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Abstract

I propose an intertemporal precautionary saving model in which the agent’s labor income is

subject to (possibly correlated) shocks with different degrees of persistence and volatility.

However, he only observes his total income, not individual components. I show that partial

observability of individual components of income gives rise to additional precautionary saving

due to estimation risk, the error associated with estimating individual components of income.

This additional precautionary saving is higher, when estimation risk is greater. Compared with

a precautionary agent who is otherwise identical, but ignores estimation risk, the rational

agent consumes less at the beginning of his life, but consumes more later, because of larger

wealth accumulated from savings for estimation risk. The utility cost of ignoring estimation

risk is also quantified in closed form.
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1. Introduction

The idea that income is subject to both permanent and transitory shocks dates at
least back to Friedman (1957) and Muth (1960). Recently, much empirical evidence
supports the view that individual’s labor income has components with different
degrees of persistence and volatility.1 However, when it comes to analyze individual’s
optimal intertemporal consumption, vast majority of the literature assumes a
univariate labor-income process,2 probably for technical convenience. While the
univariate income process is a reasonable approximation for many issues, it
nonetheless ignores, among other things, the effect of estimation risk on
intertemporal optimal consumption rule. By estimation risk, I mean the uncertainty
in estimating the individual components of income, based on only observing total
income. Intuitively, a smaller variance of estimation error indicates a lower
estimation risk.
Exceptions to consumption models with univariate income processes

include Goodfriend (1992), Pischke (1995), Quah (1990) and a collection of
papers in Hansen and Sargent (1991), among others. These studies assume
that the individual agent’s income is subject to both permanent and
transitory shocks. Goodfriend (1992) postulates that the individual agent
lacks contemporaneous information on aggregate shocks.3 Pischke (1995)
supposes that the agent only observes his total income, not individual
components of income. Quah (1990) assumes that the agent observes
both components of the income process, while the econometrician only has
data on the economic agent’s total income. Hansen and Sargent (1991)
contain detailed treatments on estimation and inference of multi-variate linear time
series.
While these studies differ in their informational structure assumptions, they all

postulate that the individual agent’s optimal consumption rule is given by the
permanent-income hypothesis (PIH) of Friedman (1957). The PIH states that
consumption is equal to the annuity value of ‘‘total wealth’’ given by the sum of
financial wealth (cumulative savings) and ‘‘human wealth,’’ the discounted expected
value of future income, using the risk-free rate. This in turn implies that changes in
individual agent’s consumption are not predictable (Hall, 1978). However,
the conditions under which the PIH rule is optimal are quite restrictive and
1See MaCurdy (1982), Hall and Mishkin (1982), Abowd and Card (1989).
2See Zeldes (1989), Deaton (1991), and Aiyagari (1994) for example. Carroll (1997) considers an income

process with both permanent and transitory components. The transitory component is assumed to be

white noise. Therefore, his problem is effectively a univariate problem. Storesletten et al. (2004) study

consumption inequality in an equilibrium overlapping generations model, by postulating an income

process that is given by the sum of the agent’s fixed effect, a permanent component and a transitory

component. As in other papers, they also assume that the agent is able to perfectly observe each individual

components of his income process.
3Goodfriend (1992) shows that the martingale property of consumption will not hold at the aggregate

level due to imperfect information aggregation, even though the martingale property of consumption

holds by assumption at the individual’s level.
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un-realistic.4 Moreover, imposing the PIH rule excludes any possible effect of
estimation risk on consumption, because the PIH rule assumes away any
precautionary motive, by assumption.
Unlike the existing literature, this paper acknowledges incomplete information

about individual components of labor income, and incorporates precautionary
saving motive into an intertemporal consumption model with partially observed
income. Precautionary motive is one of the most fundamental reasons for people to
save, a point mentioned repeatedly in Friedman (1957),5 and first modeled by Leland
(1968) in a two-period setting. Since the pathbreaking work of Hall (1978),
precautionary saving has attracted enormous attention in the consumption
literature.6 Precautionary saving models in the literature have either postulated a
univariate labor income process or simply abstracted away from the issue of
estimation risk, by assuming that individual components of income are observable.
However, the agent often does not have complete information about individual
components of his income. In those cases, forecasting is necessary and inevitably
imperfect. As a result, forecasting error shall naturally affect his saving decision. A
rational precautionary agent (whose marginal utility is convex, (Kimball, 1990))
recognizes this estimation-induced uncertainty and thus increases his saving
optimally for precaution. Intuitively, a higher variance of forecasting error implies
a bigger precautionary saving demand. This paper confirms this intuition in an
intertemporal setting, and quantifies the effect of estimation risk on consumption,
wealth accumulation, and lifetime utility. In a closely related setting, Guvenen (2004)
argues that the individual agent may be uncertain about his own income profile and
thus faces a signal extraction problem. Guvenen (2004) finds empirically that
individual income persistence is substantially lowered after taking the partial
observability of the individual’s income profile. His analysis provides empirical
evidence on the relevance of estimation risk of the individual income process forthe
agent’s consumption saving decisions.
In order to show that estimation risk gives rises to additional precautionary saving

in a simple and tractable model, I assume that (i) the agent has time-additive
expected constant-absolute-risk-averse (CARA) utility as in Caballero (1991), and
(ii) the joint dynamics of his unobservable bi-variate income process is a
conditionally homoskedastic Gaussian process. The CARA-utility-based model is
able to capture the precautionary motive in an analytically tractable way.7 The
4To justify the PIH in an intertemporal framework, we need to assume both (i) quadratic utility, to turn

off precautionary motives (Hall, 1978), and (ii) equality between the subjective discount rate and the

interest rate, in order to rule out the dis-saving for lack of patience. Neither assumption is plausible.

Motivated by this observation, Wang (2003) shows that the PIH rule may also be obtained in a general

equilibrium (Bewley-style) model with ex ante identical, but ex post heterogenous agents. Each agent in

that economy solves a Caballero-style precautionary saving model.
5It is interesting to note that Milton Friedman’s most known contribution to the consumption literature

is the PIH consumption rule, which exactly ignores precautionary saving motive.
6See Caballero (1990, 1991), Zeldes (1989), Deaton (1991), Carroll (1997), and Gourinchas and Parker

(2002). See Deaton (1992) and Attanasio (1999) for surveys.
7See Caballero (1990, 1991), Kimball and Mankiw (1989), Merton (1971), and Wang (2004) for

explicitly-solved consumption rules with CARA utility and uninsurable labor income.
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assumption of a conditionally homoskedastic Gaussian labor income process
substantially simplifies the estimation of individual components of income, without
losing the essential economic insight. In addition to these convenient features, this bi-
variate income model is also flexible and rich enough to capture any magnitude of
persistence for, and any degree of correlation between, the two individual
components of income.
Unlike the optimal consumption problem when the agent has complete

information about the individual components of his income (the state variables),
the agent’s optimization problem is no longer recursive, when he only partially
observes his bi-variate income process. As a result, the original representation of the
optimization problem does not land itself into a recursive structure and thus
substantially complicates the analysis of the optimal consumption rule. This paper
makes a methodological contribution to the consumption-saving literature by
introducing a procedure to convert the original incomplete-information non-
recursive optimization problem into a recursive formulation and then to derive the
optimal consumption rule using dynamic programming approach. Specifically, the
agent may decompose his original incomplete-information optimal consumption-
saving problem into two sub-problems: (i) the signal extraction problem and (ii) an
optimization problem in which he treats the estimated individual components of
income as underlying state variables for his bi-variate income. I show that this two-
step procedure is optimal, because the dynamics for the estimated individual
components of income contains identical information as the original non-recursive
incomplete information setting does. That the two-step procedure is optimal and
equivalent to the original non-recursive optimization problem under incomplete
information is known as the separation principle. The Kalman filter technique used
in the signal extraction process allows us to derive an explicitly solved dynamics for
the optimal estimate of individual components of income and thus substantially
simplifies our analysis. While I have introduced the two-step methodology by
working with a bi-variate income process (with total income observed), the
methodology may also be applied to other settings. For example, if the agent
observes his total income with noise, he then naturally also faces an optimization
problem with partially observed income, the same methodology adopted in this
paper may be applied to such a problem.8

The remainder of the paper is organized as follows. Section 2 describes the model.
In Section 3, I compute the optimal consumption rule for the benchmark model in
which the agent observes both components of his income. Section 4 derives the
optimal consumption rule when the agent only observes total level, not individual
components, of his income. Section 5 quantifies the precautionary saving premium
due to estimation risk, and calculates the agent’s utility loss from his ignoring the
effect of estimation risk on consumption. Section 6 concludes. Appendices supply
calculational details for key results of the paper.
8Financial economists have studied the optimal asset allocation and asset pricing under incomplete

information. See Dothan and Feldman (1986), Detemple (1986), Gennotte (1986), Wang (1993), Brennan

(1998), and Xia (2001), among others.
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2. The model

An infinitely-lived agent receives a stream of exogenous stochastic labor income
that is subject to two shocks with different degrees of persistence every period. He
only observes his total income, not individual components. The agent smoothes his
consumption over time by borrowing or lending at a positive constant risk-free
interest rate. Thus, markets are not complete with respect to labor-income
innovations. For technical convenience, I cast the model in continuous time.9

The agent receives labor income at time t at the rate yt; which is equal to the sum
of two components:10

yt ¼ wt þ zt; (1)

where

dwt ¼ ðy1 � k1wtÞdt þ s1 dB1ðtÞ; (2)

dzt ¼ ðy2 � k2ztÞdt þ rs2 dB1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
s2 dB2ðtÞ (3)

and r is the instantaneous correlation coefficient between the two individual
components w and z of income. Parameters k1 and k2 measure the persistence of the
respective individual component of the income process. A larger value of k describes
a less persistent process. The first-order autoregressive coefficient in a standard
discrete-time formulation is equal to e�k: Positive and negative k correspond to
stationary process and non-stationary process, respectively. The unit-root process is
characterized by k ¼ 0:
Eqs. (2) and (3) together imply that the dynamics of total income y may be written

as follows:

dyt ¼ ðy� k1wt � k2ztÞdt þDdBðtÞ ¼ ðyþ dwt � k2ytÞdt þDdBðtÞ; (4)

where

y ¼ y1 þ y2; (5)

d ¼ k2 � k1; (6)

n1 ¼ s1 þ rs2; (7)

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
s2 (8)

and D ¼ ðn1 n2Þ: If the two components have the same degrees of persistence ðk1 ¼
k2Þ; then total income y is Markovian and is given by dyt ¼ ðy� k1ytÞdt þDdBðtÞ:
That is, there is no informational gain in estimating individual components, because
the total income y is itself a univariate Markov process. The rest of this paper focuses
on the more realistic and interesting case, in which the two components have
9A discrete-time formulation is available upon request.
10A standard Brownian motion B ¼ ðB1

B2
Þ in R2 is given on a fixed probability space ðO;F;PÞ; along with

the standard filtration F ¼ fFt : tX0g of B; where Ft is the information filtration generated by fBðsÞ :
0psptg; augmented by the null sets in O:
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different degrees of persistence. Without loss of generality, I suppose that w is more
persistent than z, in that k1ok2: Empirical literature often models income as the sum
of (i) a unit-root process and (ii) a moving-average process or a white noise process.11

The current model offers a more flexible and richer specification for the bi-variate
income process. The model not only allows for any different degrees of persistence
for the individual components, but also allows for any degree of correlation between
the two components of income shocks.
The agent’s wealth accumulation equation is

dxt ¼ ðrxt þ yt � ctÞdt; (9)

where r40 and x0 is the given initial asset level. Given his information set, the agent
maximizes his lifetime utility given by

UðcÞ ¼ E

Z 1

0

vðct; tÞdt

� �
; (10)

subject to a transversality condition limt!1 E j e�rtJðxt;wt; ztÞj ¼ 0; where Jðx;w; zÞ
is the corresponding value function for the candidate optimal consumption rule. The
utility has standard exponential discounting, in that vðct; tÞ ¼ e�btuðctÞ; where b40 is
the subjective discount rate. I choose CARA utility, in that uðcÞ ¼ �e�gc=g with g40:
The key message of the model is that estimation risk gives rise to additional
precautionary saving. The CARA utility specification allows us to deliver this result
in an analytically tractable way.
Following Friedman (1957) and Hall (1978), I define human wealth as the expected

present value of future labor income discounted at the risk-free interest rate r, in that

ht ¼ E

Z 1

t

e�rðs�tÞys ds

� ����Gt

�
; (11)

where Gt is the agent’s information set at time t. Note that the above definition of
human wealth makes no adjustment to account for income risk. It simply serves as an
index that converts current and expected future income to a measure of wealth. A
stock measure of wealth for income helps interpreting the optimal consumption rule
in later sections. In order to ensure that human wealth is finite, let r þ ki40 for
i ¼ 1; 2: With positive interest rate, any stationary or unit-root process auto-
matically satisfies r þ k40:
In order to quantify the precautionary saving due to partial observability of

income, I first need to derive the agent’s optimal consumption rule, when he observes
both components of his income. The derived consumption rule under complete
information serves as a starting point for us to analyze the optimal consumption rule
when income is partially observed.
11See MaCurdy (1982), Hall and Mishkin (1982), and Pischke (1995).
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3. Benchmark: complete information

If the agent observes both components of income in that his time-t information set
Gt ¼ Ft; then the three state variables for his optimization problem are wealth x,
individual components w and z of current income. Appendix A shows that the
optimal consumption rule c� is affine in these three state variables, in that

c�t ¼ rðxt þ a1wt þ a2zt þ ā �P�Þ; (12)

where

a1 ¼
1

r þ k1
; (13)

a2 ¼
1

r þ k2
; (14)

ā ¼
1

r

b� r

gr
þ

y1
r þ k1

þ
y2

r þ k2

� �
; (15)

P� ¼
g
2

s1
r þ k1

� �2

þ 2r
s1

r þ k1

� �
s2

r þ k2

� �
þ

s2
r þ k2

� �2
" #

: (16)

Eq. (12) is a generalized two-factor model of Caballero (1990, 1991). In addition to the
features captured in Caballero (1991), my model allows for (i) additional factor of
income; (ii) flexible correlation r between the two components of income; (iii) flexible
parameterizations of persistence k for both components. In order to help understand
the implications of the optimal consumption rule (12), it is useful to express the
optimal consumption (12) in terms of the financial and human wealth (18), in that

c�t ¼ rðxt þ h�
t � b�

Þ; (17)

where

h�
t ¼

1

r þ k1
wt þ

y1
r

� �
þ

1

r þ k2
zt þ

y2
r

� �
(18)

is human wealth as defined in (11) under complete information, P� given in (16)
measures precautionary saving demand, and

b�
¼ P� �

b� r

gr2
: (19)

If the agent is neither relatively patient or impatient, in that b ¼ r; then he has no
incentive to tilt his consumption towards tomorrow or today in expectation. This gives

c�t ¼ rðxt þ h�
t �P�Þ: (20)

If we further rule out precautionary saving, then agent’s consumption is given by the
PIH rule and is given by

cP
t ¼ rðxt þ h�

t Þ: (21)
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If the agent follows the consumption rule specified in (21), he saves only in
anticipation of possible future declines in labor income in the sense of
Campbell (1987). Correspondingly, consumption is a martingale (Hall, 1978). The
difference between (20) and the PIH rule (21) measures the precautionary saving
premium in units of consumption goods when income is perfectly observable and is
given by

cP
t � c�t ¼ rP�; (22)

where P� measures precautionary saving demand. Eq. (22) confirms the intuition that
the precautionary saving demand is larger, for (i) a larger coefficient g of absolute
prudence, (ii) a more volatile income shock, and (iii) a more persistent (lower k) income
process, ceteris paribus. The intuition for (i) and (ii) is obvious. The intuition behind (iii)
is as follows. While volatility parameters s1 and s2 measure income risk (in flow terms),
a precautionary forward-looking agent cares the effect of income shocks not only on the
current income, but also on all the future incomes. A more persistent income shock
takes a longer time to die out and thus induces a stronger precautionary saving demand,
ceteris paribus. Furthermore, a positive (negative) correlation between the two
components of income increases (decreases) the total risk exposure of income risk
and thus naturally induces a larger (smaller) precautionary premium.
This section presents a bi-variate stochastic income process, which allows for

differing degrees of persistence and any degree of correlation between the two
individual components of income, derives analytically the optimal consumption and
saving rules in an intertemporal incomplete-markets setting, and discusses economic
insights behind the predictions on precautionary saving. Having understood how
such a complete information model works, I next introduce partial observability of
income into the model. This partial observability of the income process for the agent
leads to non-trivial implications on his consumption and saving decisions. This is to
which we now turn.
4. Model with incomplete information

This section relaxes the assumption that both components of the income
process are observable and appeals to the more realistic assumption that only total
income is observed by the agent. As a result, the agent cannot precisely separate the
more persistent component from the more transitory component. The inability
to perfectly separate these two components leads to estimation risk, which
refers to uncertainty and error associated with estimating the individual
components of income from total income. The estimation risk naturally
further complicates the agent’s optimization problem, because he needs to choose
his consumption rule, even though he does not observe the individual components of
his income. Moreover, the original optimal consumption-saving problem is not
recursive, because only total income is observed and total income y by itself
is not recursive. (That is, the next period income cannot be specified only as a
function of the current income and the shock.) In order to make the
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problem solvable, we need to reformulate the problem into a recursive one. Indeed,
recursive methods are at the core of modern macroeconomics and economic
dynamics, which are forcefully demonstrated as the unifying principle of modern
macroeconomic analysis in Ljungqvist and Sargent (2004), a leading graduate
textbook in macroeconomics. (The title of the book ‘‘Recursive macroeconomic
theory’’ highlights the importance of recursive methods.)
In order to tackle this non-recursive issue of the optimization problem caused by

the partial observability of income, I propose a procedure that allows us to divide the
agent’s optimality problem into two sub-pieces: a ‘‘signal extraction’’ problem and
an ‘‘optimization’’ problem, and then to link the two pieces together to deliver the
optimal consumption-saving rule via the so-called separation principle. Importantly,
the ‘‘signal extraction’’ step allows us to derive an equivalent recursive representation
of income dynamics, based on the history of total income y. Using this equivalent
recursive representation, I convert the non-recursive optimization problem under
incomplete information to an equivalent optimization problem with recursive
structure. Then, I use the dynamic programming approach to conveniently
characterize the optimal consumption rule. The separation principle verifies the
equivalence between (i) the original non-recursive optimization problem when the
agent only observes his total income and (ii) the newly formulated optimization
problem with recursive structure, where the Markov state variables are obtained
from the signal extraction problem.
First, let me turn to the recursive formulation of the signal extraction problem.
4.1. Optimal estimation of individual components of income

The objective of this section is (i) to propose a recursive formulation that describes
the dynamic evolution of the optimal estimate for the unobserved individual
component of income; and (ii) to show that the dynamics for the optimal estimate
contains identical information as the original information specification under which
the agent observes his total income in each period. I use Kalman filter technique to
derive a recursive scheme for the unobserved individual component of income from a
noisy measure (total income).12 As shown later, the optimal estimate of the
unobserved state variable plays a crucial role in solving the agent’s optimization
problem. At this stage, we may simply focus on the recursive procedure of optimally
extracting signals (individual components wt and zt of income) out of total current
income yt; the noisy measure of individual components of income. Appendix B
provides a detailed seven-step procedure for obtaining a recursive formulation for
estimating the individual components of income.
12A classic example of the signal extraction problem in economics literature is Lucas (1973), a seminal

paper on rational expectation. Muth (1960) rationalizes the ‘‘adaptive’’ expectations proposed in Cagan

(1956) and Friedman (1957) by posing and solving an ‘‘inverse optimal estimation’’ problem. Muth (1960)

solves this problem using classical (non-recursive) methods. See Ljungqvist and Sargent (2004) for a

textbook discussion on the discrete-time formulation of the Kalman filter technique and applications to

economics problems.
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First, I form the state-space representation of the individual component of income
by stacking (2) and (4) together. This gives

d
wt

yt

� �
¼

y1
y

� �
þ

�k1 0

d �k2

� �
wt

yt

� �� �
dt þ

s1 0

n1 n2

� �
d

B1ðtÞ

B2ðtÞ

� �
; (23)

where y; d; n1; and n2 are given in (5), (6), (7), and (8), respectively. Note that while
ðwt

yt
Þ is recursive, total income y by itself is not recursive. That is, only observing

current income y does not allow us to predict the next period income directly from
(23), because the agent does not observe w. Thus, when income is only partially
observed, we no longer have a recursive structure for the underlying bi-variate
income process conditioning on the agent’s information set. This substantially
complicates the agent’s optimal consumption-saving problem, because we are not
able to write down the Bellman equation characterizing the agent’s inter-temporal
trade-off for a non-recursive dynamic problem. The signal extraction problem to be
introduced in this section is essential in converting the non-recursive optimization
problem into a recursive one.
Before delving into the details of solving the recursive signal extraction problem, I

first define a few conditional expectations that will be used.Let mt and nt be the
conditional expectations of wt and zt given F

y
t ; respectively, in that mt ¼ Eðwt jF

y
t Þ

and nt ¼ Eðzt jF
y
t Þ: Let SðtÞ be the forecasting variance of ðwt

zt
Þ; in that

SðtÞ �
S11ðtÞ S12ðtÞ

S21ðtÞ S22ðtÞ

� �
¼ E

wt � mt

zt � nt

� �
wt � mt zt � nt

� �� �
:

Obviously, the sum of current estimates of both components must add up to the
realized total income y, in that mt þ nt ¼ yt: Otherwise, the estimation procedure
cannot be optimal. The simple identity wt � mt ¼ �ðzt � ntÞ implies that

SðtÞ ¼ E
wt � mt

�ðwt � mtÞ

� �
wt � mt �ðwt � mtÞ
� �� �

¼
1 �1

�1 1

� �
S11ðtÞ;

where S11ðtÞ ¼ Eðwt � mtÞ
2: Therefore, S11ðtÞ completely characterizes the covar-

iance matrix SðtÞ: For this conditionally homoskedastic Gaussian income process,
estimation risk is fully captured by S11ðtÞ:
Kalman filter signal extraction technique provides a recursive structure to

optimally estimate the unobserved underlying state variable (the individual
components w and z of income) as accurately as possible by minimizing the
estimation error (in the mean square sense). For a linear Gaussian system such as the
bi-variate Ornstein–Uhlenbeck income process, the optimal estimate is the best linear

estimate. Since estimation must be based on the observables, the agent thus needs to
project the changes of the unobserved state variables (individual components w and z

of income) onto the changes of the observed state variable (total income y). This
projection procedure gives the optimal estimate m and n for the unobserved
individual components w and z of income. The difference between the realized level
of the changes in the observed total income y and the expected changes in total
income gives rise to the error term from this projection. This error term represents
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unexpected changes of total income, dubbed as ‘‘innovations.’’ This innovation
serves as the shock (a Brownian motion in this continuous-time setting) to the
optimal estimate ðm

n
Þ of the individual components of income. Casting the dynamics

of the optimal estimate using this innovations process gives rise to the recursive
structure of the optimal estimate, the objective of the Kalman filter technique.
Next, I construct this ‘‘innovations’’ process from total income y and then to

represent the optimal estimates m and n in terms of this newly constructed
innovations process. In Appendix B, I show that the innovations process Z is a
Brownian motion and the dynamics for Z is given by

dZðtÞ ¼
1

n
½dyt � ðyþ dmt � k2ytÞdt�; (24)

where

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ 2s12

q
(25)

and s12 ¼ rs1s2 is the instantaneous covariance between w and z, the two individual
components of income. Over a small time interval Dt; the innovation ðZðt þ DtÞ �

ZðtÞÞ is proportional to the unexpected changes in total income y, which is given by
the difference between ðytþDt � ytÞ and ðyþ dmt � k2ytÞDt; where ðytþDt � ytÞ is the
actual changes in total income and ðyþ dmt � k2ytÞDt is the expected changes in total
income. Thus, (24) captures the notion of innovations, which describe ‘‘unexpected’’
changes or surprises given the agent’s information set. The parameter n normalizes
the conditional variance of this ‘‘unexpected’’ changes so that Z is a Brownian
motion process.13 The innovations process Z essentially plays the role as the ‘‘shock’’
to the optimal estimates m and n as shown below.
In Appendix B, I show that the dynamics of the optimal estimate mt for the

unobserved individual component wt is given by

dmt ¼ ðy1 � k1mtÞdt þ G1ðtÞdZðtÞ (26)

with m0 ¼ Eðw0Þ and where

G1ðtÞ ¼
1

n
ðdS11ðtÞ þ s21 þ s12Þ: (27)

The key ideas used in deriving dynamics for the optimal estimate mt are (i) the
optimal estimate mt may be written as a linear combination of the history of
innovations DZ up to time t; and (ii) the residual ðwt � mtÞ is orthogonal to any FZ

t

measurable functions. (This orthogonality condition builds on the statement that m

is the optimal estimate of the unobservable individual component w of income:
mt ¼ EðwtjF

y
t Þ and (ii) the law of the iterated expectations.) I refer readers to

Appendix B for detailed derivations for (26). Using the identity y ¼ m þ n; (26), and
the innovations process Z given in (24), we have

dnt ¼ ðy2 � k2ntÞdt þ G2ðtÞdZðtÞ (28)
13Recall that standard Brownian motion process has a standard normal distribution over a unit time

interval.
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with n0 ¼ Eðz0Þ and where

G2ðtÞ ¼
1

n
ð�dS11ðtÞ þ s22 þ s12Þ: (29)

Eqs. (26) and (28) show that the innovations process Z drives the dynamics for both
m and n. Together, Eqs. (26), (28) and (24) are often dubbed the innovations
representation for ðm

n
Þ: We note that the functional forms for the drift of the optimal

estimate m and the drift of the unobserved individual components of income w are
the same and are given by f ðuÞ ¼ y1 � k1u; where u ¼ w or u ¼ m: In particular, the
degrees of persistence for both m and w are measured by the same parameter k1:
However, the volatility parameters for mt and wt are different. While the volatility
parameter for wt is equal to s1; the instantaneous volatility for the optimal estimate
mt; G1ðtÞ; is in general different from s1 and is time-varying. Specifically, the
conditional volatility G1ðtÞ depends on the forecasting variance S11ðtÞ:
In Appendix B, I provide detailed derivations for the evolution of the forecasting

variance S11ðtÞ and show that S11ðtÞ solves the following Riccati equation:

dS11ðtÞ

dt
¼ �2k1S11ðtÞ þ ½s21 � G1ðtÞ

2
� (30)

with a given initial value S11ð0Þ ¼ Eðw0 � m0Þ
2: Intuitively, the first term in (30)

captures the forecasting variance reduction effect due to mean reversion of the un-
observed individual component w. The rate of this variance reduction is bigger for a
less persistent process (a higher k1). The other term ½s21 � G1ðtÞ

2
� measures the

difference between time-t conditional variance for wt and time-t conditional variance
for its optimal estimate mt: The closer these two conditional variances are, the lower
the estimation error at time t, and thus a smaller effect on the evolution of the
conditional forecasting variance S11ðtÞ: Obviously, similar comparisons (for both the
drift and volatility components) between the optimal estimate n and the associated
underlying un-observed component z also apply.
Over time, for a stationary income process (k140 and k240), the forecasting

variance S11ðtÞ converges to the steady-state level S11ð1Þ: To simplify notations for
the later derivations, I will focus on the steady-state variance14 of forecasting error.
Setting dS11ðtÞ=dt ¼ 0 gives

S11ð1Þ ¼
1

d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ ð1� r2Þs21s

2
2d

2
q

�Y
� �

; (31)

where

Y ¼ k1s22 þ k2s21 þ ðk1 þ k2Þrs1s2: (32)

At the steady state (SðtÞ ¼ Sð1Þ for all t), the joint dynamics of the optimal
estimate ðmt

nt
Þ may be written as

d
mt

nt

� �
¼

y1
y2

� �
þ

�k1 0

0 �k2

� �
mt

nt

� �� �
dt þ

L1

L2

� �
dZðtÞ; (33)
14The time varying conditional variance is interesting in a life-cycle model. See discussions in Section 6.
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where

L1 ¼ G1ð1Þ ¼
1

n
ðdS11ð1Þ þ s21 þ s12Þ;

L2 ¼ G2ð1Þ ¼
1

n
ð�dS11ð1Þ þ s22 þ s12Þ:

It is easy to show that n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q
¼ L1 þ L2: The parameters L1 and L2 are the

long-run volatility parameters for the optimal estimates m and n, respectively. While
the drift functions are the same for ðm

n
Þ and ðw

z
Þ; the stationary covariance matrix of

ðm
n
Þ differs from that of ðw

z
Þ: Let O be the stationary covariance matrix for ðw

z
Þ; and Ô

be the stationary covariance matrix for ðm
n
Þ under the innovations representation,

respectively. Using the properties of the bi-variate Ornstein–Uhlenbeck process
gives15

O � lim
t!1

E
wt � w̄

zt � z̄

� �
wt � w̄ zt � z̄
� �� �

¼

s2
1

2k1
s12

k1þk2

s12
k1þk2

s2
2

2k2

0
B@

1
CA; (34)

Ô � lim
t!1

E
mt � w̄

nt � z̄

� �
mt � w̄ nt � z̄
� �� �

¼

L2
1

2k1
L1L2
k1þk2

L1L2
k1þk2

L2
2

2k2

0
B@

1
CA; (35)

where w̄ ¼ y1=k1 is the long-run mean of w and m, and z̄ ¼ y2=k2 is the long-run
mean of z and n.
Using variance decomposition, I show that the forecasting covariance matrix S is

equal to the difference between the stationary covariance matrix O for the underlying
state vector ðwt

zt
Þ and the stationary covariance matrix Ô for the underlying state

vector ðmt
nt
Þ; in that Sð1Þ ¼ O� Ô: In order to highlight the basic intuition behind

this result implied by variance decomposition, I briefly consider the analysis for
S11ð1Þ: First, note that

Eðwt � w̄Þ2 ¼ E½ðwt � mtÞ
2
þ ðmt � m̄Þ

2
� (36)

using E½ðwt � mtÞ jF
y
t � ¼ 0; w̄ ¼ m̄; and the law of iterated expectations. Using the

definition for the stationary forecasting variance S11ð1Þ ¼ limt!1 Eðwt � mtÞ
2 and

taking the limit t ! 1 on both sides of (36) give

S11ð1Þ ¼ lim
t!1

Eðwt � mtÞ
2
¼ lim

t!1
Eðwt � w̄Þ2 � lim

t!1
Eðmt � m̄Þ

2;

¼ O11 � Ô11 ¼
s21 � L2

1

2k1
40; ð37Þ

where the first line follows from re-arranging (36) and the second line uses results on
stationary variance for the Ornstein–Uhlenbeck process. Eq. (37) implies that
observing total income y helps forecasting individual component w of income, in that
15Interchanging limits and expectation is justified in such contexts because of dominated convergence

theorem.
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L1os1; and the difference between long-run stationary variance of w and that of m is
the stationary variance of estimation error w � m; based on only observing total
income y. Similar analyses give the following simple formulae for S22ð1Þ and
S12ð1Þ:

S22ð1Þ ¼
s22 � L2

2

2k2
; (38)

S12ð1Þ ¼
s12 � L1L2

k1 þ k2
: (39)

Recall that S22ð1Þ ¼ S11ð1Þ and S12ð1Þ ¼ �S11ð1Þ: Negative covariance S12ð1Þ

reflects the fact that a higher estimate m for w must imply a lower estimate n for z, for
a given observed total income y.
Estimating the individual components of the underlying income process is the first

step towards solving the optimal consumption problem. Next, I show that the
complicated optimization problem under incomplete information may be decom-
posed into two steps: (i) to estimate the underlying individual components of income
process; and (ii) to solve the optimization problem by treating the estimated
individual components of income as state variables. I show that this two-step
procedure is optimal by applying the separation principle,16 to be introduced in the
next subsection.

4.2. Separation principle

Before introducing the separation principle, I briefly restate the agent’s
intertemporal consumption-saving problem:

sup
c

E

Z 1

t

e�bðs�tÞuðcsÞds

� ����Fy
t

�
; (40)

subject to the wealth accumulation equation dxt ¼ ðrxt þ yt � ctÞdt and the
transversality condition specified in Appendix A. The optimization problem is also
subject to what the agent knows and observes about his income process. Specifically,
the agent knows the dynamic structure of his bi-variate income process,
characterized by persistence parameters k1 and k2; second-moment parameters s1;
s2; and r; and drift parameters y1 and y2 in the income process; however he does not
observe w and z, the individual components of income. He only observes the history
of his total income y. The complication of the optimization problem (40) to a large
extent is due to the fact that total income y is not recursive with respect to F

y
t ; the

agent’s information set.17

Fortunately, the information set F
y
t is equivalent to FZ

t ; the information set
(filtration) generated by fZðsÞ : 0psptg; where dynamics of the innovations process
16See Fleming and Rishel (1975) and Liptser and Shiryayev (1977) for technical details.
17Recall that the dynamics of total income y is given by dyt ¼ ðyþ dwt � k2ytÞdt þDdBðtÞ: Because the

dynamics of total income y depends on its own value and also the unobservable individual component w,

the total income process y itself is not recursive.
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Z is given in (24). For the ease of reference, I reproduce (33), dynamics for the
optimal estimate ðmt

nt
Þ; under the innovations representation:

d
mt

nt

� �
¼

y1
y2

� �
þ

�k1 0

0 �k2

� �
mt

nt

� �� �
dt þ

L1

L2

� �
dZðtÞ: (41)

Unlike total income y who dynamics is not recursive under incomplete information,
the optimal estimate ðm

n
Þ has a recursive dynamic structure with respect to FZ

t : In
Section 4.1 and Appendix B, using the Kalman filter technique, I show that the
dynamics for the optimal estimate ðmt

nt
Þ is linear Gaussian (following an

Ornstein–Uhlenbeck process), because the underlying unobservable state dynamics
for ðwt

zt
Þ is linear with Gaussian shocks18 and the observation equation (for total

income) is linear in the underlying state variable ðy ¼ w þ zÞ: Moreover, the Kalman
filter technique also implies that the representation (41) contains identical
information as the original state-space representation (23). Luckily, the innovations
representation (41) is substantially easier to work with than the state-space
representation (23), due to the recursive feature of the optimal estimate ðm

n
Þ in (41).

A simple version of the separation principle states that if (i) the underlying state
dynamics is a linear Gaussian process in both state and control variables, (ii) the
observation equation is linear in the underlying unobservable state variables, and
(iii) the agent’s utility function depends on the control variable,19 then the optimal
control problem with incomplete information about the state variables may be
equivalently solved in two stages: (i) to solve the signal extraction problem for the
unobservable individual components of income as in Section 4.1, and then (ii) to
derive the optimal consumption rule by treating the optimally estimated individual
components of income as part of the state variables. Importantly, the two-step
solution procedure is optimal.
My model is a straightforward application of the separation principle stated

above. Specifically, the separation principle implies that the agent’s optimization
problem (40) presented at the beginning of this section may be equivalently
formulated as follows:

sup
c

E

Z 1

t

e�bðs�tÞuðcsÞds

� ����FZ
t

�
; (42)

subject to the bi-variate process (41) for the optimal estimate ðmt
nt
Þ; the wealth

accumulation equation20dxt ¼ ðrxt þ mt þ nt � ctÞdt; and the transversality condi-
tion specified in Appendix A.
I now provide the arguments behind the separation principle as applied to this

setting. An optimization problem in general specifies the following three
components: (i) the objective function; (ii) the agent’s information set; and (iii) the
18The equivalent representation for the dynamics of ðwt
zt
Þ in discrete time is a first-order bi-variate

autoregressive process.
19A more general statement of the separation principle allows the objective function to depend on the

underlying unobservable state variable. See Fleming and Rishel (1975) for details.
20Plugging the identity y ¼ m þ n into the wealth accumulation equation gives dxt ¼ ðrxt þ mt þ nt �

ctÞdt:
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constraints and laws of motions. If I show that two optimization problems are
identical in all three components, then these two optimization problems are
equivalent. I now check that these three components in (a) the optimal consumption
problem under incomplete information and (b) the recursive optimal consumption
problem using the optimal estimate as the underlying state variables, are equivalent.
First, the objective functions in (40) and (42) only depend on consumption and are
the same. Second, the agent’s information setF

y
t generated by the history of his total

income is equivalent to FZ
t ; the information set generated by the history of

innovations Z. Finally, the original state-space representation (23) and the
innovations representation (41) are mathematically equivalent as discussed earlier
and shown in detail in Appendix B. Therefore, the non-recursive optimization
problem (40) is equivalent to the recursive optimization problem (42), as implied by
the separation principle.
I have intentionally chosen to present a ‘‘simple’’ version of the separation

principle and then apply it to justify the transformation of the original non-recursive
optimization problem into a recursive formulation, in order to deliver the intuition
of the separation principle as applied here in the simplest possible setting. However,
it is worth noting that the separation principle is more general that the ‘‘simple’’
version, which is stated and used in this section. For example, the agent’s preference
in our model only depends on consumption, the control variable. However, the
separation principle allows the objective function to depend on both the control
variable and the unobserved state variables. For further details on the separation
principle, see Fleming and Rishel (1975) and Liptser and Shiryayev (1977).
I now apply the separation principle and explicitly solve for the optimal

consumption-saving rule for the equivalent recursive optimization problem (42).
4.3. Optimal consumption

I conjecture the value function in the same way as in Section 3. This optimization
problem is now recursive in three state variables: wealth x, and the optimal estimates
m and n for the individual components of income. Thus, we may apply the dynamic
programming approach to derive the optimal consumption-saving rule. Recall that
L1 and L2 are the volatility parameters in the innovations representation (33). Both
estimated individual components of income mt and nt are driven by the same one-
dimensional innovation Z, and thus instantaneously, m and n are perfectly
correlated, as seen from (41). Appendix A verifies that the optimal consumption
rule under incomplete information takes the following form

ct ¼ rðxt þ a1 mt þ a2 nt þ ā �PÞ; (43)

where a1 ¼ 1=ðr þ k1Þ; a2 ¼ 1=ðr þ k2Þ;

P ¼
g
2

L1

r þ k1
þ

L2

r þ k2

� �2

(44)

and ā is given in (15).
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Note that the optimal consumption rule (43) under incomplete information differs
from the optimal consumption rule (12) under complete information along two
dimensions: (i) the underlying state variables and (ii) the functional form of the
consumption rules. The underlying state variables differ in the complete-information
benchmark and in the incomplete-information model because the agent’s informa-
tion sets are different in these two settings. More interestingly, the consumption rules
also differ (even after replacing the optimal estimates m and n with their respective
underlying individual components of income w and z). This difference of
consumption rules essentially accounts for the additional precautionary saving
induced by estimation risk. I will return to this point and discuss it more thoroughly
in the next section.
Using the law of iterated expectation, the human wealth may be calculated as

follows:

ht ¼ Et

Z 1

t

e�rðs�tÞys ds

� ����Fy
t

�
¼ E½Eðh�

t jFtÞ jF
y
t � ¼ Eðh�

t jF
y
t Þ

¼
1

r þ k1
mt þ

y1
r

� �
þ

1

r þ k2
nt þ

y2
r

� �
; ð45Þ

where h�
t is the human wealth under complete information, given in (18). The

optimal consumption rule (46) may also be expressed in terms of financial and
human wealth (45), in that,

ct ¼ rðxt þ ht � bÞ; (46)

where

b ¼ P�
b� r

gr2
(47)

and P is given in (44). Therefore, rP is the precautionary saving demand measured
in units of consumption goods, when income is partially observable, following the
same line of analysis in Section 3. Recall that the precautionary saving demand is
rP�; under complete information. Intuitively, this difference between rP and rP� is a
measure for the amount of precautionary saving due to estimation risk. The next
section formalizes this intuition and analyzes the effect of incomplete information
about individual components of income on the agent’s consumption, wealth, and
lifetime utility.
5. Estimation-risk-induced precautionary saving

In order to quantify the agent’s precautionary saving due to estimation risk, I
naturally need a ‘‘reference’’ model in which the agent does not have precautionary
saving motive for estimation risk, and behaves otherwise in the same way as the
agent of Section 4. These considerations lead to the following choice of the
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‘‘reference’’ model. I suppose that the behavior of the agent in the ‘‘reference’’ model
follows the two-step procedure: (i) derive the consumption rule assuming that he
observes both components w and z of his income y, and then (ii) replace both w and z

in (17) with their best estimates m and n, respectively. The first step is the identical
analysis of Section 3. The second step uses the outcome of the signal extraction
problem in Section 4.1 to evaluate the policy function (17) derived in step (i).
However, in the ‘‘reference’’ model, the agent estimates individual components of his
income, only for the purpose of evaluating his already-derived consumption rule
(which is optimal only under complete information). As a result, the agent in the
‘‘reference’’ model ignores the component of precautionary saving due to estimation
risk.21

Because the agent has precautionary motive (convex marginal utility) in the
‘‘reference’’ model, he thus saves for the usual precautionary motive.22 The
difference between the incomplete-information model of Section 4.3 and the
‘‘reference’’ model is that the agent in the former environment takes the estimation
risk into account in making his consumption decision, while the agent in the
‘‘reference’’ model does not take estimation risk into account in forming his
consumption rule. That is, the sequence of (i) deriving the optimal consumption rule
and (ii) estimating individual components of income differs in the fully optimizing
model and in the ‘‘reference’’ model.
As a result, the consumption rule in the ‘‘reference’’ model may be written as

ĉt ¼ Eðc�t jGtÞ ¼ Eðc�t jF
y
t Þ ¼ rðxt þ a1mt þ a2nt þ ā �P�Þ; (48)

where c�t is given by (17) and F
y
t is the information set generated by fys : 0psptg:

Using (12) and (45), (48) may be represented as follows:

ĉt ¼ rðxt þ ht � b�
Þ; (49)

where ht is human wealth for the case of partially observed income and is given in
(45), and b� is given in (19).
The difference between (46) and (49) measures the additional saving demand, that

is attributable to estimation risk. Let Xt denote the difference between ĉt and ct;
assuming the wealth levels are the same, in that

Xt ¼ ĉt � ct ¼ ĉtðxt;mt; ntÞ � cðxt;mt; ntÞ:

Precautionary saving due to estimation risk is shown below to be constant, in that

Xt � X ¼ rðP�P�Þ ¼
gr

2
½ða1L1 þ a2L2Þ

2
� ða21s

2
1 þ a22s

2
2 þ 2ra1a2s1s2Þ�

¼
gr

2
½a21ðL

2
1 � s21Þ þ a22ðL

2
2 � s22Þ þ 2a1a2ðL1L2 � s12Þ�
21I do not use the complete-information benchmark model as the ‘‘reference’’ model because the

underlying state variables in complete-information and incomplete-information models are different. The

proposed ‘‘reference’’ model in this context is as close as possible to the complete-information benchmark

model.
22Recall that (17) is the optimal consumption rule for an agent with convex marginal utility e�gc:
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¼ gr½�k1a21S11ð1Þ � k2a22S22ð1Þ � ðk1 þ k2Þa1a2S12ð1Þ�

¼ gS11ð1Þ
rd

ðr þ k1Þðr þ k2Þ

� �2

; ð50Þ

where S11ð1Þ is given in (31). The above derivations use (37), (38), (39), and the
relationship S11ð1Þ ¼ S22ð1Þ ¼ �S12ð1Þ: Plugging (31) into (50) gives

X ¼ g
r

ðr þ k1Þðr þ k2Þ

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ ð1� r2Þs21s

2
2d

2
q

�Y
� �

; (51)

where Y ¼ k1s22 þ k2s21 þ ðk1 þ k2Þrs1s2; as given in (32). Precautionary
saving X due to estimation risk is higher for a larger value of S11ð1Þ; ceteris

paribus.
Intuitively, higher volatility of individual components of income (bigger s1

or s2) leads to a larger estimation risk, in that dS11ð1Þ=dsi40; ceteris

paribus. Therefore, precautionary saving X due to estimation risk increases in s1
and s2; in that23

dX
ds1

¼ g
r

ðr þ k1Þðr þ k2Þ

� �2 d2ðs1L2 � rs2L1ÞL2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 1� r2ð Þs21s

2
2d

2
q 40; (52)

dX
ds2

¼ g
r

ðr þ k1Þðr þ k2Þ

� �2 d2ðs2L1 � rs1L2ÞL1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 1� r2ð Þs21s

2
2d

2
q 40: (53)

A larger correlation coefficient r between w and z implies that y is a more precise
signal of w, and therefore leads to a lower estimation risk S11ð1Þ; ceteris paribus, in
that dS11ð1Þ=dro0: Thus, precautionary saving X due to estimation risk shall
decrease in correlation coefficient r; as confirmed below

dX
dr

¼ �g
r

ðr þ k1Þðr þ k2Þ

� �2 d2s1s2L1L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ ð1� r2Þs21s

2
2d

2
q o0: (54)

Obviously, a larger coefficient g of absolute prudence implies larger precautionary
saving demand X due to estimation risk, ceteris paribus.
So far, I have assumed that the wealth level x is the same in both the full

optimization model and the naive reference model. Therefore, precautionary saving
measured in terms of consumption goods is constant for any t. However, I have side-
stepped from the effect of wealth accumulation on consumption. Consider the
following setup. Two agents A and B are endowed with the same initial level of
wealth x0 at time 0. Agent A follows the optimal consumption rule (43) from time 0
23The inequalities of (52) and (53) use L1os1; L2os2; and L1L24s12:
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Fig. 1. Consumption and wealth differences over time.
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and onward. As a result, his wealth at time t is given by

xA
t ¼ x0 þ

Z t

0

ðrxA
s þ ms þ ns � csÞds

¼ x0 þ

Z t

0

½k1a1ms þ k2a2ns � rðā �PÞ�ds

¼ x0 � rðā �PÞt þ

Z t

0

ðk1a1ms þ k2a2nsÞds: ð55Þ

Agent B lives in the ‘‘reference’’ model, adopting the naive consumption rule ĉ of
(48) from time 0 to t. His wealth at time t is given by

xB
t ¼ x0 þ

Z t

0

ðrxB
s þ ms þ ns � ĉsÞds

¼ x0 � rðā �P�Þt þ

Z t

0

ðk1a1ms þ k2a2nsÞds: ð56Þ

A comparison between (55) and (56) implies

xB
t � xA

t ¼ rðP� �PÞt ¼ �Xt: (57)

Over time, precautionary saving demand X due to estimation risk makes Agent A,
who follows the optimal consumption rule, richer and richer over time than Agent B,
who does not have precautionary saving motive for estimation risk. The left diagram
of Fig. 1 plots (57), the linear relationship of ðxB

t � xA
t Þ over time.24
24The annual interest rate is set at 4%, and the precautionary saving X dues to estimation risk is chosen

to be .16.
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The difference between consumption of Agent A and that of Agent B at time t is
given by

cB
t � cA

t ¼ rðxB
t � xA

t Þ þ X ¼ ð1� rtÞX: (58)

Precautionary saving due to estimation risk has both direct and indirect effects on
consumption, as seen from (58). The direct effect leads to a lower consumption level for
Agent A than for Agent B, for the same wealth level (xA

t ¼ xB
t ). The indirect wealth-

accumulation effect leads to a higher level of wealth for Agent A than for Agent B, as
seen from (57). However, during early stages of life, there is little difference in wealth
level from adopting different consumption rules. Thus, direct effect dominates the
indirect effect, and cB

t 4cA
t ; for to1=r: After passing age t ¼ 1=r; wealth of Agent A,

who follows the optimal consumption rule (43), is sufficiently larger than wealth for the
naive Agent B. Therefore, indirect wealth-accumulation effect has a larger impact on
consumption from t ¼ 1=r and onward. The right diagram of Fig. 1 plots (58), the
difference between consumption by Agent B and Agent A over time.
Fig. 1 shows the effect of precautionary saving due to estimation risk on wealth

and consumption over time. Naturally, the next step is to quantify the utility loss for
the agent who ignores the effect of estimation risk on consumption. Consider Agent
B in ‘‘reference’’ model who follows the naive consumption rule (48) for all time tX0:
Let UB be the lifetime utility for Agent B. Let UA be the value function for Agent A,
who takes estimation risk into account in forming his consumption decision and thus
derives the optimal consumption rule (43). That is, UA ¼ V ðx0;m0; n0Þ where
V ðx;m; nÞ is given in (A.12). Appendix C shows that

UBðx0;m0; n0Þ ¼ UA 1

1� gX
e�gX: (59)

Note that e�gX41� gX: Together with UA ¼ V ðx0;m0; n0Þo0; (59) implies UBoUA:
Eq. (59) confirms the theoretical prediction that an agent following naive
consumption rule has lower utility than an agent following optimal consumption
rule. Next, I convert the total utility loss implied by (59) into a measure of wealth
equivalent. I define the compensating variation ZB as the additional amount of wealth
needed at time 0 in order for an agent who adopts naive consumption rule (48) to
have the same utility level attainable by adopting the optimal consumption rule (43).
That is, compensating variation ZB solves the following equation:

UA ¼ V ðx0;m0; n0Þ ¼ UBðx0 þ ZB;m0; n0Þ

¼ V ðx0 þ ZB;m0; n0Þ
1

1� gX
e�g X; ð60Þ

where the last equality follows from (C.13). Solving (60) gives

ZB ¼ �
1

gr
½gXþ logð1� gXÞ�40: (61)

Fig. 2 plots ZB against precautionary saving X due to estimation risk.25

Compensating variation ZB is increasing and convex in X: Intuitively, a higher
25The coefficient g of absolute risk aversion is taken to be 3, and the annual interest rate is set at 4%.

The range of X is from 0 to the (unattainable) upper bound 1=g; required by Condition C.12.
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Fig. 2. Compensating variation and consumption difference over time.

N. Wang / Journal of Monetary Economics 51 (2004) 1645–16811666
precautionary saving X due to estimation risk implies a bigger utility loss from
ignoring the estimation risk on consumption, and therefore leads to a higher
compensating variation ZB: Furthermore, a unit increase in X has a larger effect on
compensating variation ZB at higher level of X; ceteris paribus.
I now compare the implications of optimal policy function (43) with those of the

PIH models with partially observed income. In PIH models such as that of Pischke
(1995), the agent has no precautionary saving motive at all, in thatP ¼ 0: Therefore,
estimating the individual components of income first or not yields the same
consumption rule as implied by the linear-quadratic certainty-equivalence princi-
ple.26 Suppose Agent P follows the PIH rule, and only observes his total income y.
The difference between consumption of Agent A and that of Agent P is then given by

cPðxP
t ;mt; ntÞ � cAðxA

t ;mt; ntÞ ¼ rðxP
t � xA

t Þ þP ¼ ð1� rtÞP; (62)

where cP and cA are the PIH consumption rule and optimal consumption rule (43),
respectively, and xP

t and xA
t are wealth levels of Agent P and Agent A at time t,

respectively. By definition, Agent P and Agent A start with the same initial wealth
levels x0 at time 0. Eq. (62) states that (i) for tp1=r; the optimal consumption rule
(43) gives a lower consumption level than the PIH rule does, because of the agent’s
precautionary motive; and (ii) for t41=r; Agent A consumes more than the PIH
agent, because Agent A’s accumulated wealth is sufficiently large thanks to his
26See Ljungqvist and Sargent (2004) for a textbook treatment of certainty equivalence principle.
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precautionary preference. Let UP be the lifetime utility for Agent P, who adopts the
PIH consumption rule at all times.
I define the compensating variation ZP as the additional amount of wealth needed

at time 0 in order for an agent who adopts the PIH consumption rule (D.2) to have
the same utility level attainable by adopting the optimal consumption rule (43). That
is, compensating variation ZP solves the following equation:

UAðx0;m0; n0Þ ¼ UPðx0 þ ZP;m0; n0Þ: (63)

Appendix D shows that

UPðx0 þ ZP;m0; n0Þ ¼ UAðx0 þ ZP;m0; n0Þ
1

1� grP
e�grP; (64)

where UAðx0 þ ZP;m0; n0Þ ¼ V ðx0 þ ZP;m0; n0Þ: Solving (63) and (64) jointly gives

ZP ¼ �
1

gr
½grPþ logð1� grPÞ�40: (65)

It is easy to verify the compensating variation ZP is larger than ZB:
27 The intuition is

that the naive consumption rule (48) in the ‘‘reference’’ model only incorporates part of
precautionary saving demand into account, and ignores the effect of estimation risk. As
a result, adopting the naive consumption rule (48) lowers the agent’s utility. The utility
loss is smaller compared with the utility loss if the agent adopts the PIH rule. The
intuition is straightforward. Adopting the naive consumption rule (48) ignores the
effect of estimation risk on consumption, while adopting the PIH rule ignores both the
effects of standard income risk and income estimation risk on consumption.

6. Conclusions

This paper studies optimal consumption and saving decisions for an agent who
does not observe individual components of his income. I show that his precautionary
saving demand is higher, when he optimally takes the effect of estimation risk on
consumption into account. In order to show that partial observability of income
leads to higher precautionary saving in a simple setting and in an intuitive way, I
have chosen to use expected exponential utility and conditionally homoskedastic
labor-income process. Under the current framework, the optimal approach to solve
this intertemporal problem is to follow a two-step procedure: (i) estimate the
underlying individual components of the income process by using Kalman filter, and
(ii) derive optimal consumption rule by treating the filtered individual components of
income as the underlying state variables for income process. Different from
permanent-income type consumption models with unobservable income processes,
such as those of Goodfriend (1992) and Pischke (1995), this paper shows that
unobservability of individual components of income induces the agent to increase his
precautionary saving to account for estimation risk (measured by steady-state
variance Sð1Þ of forecasting error).
27Note that HðxÞ ¼ �ðx þ logð1� xÞÞ is an increasing function and rP4X:
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This paper has focused on the infinite-horizon setting with stationary variance of
estimation risk. Empirically, we observe much dispersion of individual’s saving
across different stages of his life cycle. One direction for future research is to
incorporate the time-varying precautionary saving demand for estimation risk into a
life-cycle model. Intuitively, the agent may know less about his earnings ability at the
beginning of his life cycle, and learns more about his talent, a key determinant of the
permanent component of his income, over time. Therefore, there is more uncertainty
about the individual components of income in the earlier stage of the agent’s life than
in his later stage. A lower estimation risk of individual components of income in the
later stage of the agent’s life naturally suggests a decreasing precautionary
saving demand associated with estimation risk per unit of time over his life cycle.
This model may further be generalized to incorporate the effect of measurement
error in the observed income on precautionary saving demand. When the
observed total income is only a proxy for the underlying true income (given by
the sum of the two individual components), then the estimated individual
components of income is less accurate and thus gives rise to even greater demand
for precautionary saving.
This paper has followed the consumption-saving literature by focusing on the

effect of estimation risk on consumption-saving rules. To do so, I have intentionally
chosen to allow the agent only invest in one asset, the risk-free asset with constant
rate of return. We may further generalize the model to incorporate the risky asset.
Because the volatility of estimated individual components of income in general
differs from that of the unobserved individual components of income, estimation
risk naturally also has effects on the agent’s portfolio choice, which in turn has
effects on the agent’s consumption rule, wealth dynamics, and the utility cost of
ignoring estimation risk.
Appendix A. Derivations of optimal consumption rules

First, I supply the detailed procedure of solving the optimal consumption rule
when the agent has complete information about his individual components of
income. Then, I solve the optimal consumption rule when only total income is
observable, by applying the separation principle of Section 4.2.

A.1. Derivation of the optimal consumption rule (12)

The value function J solves the Hamilton–Jacobi–Bellman (HJB) equation:

0 ¼ sup
c̄
fuðc̄Þ � bJðx;w; zÞ þDðc̄ÞJðx;w; zÞg; (A.1)

where

Dðc̄ÞJðx;w; zÞ ¼ ðrx þ w þ z � c̄ÞJx þ ðy1 � k1wÞJw þ 1
2
s21Jww

þ ðy2 � k2zÞJz þ
1
2
s22Jzz þ s12Jwz: ðA:2Þ
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The first-order condition gives

e�gc̄ ¼ Jxðx;w; zÞ: (A.3)

I conjecture that the value function takes an exponential-affine form

Jðx;w; zÞ ¼ �
1

gr
exp½�grðx þ a1w þ a2z þ a0Þ�; (A.4)

where a1; a2; and a0 are coefficients to be determined. The FOC (A.3) implies that

ct ¼ rðxt þ a1wt þ a2zt þ a0Þ: (A.5)

Plugging (A.5) into the HJB equation (A.1) gives

0 ¼ �
1

g
þ

b
gr

þ ½ð1� ra1Þw þ ð1� ra2Þz � ra0� þ ðy1 � k1wÞa1

�
1

2
s21gra21 þ ðy2 � k2zÞa2 �

1

2
s22gra22 � gra1a2rs1s2: ðA:6Þ

Eq. (A.6) holds for any w and z. Setting the coefficients for w, z and constant to zero
gives

0 ¼ 1� ra1 � k1a1; (A.7)

0 ¼ 1� ra2 � k2a2; (A.8)

0 ¼
b� r

gr
� ra0 þ y1a1 þ y2a2 �

1

2
s21gra21 �

1

2
s22gra22 � gra1a2rs1s2: (A.9)

Solving the above three equations yield

ai ¼
1

r þ ki

; i ¼ 1; 2;

a0 ¼
1

r

b� r

gr
þ y1a1 þ y2a2 �

1

2
s21gra21 �

1

2
s22gra22 � gra1a2rs1s2

� �
¼ ā �P�;

where ā and P� are given in (15) and (16).
The transversality condition limt!1 E j e�rtJðxt;wt; ztÞj ¼ 0; where Jðx;w; zÞ of

(A.4) is the corresponding value function for the candidate optimal consumption
rule, may be verified to hold in the same procedure as in Wang (2004). Details are
available upon request. The key is to require the interest rate to be positive, in that
r40:

A.2. Derivation of the optimal consumption rule (43)

When income is partially observable, the value function V ðx;m; nÞ solves the HJB
equation:

0 ¼ sup
c̄
fuðc̄Þ � bV ðx;m; nÞ þDðc̄ÞV ðx;m; nÞg; (A.10)
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where

Dðc̄ÞV ðx;m; nÞ ¼ ðrx þ m þ n � c̄ÞV x þ ðy1 � k1mÞV m þ 1
2
L2
1V mm

þ ðy2 � k2nÞV n þ
1
2
L2
2 V nn þ L1L2 Vm n: ðA:11Þ

We follow the same procedure as in (A.1), and conjecture that the value function
take the following exponential affine form

V ðx;m; nÞ ¼ �
1

gr
exp½�grðx þ a1m þ a2n þ a0

0Þ�; (A.12)

where a1; a2; and a0
0 are coefficients to be determined. The implied optimal

consumption rule is given by

ct ¼ r xt þ
1

r þ k1
mt þ

1

r þ k2
nt þ a0

0

� �
; (A.13)

where

a0
0 ¼

1

r

b� r

gr
þ a1 y1 þ a2 y2 �

1

2
L2
1gra21 �

1

2
L2
2gra22 � gra1a2L1L2

� �
;

¼
1

r

b� r

gr
þ

y1
r þ k1

þ
y2

r þ k2
�
1

2
gr

L1

r þ k1
þ

L2

r þ k2

� �2
" #

¼ ā �P;

where ā and P are given in (15), and (44), respectively. Re-writing the above
consumption rule gives (46), the optimal consumption rule when information is
incomplete.
The same argument as for the case of perfectly observed income implies that the

transversality condition holds, in that limt!1 E j e�rtV ðxt;mt; ntÞj ¼ 0; where
V ðx;m; nÞ; given in (A.12), is the corresponding value function for the candidate
optimal consumption rule.
Appendix B. Optimal estimation of individual components of income

This appendix derives the optimal estimates of the unobservable underlying
individual components of income in detail using the Kalman filter technique, and
shows that the innovations representation contains identical information as the
original state-space dynamics does. The equivalence between the original partially
observed income process and the innovations representation allows us to apply the
separation principle in solving the inter-temporal optimal consumption-saving
problem.
Recall that the dynamics for the individual component of income w

and the associated dynamics for the observed total income y are given
as follows:

d
wt

yt

� �
¼

y1
y

� �
þ

�k1 0

d �k2

� �
wt

yt

� �� �
dt þ

s1 0

n1 n2

� �
d

B1ðtÞ

B2ðtÞ

� �
; (B.1)
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where BðtÞ is a standard Brownian motion in R2: The agent does not observe the
individual component w, however, observes his total income y. His objective is to
form an optimal forecast for the individual components of his income, given his
information set.
I divide the detailed procedures into seven steps.
�
 Step I: Normalize shocks to the observed total income y to be one-dimensional.

In (B.1), total income y is subject to shocks from both B1 and B2: I normalize the
shocks ðB1ðtÞ

B2ðtÞ
Þ to one dimension. Let G be the Cholesky decomposition matrix for the

conditional covariance matrix for ðwt
yt
Þ from (B.1), in that

GGT ¼
s1 0

n1 n2

� �
s1 n1
0 n2

� �
:

The above equation gives

G ¼
n2s1=n n1s1=n

0 n

� �
:

Let ~BðtÞ ¼
~B1ðtÞ
~B2ðtÞ

� �
be another standard Brownian motion in R2: We may then

represent the underlying state-space representation (B.1) as follows:

d
wt

yt

� �
¼

y1
y

� �
þ

�k1 0

d �k2

� �
wt

yt

� �� �
dt þ

n2s1=n n1s1=n

0 n

� �
d ~BðtÞ:

(B.2)

Note that dynamics (B.2) for total income y depends on the past total income.
This dependence complicates the signal extraction problem. Step II
partially disentangles the dependence of the total income y on its own history by
transforming the process ðw

y
Þ to another analytically more convenient stochastic

process.
�
 Step II: Simplify the state-space representation (B.2).
I first define process w̄; whose dynamics is given by

dw̄t ¼ ðy1 � k1w̄tÞdt þ
n1s1
n2

½dyt � ðyþ dw̄t � k2ytÞdt�; w̄0 ¼ 0: (B.3)

Note that to fully describe the dynamics of w̄; we only need the history of total
income y. Instead of using y as the observable process, I introduce process ~y as the
alternative observable process, whose dynamics is given by

d ~yt ¼ dyt � ðyþ dw̄t � k2ytÞdt: (B.4)

Plugging (B.2) into (B.4) gives the following representation of ~y using ~B2 as the shock
process:

d ~yt ¼ d ~wt dt þ nd ~B2ðtÞ:
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Define ~w to be the difference between w and w̄; in that ~wt ¼ wt � w̄t; as the alternative
‘‘unobservable’’ state process. It is straightforward to show that

d ~wt ¼ � k1 þ
n1s1
n2

d
� �

~wt dt þ
n2s1
n

d ~B1ðtÞ:

Collecting the dynamics (B.5) for the state ~w together with the observation equation
(B.6) for ~y gives the following new state-space representation:

d ~wt ¼ � k1 þ
n1s1
n2

d
� �

~wt dt þ
n2s1
n

d ~B1ðtÞ; (B.5)

d ~yt ¼ d ~wt dt þ nd ~B2ðtÞ: (B.6)

Note that in (B.6), the dynamics of the observable ~y does not depend on its
own past, while the dynamics of the observable y depends on its own past
in (B.2). From this perspective, the system (B.5)–(B.6) is simpler to work with than
(B.2) does.
Let F

~y
t be the information set (filtration) generated by the history of ~y; f ~ys : sptg;

where dynamics of ~y is given by (B.6). Recall that F
y
t is the information set

(filtration) generated by the history of observed total income fys : sptg: The next
step is to show that information content inF

~y
t is the same as the one inF

y
t : Showing

that F
~y
t and F

y
t contain identical information is important because the

informational equivalence between these two information sets allows us to replace
the original income dynamics with a more convenient representation when solving
the optimal consumption-saving rule.
�
 Step III: Show that F
~y
t and F

y
t contain identical information.
Eq. (B.4) implies that the dynamics of ~y may be obtained from the history of y and
the history of w̄:28 Thus, we have F

~y
t � F

y
t :

Now, we show the other direction: F
y
t � F

~y
t : It is straightforward to express

Eqs. (B.3) and (B.4) as follows:

d
w̄t

yt

� �
¼

y1
y

� �
þ

�k1 0

d �k2

� �
w̄t

yt

� �� �
dt þ

n1s1=n2

1

� �
d ~yt: (B.7)

The first-order linear dynamics gives the following closed-form solution:

w̄t

yt

 !
¼ FðtÞ

0

y0

 !
þ

Z t

0

FðsÞ�1
�k1 0

d �k2

 !
ds

"

þ

Z t

0

FðsÞ�1
n1s1=n2

1

 !
d ~yt

#
; ðB:8Þ
28Recall that the history of w̄ is attainable from the history of y (see (B.3)).
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where29

FðtÞ ¼
e�k1t �ð1� e�k1tÞ

e�k1t � e�k2t e�k1t � d
k2
ð1� e�k2tÞ

 !
: (B.9)

That is, information generated by f ~ys : sptg allows us to solve for w̄ and y jointly,30

implying F
y
t � F

~y
t : Thus, we have shown F

~y
t ¼ F

y
t ; in that the information sets F

~y
t

and F
y
t contain identical information.

Next, I sketch out the basic idea behind the signal extraction problem for the
‘‘new’’ state-space representation given in (B.5)–(B.6): form the optimal estimate of
~w given the historical observation of ~y:
�
 Step IV: Construct the innovations process Z for the state-space representation
given in (B.5)–(B.6).

From (B.6), we may construct the following innovations representation:

dZðtÞ ¼
1

n
ðd ~yt � d ~mt dtÞ; (B.10)

where I define ~m as the optimal estimate of ~w; in that ~mt ¼ E½ ~wt jF
~y
t �: The basic idea

behind (B.10) is simple. Start off with (B.6). Since we do not observe ~w; a natural
thing to do is to replace ~w with its optimal estimate ~m: Then, the deviation between
d ~y and d ~mdt may then be viewed as unexpected changes, with expectation 0: In order
to normalize the process Z to be a Brownian motion (which requires VarðZð1ÞÞ ¼ 1),
we also divide the difference ½d ~yt � d ~mt dt� by the volatility parameter n: I refer
readers to consult Liptser and Shiryayev (1977) for the formal proof that Z is the
innovations process. Naturally, the information generated by the history of
innovations process Z shall be equivalent to F

~y
t (note the relationship between Z

and ~y as given in (B.10)).
Next, I use the innovations process given in (B.10) to derive the innovations

representation for the optimal estimate ~mt ¼ E½ ~wt jF
Z
t �:
�

wh
Step V: Compute the innovations representation for the optimal estimate ~m
(for ~w).
The projection theorem states that we may express the optimal estimate ~mt for ~wt as
a linear function of the history of innovations Z up to time t, in that

~mt ¼ ~m0 þ

Z t

0

gðs; tÞdZðsÞ; (B.11)
29Note that the integral equation FðtÞ solves is the following:

FðtÞ ¼ I2 þ

Z t

0

�k1 0

d � k2

 !
FðsÞds;

ere I2 is the identity matrix with 2� 2:
30Note that w̄ is attainable from the history of ~y:
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where gðs; tÞ is some well-behaved deterministic function.31 Since ~m is the ‘‘optimal’’
estimate of ~w; the residual ½ ~wt � ~mt� must be orthogonal to any variable known by
time t, in that

0 ¼ E ð ~wt � ~mtÞ

Z t

0

f ðsÞdZðsÞ

� �
(B.12)

for any well behaved function f ð�Þ: (Note that
R t

0 f ðsÞdZðsÞ represents the value of a
stochastic process at time t.) The orthogonality condition (B.12) implies

E ~wt

Z t

0

f ðsÞdZðsÞ

� �
¼ E ~mt

Z t

0

f ðsÞdZðsÞ

� �

¼ E

Z t

0

gðs; tÞdZðsÞ

� � Z t

0

f ðsÞdZðsÞ

� �� �

¼

Z t

0

f ðsÞgðs; tÞds; ðB:13Þ

where the second line follows from the application of Ito’s isometry. Note that (B.13)
holds for any well behaved function f ð�Þ: In particular, I may choose a step function:
f ðsÞ ¼ 0; for tpspt and f ðsÞ ¼ 1; for 0pspt: For this particular choice of f ð�Þ; we
have E½ ~wtZðtÞ� ¼

R t
0

gðs; tÞds: Differentiating with respect to t gives

gðt; tÞ ¼
@

@t
E½ ~wtZðtÞ�: (B.14)

Thus, the optimal estimate ~mt for ~wt is given by

~mt ¼ E½ ~wt� þ

Z t

0

@

@t
E½ ~wtZðtÞ�dZðtÞ: (B.15)

In order to simplify (B.15), first we relate the innovations Z to the history of
deviations between ~ws and its optimal estimate ~ms as follows:

dZðtÞ ¼
1

n
½d ~wt dt þ nd ~B2ðtÞ � d ~mt dt� ¼

d
n
ð ~wt � ~mtÞdt þ d ~B2ðtÞ: (B.16)

Integrating gives

ZðtÞ ¼
d
n

Z t

0

ð ~ws � ~msÞds þ ~B2ðtÞ: (B.17)

Denote the variance of forecasting ~wt as ~S11ðtÞ ¼ Eð ~wt � ~mtÞ
2: Recall that ~w is an

Ornstein–Uhlenbeck process with long-run mean zero (see (B.5)), integrating (B.6)
gives

~wt ¼ exp � k1 þ
n1s1
n

d
� �

ðt � sÞ
h i

~ws

þ
n2s1
n

Z t

s

exp � k1 þ
n1s1
n

d
� �

ðt � vÞ
h i

d ~B1ðvÞ: ðB:18Þ
31See Liptser and Shiryayev (1977) for more formal statements. The basic idea is to only consider

functions in certain vector space satisfying integrability conditions.
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Plugging (B.17) and (B.18) into (B.15), using the independence between ~w and ~B2

and orthogonality condition (B.12) give

E½ ~wtZðtÞ� ¼
d
n

Z t

0

E½ ~wtð ~ws � ~msÞ�ds (B.19)

¼
d
n

Z t

0

E exp � k1 þ
n1s1
n

d
� �

ðt � sÞ
h i

~wsð ~ws � ~msÞ

h i
ds; (B.20)

¼
d
n

Z t

0

exp � k1 þ
n1s1
n

d
� �

ðt � sÞ
h i

~S11ðsÞds; (B.21)

Plugging (B.21) into the integral equation (B.15) for ~m gives

~mt ¼ E½ ~wt� þ

Z t

0

d
n
exp � k1 þ

n1s1
n

d
� �

ðt � tÞ
h i

~S11ðtÞdZðtÞ: (B.22)

Applying Ito’s formula to the above equation gives

d ~mt ¼ dE½ ~wt� � k1 þ
n1s1
n

d
� �

ð ~mt � E½ ~wt�Þdt þ
d
n
~S11ðtÞdZðtÞ (B.23)

¼ � k1 þ
n1s1
n

d
� �

~mt dt þ
d
n
~S11ðtÞdZðtÞ; (B.24)

where the second line follows from32

d

dt
E½ ~wt� ¼ � k1 þ

n1s1
n

d
� �

E½ ~wt�: (B.25)

Eq. (B.24) gives the dynamics of ~m up to the covariance matrix ~S11ðtÞ: In order to
completely characterize the dynamics of the optimal estimate ~m using the
innovations process Z, we also need to compute the evolution of variance ~S11ðtÞ:
This is to which we turn next.
�
 Step VI: Derive the dynamics for the forecasting variance ~S11ðtÞ ¼ Eð ~wt � ~mtÞ
2:

Using Ito’s formula and the dynamics (B.5) for ~w; we have

d ~w2
t ¼ 2 ~wt d ~wt þ

n2s1
n

� �2
dt (B.26)

¼ �2 k1 þ
n1s1
n2

d
� �

~w2
t þ

n2s1
n

� �2� �
dt þ 2

n2s1
n

~wt d ~B1ðtÞ: (B.27)
32Eq. (B.18) implies

E½ ~wt� ¼ exp � k1 þ
n1s1
n

d
� �

t
h i

E½ ~w0�;

by choosing s ¼ 0 and taking expectation at time 0.
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The above equation implies that the dynamics for E½ ~w2
t � is given by 33

d

dt
E ~w2

t

� �
¼ �2 k1 þ

n1s1
n2

d
� �

E ~w2
t

� �
þ

n2s1
n

� �2
: (B.28)

The dynamics for the second moment ~m2
t is given by

d ~m2
t ¼ 2 ~mt d ~mt þ

d
n
~S11ðtÞ

� �2

dt (B.29)

¼ �2 k1 þ
n1s1
n2

d
� �

~m2
t þ

d
n
~S11ðtÞ

� �2
" #

dt þ 2
d
n
~S11ðtÞ ~mt dZðtÞ: (B.30)

The above equation implies that the dynamics for E½ ~m2
t � is given by

d

dt
E½ ~m2

t � ¼ �2 k1 þ
n1s1
n2

d
� �

E½ ~m2
t � þ

d
n
~S11ðtÞ

� �2

: (B.31)

Note that ~S11ðtÞ ¼ Eð ~wt � ~mtÞ
2
¼ E½ ~wt�

2 � E½ ~mt�
2: Then,

d

dt
~S11ðtÞ ¼

d

dt
E½ ~wt�

2 �
d

dt
½ ~mt�

2 (B.32)

¼ �2 k1 þ
n1s1
n2

d
� �

~S11ðtÞ þ
n2s1
n

� �2
�

d
n

� �2

~S11ðtÞ
2; (B.33)

using the results from (B.28) and (B.31).
We have explicitly solved for the dynamics of the optimal estimate ~mt and its

forecasting variance ~S11ðtÞ; using the innovations process Z. We next use results
obtained from the earlier steps to derive the dynamics of the optimal estimate mt for
the unobserved individual component of income wt and the associated forecasting
variance S11ðtÞ:
�
 Step VII: Characterize the dynamics for the optimal estimate mt and the dynamics
for its associated forecasting variance S11ðtÞ:

First, I show ~S11ðtÞ ¼ S11ðtÞ: The key observation is the following identity:

mt ¼ E½wt jF
y
t � ¼ E½w̄t þ ~wt jF

~y
t � ¼ w̄t þ ~mt: (B.34)

Therefore, we have ~wt � ~mt ¼ wt � w̄t � ~mt ¼ wt � mt; which implies

~S11ðtÞ ¼ Eð ~wt � ~mtÞ
2
¼ Eðwt � mtÞ

2
¼ S11ðtÞ: (B.35)
33The solution to the second moment E½ ~w2
t � is given by

E½ ~w2
t � ¼ exp �2 k1 þ

n1s1
n2

d
� �

t
h i

E½ ~w2
0� þ

n22s
2
1

2ðk1n2 þ n1s1dÞ
1� exp �2 k1 þ

n1s1
n2

d
� �

t
h ih i

:
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Eq. (B.33) and ~S11ðtÞ ¼ S11ðtÞ thus give the following Riccati equation for the
forecasting variance S11ðtÞ:

d

dt
S11ðtÞ ¼ �

d2

n2
S2
11ðtÞ � 2 k1 þ

dn1s1
n2

� �
S11ðtÞ þ

n2s1
n

� �2
: (B.36)

The solution is given by

S11ðtÞ ¼ S11ð1Þ þ
d2

�n2
ð1� e��tÞðS11ð0Þ � S11ð1ÞÞ þ e��t

� ��1
ðS11ð0Þ � S11ð1ÞÞ;

where

� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ

2ds1n1k1
n2

þ
ds1
n

� �2
s

(B.37)

and S11ð1Þ is the steady-state variance given in (31).
Now, I turn to the dynamics of mt using the innovations representation. Using

mt ¼ w̄t þ ~mt from (B.34) and the dynamics for w̄ and ~m together give

dmt ¼ ðy1 � k1w̄tÞdt þ
n1s1
n2

d ~yt � k1 þ
n1s1
n

d
� �

~mt dt þ
d
n
~S11ðtÞdZðtÞ

¼ y1 � k1mt �
nu1s1
n

d ~mt

� �
dt þ

n1s1
n

dZðtÞ þ
d
n

~mt dt

� �
þ

d
n
S11ðtÞdZðtÞ

¼ ðy1 � k1mtÞdt þ
n1s1 þ dS11ðtÞ

n

� �
dZðtÞ;

where Z is the Brownian motion under the innovations representation and is given by

dZðtÞ ¼
1

n
½d ~yt � d ~mt dt� ¼

1

n
½dyt � ðyþ dmt � k2ytÞdt�: (B.38)

To sum up, I have derived the dynamics for the optimal estimate ðmt
nt
Þ for ðwt

zt
Þ and the

associated dynamics for the forecasting variance S11ðtÞ; which are given in (26)–(28) and
(30), respectively. The main text uses these results to further derive the optimal
consumption-saving rule and quantify the precautionary saving induced by estimation
risk.
Appendix C. Calculation of lifetime utility in the ‘‘reference’’ model

The objective of this appendix is to calculate the lifetime utility of Agent B in the
‘‘reference’’ model. The (closed-loop) naive consumption rule implied by (48), the
(open-loop) naive consumption rule, is given by

cB
t ¼ r x0 þ

Z t

0

½k1a1ms þ k2a2ns � rðā �P�Þ�ds þ a1mt þ a2nt þ ā �P�

� �
:

(C.1)
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Let UB denote lifetime utility for Agent B who follows sub-optimal consumption
rule (48), in that

UB ¼ E

Z 1

0

e�bt uðcB
t Þdt

� �
: (C.2)

Plugging (C.1) into (C.2) gives

UB ¼ E �
1

g

Z 1

0

exp �

Z t

0

ða0 þ a1 ms þ a2 nsÞds

� �
e�c1mt�c2nt dt

� �
e�grðx0þa0Þ;

where

ci ¼ grai; i ¼ 1; 2; (C.3)

a0 ¼ b� gr2ðā �P�Þ ¼ b� gr2a0; (C.4)

ai ¼ graiki ¼ ciki; i ¼ 1; 2: (C.5)

Duffie et al. (2000) show that under technical regularity conditions, the following
result holds for an ‘‘affine’’ process such as the one for ðmt

nt
Þ:

E½e
�
R t

0
ða0þa1msþa2nsÞ ds

e�c1mt�c2nt � ¼ ef0ðtÞþf1ðtÞm0þf2ðtÞn0 ; (C.6)

where

_f0ðtÞ ¼ �a0 þ
X2
i¼1

yifiðtÞ þ
1

2
f1ðtÞ f2ðtÞ
� � L2

1 L1L2

L1L2 L2
2

 !
f1ðtÞ

f2ðtÞ

� �
;

(C.7)

_f1ðtÞ
_f2ðtÞ

 !
¼

�k1 0

0 �k2

� �
f1ðtÞ

f2ðtÞ

� �
�

a1
a2

� �
(C.8)

with boundary conditions f0ð0Þ ¼ 0; f1ð0Þ ¼ �c1; and f2ð0Þ ¼ �c2: Solving the
differential equation (C.8) gives

fiðtÞ ¼ e�kit fið0Þ �
ai

ki

ðekit � 1Þ

� �
¼ �

ai

ki

¼ �ci; i ¼ 1; 2: (C.9)

Using results from (C.9) to solve (C.7) gives

f0ðtÞ ¼ �a0 � ðy1c1 þ y2c2Þ þ
g2r2

2
ða1L1 þ a2L2Þ

2

� �
t; (C.10)

¼ ð�r � gr2P� þ gr2PÞt ¼ �rð1� gXÞt; (C.11)

where X ¼ rðP�P�Þ: We assume the following convergence condition in order to
ensure that the lifetime utility of Agent B who uses the naive consumption rule (48) is
finite:

1ogX: (C.12)
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Under the convergence condition (C.12), we have

UBðx0;m0; n0Þ ¼ �
1

g

Z 1

0

ef0ðtÞ�gra1m0�gra2n0 dt
� �

e�grðx0þa0Þ

¼ �
1

g
e�grðx0þa1m0þa2n0þa0Þ

Z 1

0

e�rð1�g XÞt dt

¼ �
1

g
e�grðx0þa1m0þa2n0þa0

0
Þ 1

rð1� gXÞ
e�grða0�a0

0
Þ

¼ V ðx0;m0; n0Þ
1

1� gX
e�gX

¼ UAðx0;m0; n0Þ
1

1� gX
e�gX; ðC:13Þ

where V ðx;m; nÞ is given in (A.12), and a0 � a0
0 ¼ P�P�: The above derivation uses

(C.6) and the Fubini’s theorem.
Appendix D. Calculation of lifetime utility in the permanent-income model

The objective of this appendix is to calculate the lifetime utility of Agent P, who
forms his consumption decision based on the permanent-income hypothesis of
Friedman (1957). For this bi-variate model of income, a PIH consumption rule is
given by

cP
t ¼ rðxt þ a1mt þ a2nt þ āÞ: (D.1)

The implied wealth dynamics is dxt ¼ ðk1a1mt þ k2a2nt � rāÞdt: The implied
consumption by the certainty-equivalence PIH rule in closed loop may be
written as

cP
t ¼ r x0 þ

Z t

0

ðk1a1ms þ k2a2ns � rāÞds þ a1mt þ a2nt þ ā

� �
: (D.2)

Let UP denote lifetime utility for Agent P who follows this sub-optimal consumption
rule (D.2), in that

UP ¼ E

Z 1

0

e�btuðcP
t Þdt

� �
: (D.3)

Plugging (D.2) into (D.3) gives

UP ¼ E �
1

g

Z 1

0

exp �

Z t

0

ða00 þ a1ms þ a2nsÞds

� �
e�c1mt�c2nt dt

� �
e�grðx0þāÞ;

where a00 ¼ b� gr2ā; and ai ¼ graiki ¼ ciki; for i ¼ 1; 2:
The same argument for (C.6) gives the following result for agent following the PIH

rule:

E½e
�
R t

0
ða0
0
þa1msþa2nsÞ ds

e�c1mt�c2nt � ¼ ef̂0ðtÞ�c1m0�c2n0 ; (D.4)
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where

f̂0ðtÞ ¼ �a00 � ðy1c1 þ y2c2Þ þ
g2r2

2
ða1L1 þ a2L2Þ

2

� �
t; (D.5)

¼ ð�r þ gr2PÞt ¼ �rð1� grPÞt: (D.6)

Assuming that the convergence condition (C.12) is met, we have

UP ¼ UPðx0;m0; n0Þ ¼ �
1

g

Z 1

0

ef̂0ðtÞ�gra1m0�gra2n0dt
� �

e�grðx0þāÞ

¼ �
1

g
e�grðx0þa1m0þa2n0þāÞ

Z 1

0

e�rð1�grPÞt dt

¼ �
1

g
e�grðx0þa1m0þa2n0þa0

0
Þ 1

rð1� grPÞ
e�grðā�a0

0
Þ

¼ V ðx0;m0; n0Þ
1

1� grP
e�grP

¼ UA 1

1� grP
e�g rP; ðD:7Þ

where UA ¼ V ðx;m; nÞ; and ā � a0
0 ¼ P: The above derivation uses (D.4) and the

Fubini’s theorem. Note that the above integral is finite, because grP ¼ gðXþ

rP�Þ4gX41 using the convergence condition (C.12).
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