for the domestic-currency economy. This cost is the extra in-
terest payment in U.S. dollars on domestic currency debt to compensate for the
stochastic depreciation of domestic currency upon a jump arrival. The jump
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Figure 4. Scaled certainty-equivalent wealth, marginal certainty-equivalent value of
wealth. p(w), p′(w), consumption-output ratio, c(w), and MPC, c′(w), for the domestic cur-
rency and full-spanning economies. The debt capacity is 44.6% for the domestic-currency econ-
omy and 52% for the full-spanning economy. All other parameters are reported in Table I. (Color
figure can be viewed at wileyonlinelibrary.com)

insurance premium payments in the full-spanning economy are higher than
the effective jump hedging costs in the domestic-currency economy.

Panel C of Figure 5 compares the hedging demand for a Z = 0.5 disaster
in the domestic-currency and full-spanning economies for different levels of
w. This panel shows that for large disasters, the domestic-currency economy
hedges less than the full-spanning economy. Also, for both economies, hedging
decreases as the country gets closer to its debt capacity.

Panel D of Figure 5 contains analogous information for a relatively small dis-
aster (Z = 0.9). We see that the domestic-currency economy hedges more than
the full-spanning economy when w is close to the origin but hedges less when w
is close to the debt capacity. This property reflects the constraint that the effec-
tive jump hedging demand implied by the issuance of domestic-currency debt
has to be proportional to π (Z) = 1 − Z, so it is not possible to increase hedg-
ing against the risk of large disasters without also increasing hedging against
the risk of small disasters. Since the country has only one instrument, b(wt−),
it cannot choose how much to hedge each jump, Z, so it has to balance over-
hedging small-disaster states with underhedging large-disaster states. The net

https://onlinelibrary.wiley.com
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Figure 5. The effective jump-risk hedging demand and insurance premium for the
domestic-currency and full-spanning economies. The debt capacity is 44.6% for the
domestic-currency economy and 52% for the full-spanning economy. All other parameters are re-
ported in Table I. (Color figure can be viewed at wileyonlinelibrary.com)

effect is that the domestic-currency economy spends less to hedge. As a result,
this economy is more exposed to disaster shocks.

Figure 6 plots the optimal debt policy for the domestic-currency economy.
Recall that financial development is such that constraint (10) does not bind.
The economy issues domestic-currency debt and saves in the form of foreign-
currency bonds. As discussed before, a country with high net debt (more neg-
ative w) issues less domestic-currency debt. That is, it effectively hedges its
disaster risk less because, as the country approaches its debt capacity, the
marginal value of wealth is high (Figure 6), so hedging is more costly.

Figure 7 shows that the diffusion risk hedging demand is larger in the full-
spanning economy than in the domestic-currency economy. The intuition for
this result is that the full-spanning economy can better manage its risk by
choosing how much to hedge each value of Z. As a result, its debt capacity is
larger, and the endogenous risk aversion for each given w is lower. The drift
of w is also lower. The country can manage risk better, and hence it can take
on more debt to smooth consumption. In the full-spanning economy, there is
no equilibrium default, as in Kehoe and Levine (1993), because using default

https://onlinelibrary.wiley.com
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Figure 7. Effective diffusion risk hedging. θ (w), volatility and drift of w, and endoge-
nous risk aversion, γ̃ (w), for the domestic-currency and full-spanning economies. The
debt capacity is 44.6% for the domestic-currency economy and 52% for the full-spanning economy.
All other parameters are reported in Table I. (Color figure can be viewed at wileyonlinelibrary.com)
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is more costly than hedging risk with contingent contracts. In this domestic-
currency economy in which the financial development constraint does not bind,
there is no default either.

V. Credit Risk Premium

In this section, we relax the assumption that all shocks are idiosyncratic and
generalize our model to incorporate a credit risk premium.19 We model credit
risk along the lines of Pan and Singleton (2008), Longstaff et al. (2011), and
Borri and Verdelhan (2015). To simplify, we assume that realizations of the
recovery fraction, Z, and diffusion shocks are idiosyncratic. As a result, credit
risk results from jump-arrival timing risk.

Model Setup and Solution. As in the credit risk literature (see, e.g., Duffie
and Singleton (2012)), we model the jump-arrival timing risk by working under
the risk-neutral measure, Q. We assume that the risk-neutral jump-arrival in-
tensity, λQ, is larger than the physical jump-arrival intensity, λ. This assump-
tion captures the idea that well-diversified, risk-averse investors demand a
premium for downward jump arrivals. As a result, they perceive these jump
arrivals as more likely under Q than under the physical measure, λQ/λ > 1.

The higher the ratio λQ/λ, the higher the default risk premium. Given
that the realizations of the recovery fraction, Z, and diffusion shocks are id-
iosyncratic, their distributions are the same under the risk-neutral and physi-
cal measures.

The Exchange Rate Process. Since foreign investors price the domestic cur-
rency, we assume that the exchange rate process is a martingale under the
risk-neutral measure, Q,

dSt

St−
= σSdBt − π (Z)dJQ

t + λQE[π (Z)]dt. (65)

Under the physical measure,

dSt

St−
= σSdBt − π (Z)dJt + λQE[π (Z)]dt, (66)

where Jt is a pure jump process with arrival rate λ. When a jump shock ar-
rives at time t, the exchange rate changes from St− to St = (1 − π (Z))St−. The
expected currency appreciation is Et−(dSt/St−) = (λQ − λ)E[π (Z)]dt, which is
positive given that λQ > λ.

Under these assumptions, the competitive market zero-profit condition
for diversified risk-averse investors implies that the credit spread for

19 In related work, Du, Pflueger, and Schreger (2020) consider a two-period model in which
countries with low monetary policy credibility cannot commit to keeping inflation low. Risk-averse
investors charge a high-risk premium for holding domestic-currency debt, which discourages these
countries from borrowing in domestic currency.
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foreign-currency debt, δ̃∗, satisfies

B∗
t−(1 + rdt) = B∗

t−(1 + (r + δ̃∗
t−)dt)

[
1 − λQ F (Z(wt−))dt

]
+ λQ F (Z(wt−))dt × 0.

(67)
Simplifying this equation, we obtain the following credit spread equation:

δ̃∗(wt−) = λQ F (Z(wt−)). (68)

The key difference between this equation and the one that applies when shocks
are idiosyncratic (equation (32)) is that λQ replaces λ in equation (68).

When the country issues domestic-currency debt (Bt− > 0), the competitive
market zero-profit condition for diversified investors implies that the credit
spread for domestic-currency debt, δ̃, satisfies

Bt−St−(1 + rdt) = EQ
t−
[
Bt−St (1 + (r + δ̃t−)dt)

][
1 − λQF (Z(wt−))dt

]
+ λQ F (Z(wt−))dt × 0. (69)

Simplifying (69), we obtain δ̃t− = δ̃(wt−) = λQ F (Z(wt−)).
The law of motion for Wt under the physical measure is given by

dWt =
[
Yt− − Ct− + (r + δ̃∗

t−)Wt− + (Wt− + B∗
t−)λQE[π (Z)]

]
dt + σ�̃t−dBt

−(Wt− + B∗
t−)π (Z)dJt . (70)

The corresponding ODE for p(w) is given by

0 =
(
ζ (p′(w))1−ψ − ψρ

ψ − 1
+ μ− γ σ 2

2

)
p(w)

+
[

(r + δ̃∗(w) − μ) w + 1 + λQE[π (Z)](w + b∗(w))
]
p′(w)

+ γ 2σ 2 p(w)p′(w)
2 γ̃ (w)

+ λ

1 − γ
E

⎡⎣(Zp
(
wJ)

p(w)

)1−γ
− 1

⎤⎦p(w). (71)

The optimal level of foreign-currency debt issuance is the solution to the
maximization problem

max
b∗≥−w−κ

[
λQ F (Z(w))w + λQE(π (Z))(w + b∗(w))

]
p′(w) + λp(w)

1 − γ
E

(
Zp
(
wJ)

p(w)

)1−γ
. (72)

Summary. The scaled certainty equivalent wealth in the normal regime (p(w))
and autarky (p̂ ) jointly satisfy the two interconnected ODEs (71) and (46)
subject to the boundary conditions given by (47) to (51). The equilibrium credit
spread for δ̃∗(w) is given in (68), the optimal consumption-output ratio is given
by (52), and the optimal level of foreign currency debt issuance solves (72).
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Figure 8. Scaled certainty-equivalent wealth. p(w), and marginal certainty-equivalent
value of wealth, p′(w), or our baseline case (λQ/λ = 1) and the case with a credit risk
premium (λQ/λ = 1.3). Debt capacity is equal to −w = 18.4% and −w = 16.8% for the λQ/λ = 1
and λQ/λ = 1.3 cases, respectively. All other parameters are reported in Table I. (Color figure can
be viewed at wileyonlinelibrary.com)

Calibration and Quantitative Results.
To calibrate the default risk premium, we use the estimates in Longstaff

et al. (2011) for Brazil and Colombia since they do not have estimates for
Argentina. In that paper, the authors assume that the logarithmic default
intensity under both the physical and the risk-neutral measures follow an
Ornstein-Uhlenbeck process (analogous to an AR(1) process in discrete time)
with different mean reversion and long-run mean parameter values. We use
their estimates to infer the long-run mean and variance of the logarithmic de-
fault intensity under both the physical and the risk-neutral measures.

Since the long-run default intensity under both measures is log-normal, we
can calculate the long-run mean of the default intensity under both measures.
The ratio between the average default intensity under the risk-neutral mea-
sure and the physical measure is 1.33 and 1.31 for Brazil and Colombia, re-
spectively. Since we assume that the distribution of Z is idiosyncratic, we set
the ratio between the jump-arrival rate under the risk-neutral measure (λQ)
and the physical measure (λ) to λQ/λ = 1.3.

Figure 8 compares the λQ/λ = 1.3 model with the one without a credit risk
premium (λQ/λ = 1). In the economy with a credit risk premium, risk-averse

https://onlinelibrary.wiley.com
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foreign investors price disaster risk as if they were risk-neutral, and the arrival
rate is 30% higher than under the physical measure. As a result, for a given
value of w, credit spreads are larger in the economy with credit risk premia.
In equilibrium, these higher credit risk premia translate into a lower debt
capacity, which in turn is associated with a lower p(w) and a higher p′(w) (see
Panels A and B of Figure 8).

Panels C and D show that a country that is close to its debt capacity is more
likely to default in the economy with a credit risk premia. For a given level
of w, the default threshold, Z(w), is higher in the economy with a credit risk
premium.

In sum, credit risk premia exacerbate debt intolerance by reducing debt ca-
pacity and increasing conditional credit spreads. However, these effects are not
strong in our calibration.

VI. Transitory Default Costs

In this section, we consider an extension of our model in which output losses
associated with default are temporary and disasters are followed by recover-
ies.20 To conserve on the number of state variables, we model recoveries as
coinciding with the country’s resumption of access to international capital
markets.

When the country enters the autarky regime at t = τD, output falls to Ŷt =
αYt . Output follows the stochastic process (5) as long as the country is in the
autarky regime. We denote by τ E the time at which the country exits autarky
and enters the normal regime. At this time, output discretely jumps upward
from Ŷτ E− to Yτ E = Ŷτ E−/α = αYτ E−/α = Yτ E− , so the output loss associated with
default is temporary. After exiting autarky, output follows the process (1).

We rewrite the HJB equation (24) for V̂ (Ŷ ) as follows:

0 = f (Ŷ , V̂ ) + μŶV̂ ′(Ŷ ) + σ 2Ŷ 2

2
V̂ ′′(Ŷ ) + λE

[
V̂ (ZŶ ) − V̂ (Ŷ )

]
+ ξ

[
V
(
0, Ŷ/α

)
− V̂ (Ŷ )

]
. (73)

The last term in equation (73) captures the effect of the upward jump in output
from Ŷ to Ŷ/α that occurs when the country exits autarky. The corresponding
implicit equation for scaled certainty-equivalent wealth, p̂ , is given by

0 =
ρ
[
(a p̂ )−(1−ψ−1 ) − 1

]
1 − ψ−1 + μ+ λ(E(Z1−γ ) − 1)

1 − γ
− γ σ 2

2
+ ξ

1 − γ

[(
p(0)
α p̂

)1−γ
− 1

]
.

(74)

20 See Nakamura et al. (2013) for a rare-disaster model in which disasters are followed by
recoveries.
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Figure 9. Scaled certainty-equivalent wealth. p(w), and marginal certainty-equivalent
value of wealth, p′(w), for both the permanent and transitory default cost cases. Debt
capacity is equal to −w = 18.4% and −w = 14% for the permanent and transitory default cost
cases, respectively. All other parameters are reported in Table I. (Color figure can be viewed at
wileyonlinelibrary.com)

Summary: The scaled certainty equivalent wealth in the normal regime (p(w))
and autarky (p̂ ) jointly satisfy the two interconnected ODEs (45) and (74)
subject to the boundary conditions given by (47) to (51). The equilibrium credit
spreads for foreign and domestic currency debt, δ(wt−) = δ∗(wt−), are given by
(33), the optimal consumption-output ratio is given by (52), and the optimal
level of foreign currency debt issuance solves (54).

Figure 9 compares the model with permanent and temporary default costs
using our benchmark calibration. Given that the output losses associated with
default are temporary, the cost of default is lower than in a model with per-
manent default costs. In equilibrium, this lower default cost translates into a
lower debt capacity, which in turn is associated with a lower welfare (p(w)) and
a higher p′(w).

Panels C and D show that a country that is close to its debt capacity is more
likely to default when the output loss is temporary rather than permanent.

In sum, making default costs transitory exacerbates debt intolerance by re-
ducing debt capacity and increasing credit spreads for a given level of debt.

https://onlinelibrary.wiley.com
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VII. Conclusions

We present a tractable model of sovereign debt that features a jump-
diffusion process for output used in the rare-disasters literature and recur-
sive preferences that separate the role of intertemporal substitution and risk
aversion.

We define financial development as the ability to issue domestic currency
debt in international capital markets. Since domestic-currency depreciates
when disasters occur, domestic-currency debt is a natural hedge against disas-
ter risk.

We show that countries with low levels of financial development suffer from
debt intolerance: they have low debt capacity and pay high conditional credit
spreads even when their debt level is modest.

To focus on the impact of financial development on sovereign debt, we ab-
stract from two forces that could influence demand and supply of sovereign
debt. The first is the moral hazard problem that is associated with insurance.
The second is the impact of sudden stops (Calvo (1998) and Mendoza (2010))
and debt roll-over risk. We plan to address these issues in future research.

Initial submission: October 30, 2019; Accepted: May 4, 2021
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: Limited Commitment, Domestic-Currency Economy in
Section II

We verify that the value function in the normal regime, V (W,Y ), takes the
functional form given by equation (20) and that the value function in the au-
tarky regime, V̂ (Ŷ ), takes the functional form given by equation (25).

Substituting equation (20) and the first and second derivatives of V (W,Y )
into the HJB equation (14) and using the homogeneity property of the value
function, we obtain

0 = max
c, θ̃ , b∗≥−w−κ

(
c(w)

bp(w)

)1−ψ
− 1

1 − ψ−1 ρp(w)

+ θ̃ (w)σ 2
(

−wp′′(w) − γ p′(w)(p(w) − wp′(w))
p(w)

)
+ [

(r + δ∗(w) − μ) w + 1 − c(w) + λE(π (Z))(w + b∗(w))
]
p′(w)

+ (θ̃ (w)σ )2

2

(
p′′(w) − γ (p′(w))2

p(w)

)
+ σ 2

2

(
w2 p′′(w) − γ (p(w) − wp′(w))2

p(w)

)

+ λ

1 − γ
E

[(
Zp(wJ)

p(w)

)1−γ
− 1

]
p(w), (A.1)

where wJ is given by equation (41).
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We simplify the FOCs for consumption (equation (16)) and diffusion risk
hedging demand (equation (17)) to obtain equations (52) for c(w) and (36) and
(37) for hedging demand. Simplifying equation (18), we obtain the condition for
the optimal scaled foreign-currency debt issue, b∗(w), which is given by equa-
tion (54). Substituting equations (52) and (37) into equation (A.1), we obtain
the ODE (45) for p(w).

Substituting the value functions (20) and (25) into the HJB equation (24), we
obtain equation (46) for the scaled certainty-equivalent wealth under autarky
(p̂). The value-matching condition given by equation (26) can be simplified to
the boundary condition (48). Substituting equation (37) into (43), we obtain the
boundary condition (49).

Appendix B: Limited Commitment, Full-Spanning Economy in
Section IV

For this case, the value function in the normal regime is also homothetic (in
W and Y ) and given in equation (20). Substituting equation (20) and the first
and second derivatives of V (W,Y ) into the HJB equation (58) and simplifying,
we obtain

0 = max
c, θ, x

(
c(w)

bp(w)

)1−ψ
− 1

1 − ψ−1 ρp(w) + (θ (w)σ )2

2

(
p′′(w) − γ (p′(w))2

p(w)

)
+ [

(r + δ∗(w) − μ) w + 1 − c(w) − λE[x(Z,w)]
]
p′(w) + σ 2

2
w2 p′′(w)

+ σ 2

2

(
−γ (p(w) − wp′(w))2

p(w)

)
+ θ (w)σ 2

(
−wp′′(w) − γ p′(w)(p(w) − wp′(w))

p(w)

)

+ λ

1 − γ
E

[(
Zp(wJ)

p(w)

)1−γ
− 1

]
p(w), (B.1)

where wJ is given by equation (62) and the equilibrium credit spread is zero
(δ∗(w) = 0), as full spanning implies that there is no default in equilibrium.
Simplifying the FOC for the jump-risk hedging demand (X (Z;W,Y )) given by
equation (60), we obtain the following condition for the optimal scaled hedging
demand for jump risk, x(Z,w) = X (Z;W,Y )/Y :

p′(w) =
(

Zp((w + x(Z,w))/Z)
p(w)

)−γ
p′((w + x(Z,w))/Z), (B.2)

which can be written as equation (63). Using the FOCs for consumption and
diffusion risk hedging demand, we obtain c(w) = ζ p(w)(p′(w))−ψ and θ (w) =
w − γ p(w)

γ̃ (w) . Substituting these expressions into equation (B.1), we obtain the
ODE (61) for p(w).

Finally, the scaled certainty-equivalent wealth under autarky (p̂) and the
boundary conditions for p(w) are the same as those in our benchmark domestic
currency economy stated in equations (46)–(51) in Proposition 1.
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Appendix C: First Best (FB): Full Commitment and Full Spanning

The FB solution obtains when there is full commitment and full spanning.
Full commitment means that the country always honors its contractual agree-
ments, so it never defaults. Full spanning means that both diffusion and jump
risks (for all values of Z) are hedgeable at actuarially fair prices. We use the
superscript FB to denote the value of different variables in the FB solution.

As in Friedman (1957) and Hall (1978), we define nonfinancial wealth, Ht ,
for the case in which all risks are hedgeable as the present value of output,
discounted at the constant risk-free rate, r,

Ht = Et

(∫ ∞

t
e−r(u−t)Yudu

)
. (C.1)

Because Y is a geometric jump-diffusion process, we have Ht = hYt . Scaled
nonfinancial wealth, h, is given by equation (51). The expected growth rate
of output, g, is given by equation (2). To ensure that nonfinancial wealth is
finite, we require that r > g. This convergence condition is standard in asset
pricing and valuation models.

Let PFB
t ≡ PFB(Wt,Yt ) denote the country’s certainty-equivalent wealth, also

defined in equation (20), but for the FB case. Below we show that PFB
t is given

by

PFB
t ≡ PFB(Wt,Yt ) = Wt + hYt . (C.2)

In other words, in the FB case, certainty-equivalent wealth coincides with total
wealth, defined as the sum of financial wealth Wt and nonfinancial wealth Ht .

The following proposition summarizes the properties of the FB solution.

PROPOSITION C.1: Scaled total wealth, pFB(w) = PFB(W,Y )/Y = (W + H)/Y,
is

pFB(w) = w + h, (C.3)

where h is given by equation (51) and wt ≥ wFB. The scaled endogenous debt
capacity is −wFB = h. The optimal consumption-output ratio, ct = cFB(w), is
given by

cFB(w) = ζ pFB(w) = ζ (w + h), (C.4)

where ζ = r + ψ (ρ − r) is the MPC in the FB case, given by equation (53). There
is no default, meaning that Z = 0. The endogenous relative risk aversion defined
in equation (35), γ̃t , is equal to γ for all t.

PROOF: We conjecture and verify that the scaled certainty-equivalent
wealth is given by p(w) = w + h. Substituting this expression into
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c(w) = ζ p(w)(p′(w))−ψ and the scaled diffusion hedging demand, θ (w) = w −
γ p(w)
γ̃ (w) , we obtain the following closed-form expressions: �

c(w) = ζ (w + h), (C.5)

θ (w) = −h. (C.6)

Substituting p(w) = w + h into equation (B.2), we obtain the following expres-
sion for the optimal scaled jump-risk hedging demand: x = (1 − Z)h.

Substituting p(w) = w + h into the ODE (B.1), we obtain

0 =
(
ζ − ψρ

ψ − 1
+ μ

)
(w + h) + [

(r − μ)w + 1
]+ λ(E(Z) − 1)h (C.7)

=
(
ζ − ψρ

ψ − 1
+ r

)
w +

(
ζ − ψρ

ψ − 1
+ μ− λ(1 − E(Z))

)
h + 1. (C.8)

As equation (C.8) must hold for all levels of w, ζ−ψρ
ψ−1 + r = 0 has to hold.

This condition implies that ζ = r + ψ (ρ − r), which is equation (53). Using
ζ = ρψa1−ψ , we obtain equation (21) for the coefficient a. Finally, substituting
ζ = r + ψ (ρ − r) into equation (C.8), we obtain

h = 1
r − [

μ− λ(1 − E(Z))
] = 1

r − g
. (C.9)

We have now verified the FB solution.

Appendix D: Economy with Credit Risk Premium in Section V

Using the dynamics of financial wealth Wt under the physical measure given
by equation (70) and dynamic programming, we obtain the following Hamilton-
Jacobi-Bellman (HJB) equation for the value function V (W,Y ):

0 = max
Ct−, �̃t−,B∗

t−
f (Ct−,Vt−)

+
[
Yt− − Ct− + (r + δ̃∗

t−)Wt− + (Wt− + B∗
t−)λQE[π (Z)]

]
VW (Wt−,Yt−)

+ σ 2�̃2
t−

2
VWW (Wt−,Yt−) + μYt−VY (Wt−,Yt−) + σ 2Y 2

t−
2

VYY (Wt−,Yt−)

+ σ 2 �̃t−Yt−VWY (Wt−,Yt−) + λEt−
[
VJ(Wt,Yt ) − V (Wt−,Yt−)

]
, (D.1)

where δ̃∗
t− = λQ F (Z(wt−)). Substituting the value function given by equa-

tion (20), we obtain the following simplified equation for p(w):
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0 = max
c, θ̃ , b∗≥−w−κ

(
c(w)

bp(w)

)1−ψ − 1

1 − ψ−1 ρp(w) + (θ̃ (w)σ )2

2

(
p′′(w) − γ (p′(w))2

p(w)

)

+ σ 2

2
w2 p′′(w) +

[
(r + δ̃∗(w) − μ) w + 1 − c(w) + λQE[π (Z)](w + b∗(w))

]
p′(w)

− σ 2

2
γ (p(w) − wp′(w))2

p(w)
+ θ̃ (w)σ 2

(
−wp′′(w) − γ p′(w)(p(w) − wp′(w))

p(w)

)

+ λ

1 − γ
E

⎡⎣(Zp(wJ)
p(w)

)1−γ
− 1

⎤⎦p(w), (D.2)

where wJ is given by equation (41). We then obtain equation (72) for the op-
timal level of foreign currency debt issuance. The implied FOCs for diffusion
risk hedging demand and consumption are given by equations (36) and (52).
Substituting the optimal consumption and diffusion risk hedging demand into
equation (D.2), we obtain the ODE for p(w) given in equation (71).

Finally, the scaled certainty-equivalent wealth under autarky (p̂) and the
boundary conditions for p(w) are the same as those in our benchmark domestic
currency economy, stated in equations (46) to (51) in Proposition 1.

Appendix E: Solution Algorithm

We numerically solve the ODE in Proposition 1 using the following algo-
rithm.

1. Start with a sufficiently large region (w,w) by setting w = −h and a suf-
ficiently large w (e.g., w = 104). We use the superscript (i) to denote the
ith iteration value for p(w), b∗(w), wJ, and p̂, that is, p(i)(w), b∗(i)(w), wJ(i),
and p̂ (i).

2. Assign an initial value for the scaled certainty-equivalent wealth p(w),
which we denote by p(1)(w). For example, we start with the following ini-
tial linear function for p(w): p(1)(w) = αh, p(1)(w) = w + h, and p(1)(w) =
p(1)(w) + w−w

w−w (p(1)(w) − p(1)(w)) for w < w < w.
3. For a given p(i)(w), where i = 1,2, . . ., compute b∗(i)(w), wJ(i), and p̂ (i) by

using equations (54), (41), and (46), respectively.
4. Substitute the policy rules, b∗(i)(w), wJ(i), and p̂(i) obtained in step 3 into

ODE (45). Use the Matlab function ode45 (or another variant of the
finite-difference method) to solve for p(i+1)(w) given by ODE (45).

5. Repeat steps 3 and 4 until |p(i+1)(w) − p(i)(w)| is sufficiently low (e.g.,
|p(i+1)(w) − p(i)(w)| < 10−10).

6. Compute p′′(w) until p′′(w) becomes sufficiently low (e.g., p′′(w) < −1010),
that is, until the program converges. Otherwise, go back to step 1 and
increase w with a new guess and iterate until the program converges.



Rare Disasters, Financial Development, and Sovereign Debt 2761

REFERENCES

Aguiar, Mark, and Gita Gopinath, 2006, Defaultable debt, interestrates and the current account,
Journal of International Economics 69, 64–83.

Aguiar, Mark, and Gita Gopinath, 2007, Emerging market business cycles: The cycle is the trend,
Journal of Political Economy 115, 69–102.

Albuquerque, Rui, and Hugo A. Hopenhayn, 2004, Optimal lending contracts and firm dynamics,
Review of Economic Studies 71, 285–315.

Alvarez, Fernando, and Urban J. Jermann, 2000, Efficiency, equilibrium, and asset pricing with
risk of default, Econometrica 68, 775–797.

Alvarez, Fernando, and Urban J. Jermann, 2001, Quantitative asset pricing implications of en-
dogenous solvency constraints, Review of Financial Studies 14, 1117–1151.

Arellano, Cristina, 2008, Default risk and income fluctuations in emerging economies, American
Economic Review 98, 690–712.

Arellano, Cristina, and Anantha Ramanarayanan, 2012, Default and the maturity structure in
sovereign bonds, Journal of Political Economy 120, 187–232.

Asonuma, Tamon, Dirk Niepelt, and Romain Ranciere, 2017, Sovereign bond prices, haircuts, and
maturity, NBER Working Paper 23864.

Attanasio, Orazio P., and Guglielmo Weber, 2010, Consumption and saving: Models of intertem-
poral allocation and their implications for public policy, Journal of Economic Literature 48,
693–751.

Auclert, Adrien, and Matthew Rognlie, 2016, Unique equilibrium in the Eaton-Gersovitz model of
sovereign debt, Journal of Monetary Economics 84, 134–146.

Barro, Robert J., 2006, Rare disasters and asset markets in the twentieth century, Quarterly Jour-
nal of Economics 121, 823–866.

Barro, Robert, 2009, Rare disasters, asset prices, and welfare costs, American Economics Review
99, 243–264.

Barro, Robert J., and Tao Jin, 2011, On the size distribution of macroeconomic disasters, Econo-
metrica 79, 1567–1589.

Barro, Robert J., and José F. Ursúa, 2008, Macroeconomic crises since 1870, Brookings Papers on
Economic Activity 1, 255–350.

Best, Michael Carlos, James S. Cloyne, Ethan Ilzetzki, and Henrik J. Kleven, 2017, Estimating
the elasticity of intertemporal substitution using mortgage notches, Working paper, Princeton
University.

Bocola, Luigi, and Alessandro Dovis, 2016, Self-fulfilling debt crises: A quantitative analysis, Na-
tional Bureau of Economic Research, Working paper, No. w22694.

Bolton, Patrick, 2016, Debt and money: Financial constraints and sovereign finance, Journal of
Finance 71, 1483–1510.

Bolton, Patrick, Hui Chen, and Neng Wang, 2011, A unified theory of Tobin’s q, corporate invest-
ment, financing, and risk management, Journal of Finance 66, 1545–1578.

Bolton, Patrick, Hui Chen, and Neng Wang, 2013, Market timing, investment, and risk manage-
ment, Journal of Financial Economics 109, 40–62.

Bolton, Patrick, and Haizhou Huang, 2018. The capital structure of nations, Review of Finance 22,
45–82.

Bolton, Patrick, Neng Wang, and Jinqiang Yang, 2019, Optimal contracting, corporate finance, and
valuation with inalienable human capital, Journal of Finance 74, 1363–1429.

Bordo, Michael D., Christopher M. Meissner, and Angela Redish, 2004, How “original sin” was
overcome: The evolution of external debt denominated in domestic currencies in the United
States and the British Dominions, in Other People’s Money (University of Chicago Press,
Chicago).

Bornstein, Gideon, 2020, A continuous time model of sovereign debt, Journal of Economic Dynam-
ics and Control 118, #103963.

Borri, Nicola, and Adrien Verdelhan, 2015, Sovereign risk premia, Working paper, MIT Sloan
School of Management.

http://dx.doi.org/10.1016/j.jinteco.2005.05.005
http://dx.doi.org/10.1086/511283
http://dx.doi.org/10.1111/0034-6527.00285
http://dx.doi.org/10.1111/1468-0262.00137
http://dx.doi.org/10.1093/rfs/14.4.1117
http://dx.doi.org/10.1257/aer.98.3.690
http://dx.doi.org/10.1257/aer.98.3.690
http://dx.doi.org/10.1086/666589
http://dx.doi.org/10.1257/jel.48.3.693
http://dx.doi.org/10.1016/j.jmoneco.2016.10.013
http://dx.doi.org/10.1162/qjec.121.3.823
http://dx.doi.org/10.1162/qjec.121.3.823
http://dx.doi.org/10.1257/aer.99.1.243
http://dx.doi.org/10.1111/jofi.12418
http://dx.doi.org/10.1111/jofi.12418
http://dx.doi.org/10.1111/j.1540-6261.2011.01681.x
http://dx.doi.org/10.1016/j.jfineco.2013.02.006
http://dx.doi.org/10.1093/rof/rfx042
http://dx.doi.org/10.1111/jofi.12761


2762 The Journal of Finance®

Brunnermeier, Markus, and Yuliy Sannikov, 2014, A macroeconomic model with a financial sector,
American Economic Review 104, 379–421.

Bulow, Jeremy, and Kenneth Rogoff, 1989, Sovereign debt: Is to forgive to forget? American Eco-
nomic Review 79, 43–50.

Burnside, Craig, Martin Eichenbaum, Isaac Kleshchelski, and Sergio Rebelo, 2011, Do peso prob-
lems explain the returns to the carry trade? Review of Financial Studies 24, 853–891.

Calvo, Guillermo A., 1998, Capital flows and capital-market crises: The simple economics of sud-
den stops, Journal of Applied Economics 1, 35–54.

Cantú, Carlos, and Michael Chui, 2020, Financial market development and financial stability, in
Financial Market Development, Monetary Policy and Financial Stability in Emerging Market
Economies (Bank of International Settlements) No. 113, 19–38.

Chatterjee, Satyajit, and Burcu Eyigungor, 2012, Maturity, indebtedness, and default risk,
American Economic Review 102, 2674–2699.

Chien, YiLi, and Hanno Lustig, 2010, The market price of aggregate risk and the wealth distribu-
tion, Review of Financial Studies 23, 1596–1650.

Cooley, Thomas, Ramon Marimon, and Vincenzo Quadrini, 2004, Aggregate consequences of lim-
ited contract enforceability, Journal of Political Economy 112, 817–847.

Coppola, Antonio, Matteo Maggiori, Brent Neiman, and Jesse Schreger, 2020, Redrawing the map
of global capital flows: The role of cross-border financing and tax havens, National Bureau of
Economic Research, Working paper, No. w26855.

Cox, John C., Johnathan E. Ingersoll Jr, and Stephen A. Ross, 1981, The relation between forward
prices and futures prices, Journal of Financial Economics 9, 321–346.

DeMarzo, Peter M., Michael J. Fishman, Zhiguo He, and Neng Wang, 2012, Dynamic agency and
the q theory of investment. Journal of Finance67, 2295–2340.

DeMarzo, Peter M., Zhiguo He, and Fabrice Tourre, 2021, Sovereign debt ratchets and welfare
destruction, National Bureau of Economic Research, Working paper, No. 28599.

DeMarzo, Peter M., and Yuliy Sannikov, 2006, Optimal security design and dynamic capital struc-
ture in a continuous-time agency model, Journal of Finance 61, 2681–2724.

Du, Wenxin, Carolin E. Pflueger, and Jesse Schreger, 2020, Sovereign debt portfolios, bond risks,
and the credibility of monetary policy, Journal of Finance 75, 3097–3138.

Dubey, Pradeep, John Geanakoplos, and Martin Shubik, 2005, Default and punishment in general
equilibrium, Econometrica 73, 1–37.

Duffie, Darrell, and Larry G. Epstein, 1992, Stochastic differential utility, Econometrica 60, 353–
394.

Duffie, Darrell, and Kenneth J. Singleton, 2012, Credit Risk: Pricing, Measurement, and Manage-
ment (Princeton University Press, Princeton, NJ).

Eaton, Jonathan, and Mark Gersovitz, 1981, Debt with potential repudiation theoretical and em-
pirical analysis, Review of Economic Studies 48, 289–309.

Epstein, Larry G., and Stanley E. Zin, 1989, Substitution, risk aversion, and the temporal behavior
of consumption and asset returns: A theoretical framework, Econometrica 57, 937–969.

Farhi, Emmanuel, and Xavier Gabaix, 2016, Rare disasters and exchange rates, Quarterly Journal
of Economics 131, 1–52.

Friedman, Milton, 1957, A Theory of the Consumption Function (Princeton University Press,
Princeton, NJ).

Gabaix, Xavier, 2012, Variable rare disasters: An exactly solved framework for ten puzzles in
macro-finance, Quarterly Journal of Economics 127, 645–700.

Gelos, R. Gaston, Raston Sahay, and Guido Sandleris, 2011, Sovereign borrowing by developing
countries: What determines market access? Journal of International Economics 83, 243–254.

Gourinchas, Pierre-Olivier, and Helene Rey, 2007, International financial adjustment, Journal of
Political Economy 115, 665–703.

Gourio, Francois, 2012, Disaster risk and business cycles, American Economic Review 102, 2734–
2766.

Hall, Robert E., 1978, Stochastic implications of the life cycle-permanent income hypothesis: The-
ory and evidence, Journal of Political Economy 86, 971–987.

http://dx.doi.org/10.1257/aer.104.2.379
http://dx.doi.org/10.1093/rfs/hhq138
http://dx.doi.org/10.1080/15140326.1998.12040516
http://dx.doi.org/10.1257/aer.102.6.2674
http://dx.doi.org/10.1093/rfs/hhp079
http://dx.doi.org/10.1086/421170
http://dx.doi.org/10.1016/0304-405X(81)90002-7
http://dx.doi.org/10.1111/j.1540-6261.2006.01002.x
http://dx.doi.org/10.1111/jofi.12965
http://dx.doi.org/10.1111/j.1468-0262.2005.00563.x
http://dx.doi.org/10.2307/2951600
http://dx.doi.org/10.2307/2296886
http://dx.doi.org/10.2307/1913778
http://dx.doi.org/10.1093/qje/qjv040
http://dx.doi.org/10.1093/qje/qjv040
http://dx.doi.org/10.1093/qje/qjs001
http://dx.doi.org/10.1016/j.jinteco.2010.11.007
http://dx.doi.org/10.1086/521966
http://dx.doi.org/10.1086/521966
http://dx.doi.org/10.1257/aer.102.6.2734
http://dx.doi.org/10.1086/260724


Rare Disasters, Financial Development, and Sovereign Debt 2763

Hall, Robert E., 1988, Intertemporal substitution in consumption, Journal of Political Economy
96, 339–357.

Hatchondo, Juan Carlos, and Leonardo Martinez, 2009, Long-duration bonds and sovereign de-
faults, Journal of International Economics 79, 117–125.

Hausmann, Ricardo, and Uga Panizza, 2003, On the determinants of original sin: An empirical
investigation, Journal of International Money and Finance 22, 957–990.

He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing. American Economic
Review 103, 732–770.

Hébert, Benjamin, and Jesse Schreger, 2017, The costs of sovereign default: Evidence from Ar-
gentina, American Economic Review 107, 3119–3145.

Hugonnier, Julien, Semyon Malamud, and Erwan Morellec, 2015, Capital supply uncertainty, cash
holdings, and investment. Review of Financial Studies 28, 391–445.

Kehoe, Patrick J., and Fabrizio Perri, 2002, International business cycles with endogenous incom-
plete markets, Econometrica 70, 907–928.

Kehoe, Timothy J., and David K. Levine, 1993, Debt-constrained asset markets, Review of Eco-
nomic Studies 60, 865–888.

Kocherlakota, Narayana R., 1996, Implications of efficient risk sharing without commitment,
Review of Economic Studies 63, 595–609.

Kreps, David M., and Evan L. Porteus, 1978, Temporal resolution of uncertainty and dynamic
choice theory, Econometrica 46, 185–200.

Krueger, Dirk, and Fabrizio Perri, 2006, Does income inequality lead to consumption inequality?
Evidence and theory, Review of Economic Studies 73, 163–193.

Krueger, Dirk, and Harald Uhlig, 2006, Competitive risk sharing contracts with one-sided com-
mitment, Journal of Monetary Economics 53, 1661–1691.

Lane, Phillip R., and Gian Maria Milesi-Ferretti, 2007, The external wealth of nations mark II:
Revised and extended estimates of foreign assets and liabilities, 1970–2004, Journal of Inter-
national Economics 73, 223–250.

Leland, Hayne, 1994, Corporate debt value, bond covenants, and optimal capital structure,
Journal of Finance 49, 1213–1252.

Longstaff, Francis A., Jun Pan, Lasse H. Pedersen, and Kenneth J. Singleton, 2011, How sovereign
is sovereign credit risk? American Economic Journal: Macroeconomics 3, 75–103.

Lucas, Robert E., 1982, Interest rates and currency prices in a two-country world. Journal of
Monetary Economics 10, 335–359.

Lustig, Hanno, Chad Syverson, and Stijn Van Nieuwerburgh, 2011, Technological change and the
growing inequality in managerial compensation, Journal of Financial Economics 99, 601–627.

Mehrotra, Neil, and Dmitriy Sergeyev, 2020, Debt sustainability in a low interest rate world,
Working paper, Federal Reserve Bank of New York and Bocconi University.

Mendoza, Enrique G., 2010, Sudden stops, financial crises, and leverage, American Economic Re-
view 100, 1941–1966.

Merton, Robert C., 1971, Consumption and portfolio rules in a continuous-time model, Journal of
Economic Theory 3, 373–413.

Nakamura, Emi, Jón Steinsson, Robert Barro, and José Ursúa, 2013, Crises and recoveries in an
empirical model of consumption disasters, American Economic Journal: Macroeconomics 5,
35–74.

Nuño, Galo, and Carlos Thomas, 2015, Monetary policy and sovereign debt sustainability, Working
paper, Bank of Spain.

Pan, Jun, and Kenneth J. Singleton, 2008, Default and recovery implicit in the term structure of
sovereign CDS spreads, Journal of Finance 63, 2345–2384.

Pindyck, Robert S., and Neng Wang, 2013, The economic and policy consequences of catastrophes,
American Economic Journal: Economic Policy 5, 306–339.

Reinhart, Carmen M., and Kenneth S. Rogoff, 2011, The forgotten history of domestic debt,
Economic Journal 121, 319–350.

Reinhart, Carmen M., Kenneth S. Rogoff, and Miguel Savastano, 2003, Debt intolerance, Brook-
ings Papers on Economic Activity 1, 1–62.

http://dx.doi.org/10.1086/261539
http://dx.doi.org/10.1016/j.jinteco.2009.07.002
http://dx.doi.org/10.1016/j.jimonfin.2003.09.006
http://dx.doi.org/10.1257/aer.103.2.732
http://dx.doi.org/10.1257/aer.103.2.732
http://dx.doi.org/10.1093/rfs/hhu081
http://dx.doi.org/10.1111/1468-0262.00314
http://dx.doi.org/10.2307/2298103
http://dx.doi.org/10.2307/2298103
http://dx.doi.org/10.2307/2297795
http://dx.doi.org/10.2307/1913656
http://dx.doi.org/10.1111/j.1467-937X.2006.00373.x
http://dx.doi.org/10.1016/j.jmoneco.2005.07.019
http://dx.doi.org/10.1016/j.jinteco.2007.02.003
http://dx.doi.org/10.1016/j.jinteco.2007.02.003
http://dx.doi.org/10.1111/j.1540-6261.1994.tb02452.x
http://dx.doi.org/10.1257/mac.3.2.75
http://dx.doi.org/10.1016/0304-3932(82)90032-0
http://dx.doi.org/10.1016/0304-3932(82)90032-0
http://dx.doi.org/10.1016/j.jfineco.2010.09.007
http://dx.doi.org/10.1257/aer.100.5.1941
http://dx.doi.org/10.1257/aer.100.5.1941
http://dx.doi.org/10.1016/0022-0531(71)90038-X
http://dx.doi.org/10.1016/0022-0531(71)90038-X
http://dx.doi.org/10.1257/mac.5.3.35
http://dx.doi.org/10.1111/j.1540-6261.2008.01399.x
http://dx.doi.org/10.1257/pol.5.4.306
http://dx.doi.org/10.1111/j.1468-0297.2011.02426.x


2764 The Journal of Finance®

Rietz, Thomas A., 1988, The equity risk premium: A solution, Journal of Monetary Economics 22,
117–131.

Romero, José Vicente, Hernando Vargas, Pamela Cardozo, and Andrés Murcia, 2020, How foreign
participation in the Colombian local public debt market has influenced domestic financial
conditions, BIS Papers, No. 113.

Rossi, Barbara, 2013, Exchange rate predictability, Journal of Economic Literature 51, 1063–1119.
Sargent, Thomas J., Neng Wang, and Jinqiang Yang, 2021, Stochastic earnings growth and equi-

librium wealth distributions, National Bureau of Economic Research, Working paper, No.
w28473.

Sturzenegger, Federico, and Jeromin Zettelmeyer, 2006, Debt Defaults and Lessons from a Decade
of Crises (MIT Press, Boston, MA).

Tourre, Fabrice, 2017, A macro-finance approach to sovereign debt spreads and returns, Working
paper, University of Chicago.

Trebesch, Christoph, and Michael Zabel, 2017, The output costs of hard and soft sovereign default,
European Economic Review 92, 416–432.

Wachter, Jessica A., 2013, Can time-varying risk of rare disasters explain aggregate stock market
volatility? Journal of Finance 68, 987–1035.

Wang, Chong, Neng Wang, and Jinqiang Yang, 2012, A unified model of entrepreneurship dynam-
ics, Journal of Financial Economics 106, 1–23.

Wang, Chong, Neng Wang, and Jinqiang Yang, 2016, Optimal consumption and savings with
stochastic income and recursive utility, Journal of Economic Theory 165, 292–331.

Weil, Philippe, 1990, Nonexpected utility in macroeconomics, Quarterly Journal of Economics 105,
29–42.

Yue, Vivian, 2010, Sovereign default and debt renegotiation, Journal of International Economics
80, 176–187.

Zame, William R., 1993, Efficiency and the role of default when security markets are incomplete,
American Economic Review 83, 1142–1164.

Supporting Information

Additional Supporting Information may be found in the online version of this
article at the publisher’s website:

Replication Code.

http://dx.doi.org/10.1016/0304-3932(88)90172-9
http://dx.doi.org/10.1257/jel.51.4.1063
http://dx.doi.org/10.1016/j.euroecorev.2016.10.004
http://dx.doi.org/10.1111/jofi.12018
http://dx.doi.org/10.1016/j.jfineco.2012.05.002
http://dx.doi.org/10.1016/j.jet.2016.04.002
http://dx.doi.org/10.2307/2937817
http://dx.doi.org/10.1016/j.jinteco.2009.11.004

