
ARTICLE IN PRESS
Journal of Monetary Economics 54 (2007) 1882–1904
0304-3932/$ -

doi:10.1016/j

$I am dee

conversations

helpful discu

Krueger, Fel

Skiadas, Pau

Rochester, T

insightful com
�Tel.: +1 2

E-mail ad
www.elsevier.com/locate/jme
An equilibrium model of wealth distribution$

Neng Wang�

Columbia Business School, Uris Hall 812, 3022 Broadway, Columbia University, New York, NY 10027, USA

Received 24 February 2006; received in revised form 7 November 2006; accepted 14 November 2006

Available online 12 February 2007
Abstract

I present an explicitly solved equilibrium model for the distribution of wealth and income in an

incomplete-markets economy. I first propose a self-insurance model with an inter-temporally

dependent preference [Uzawa, H. 1968. Time preference, the consumption function, and optimal

asset holdings. In: Wolfe, J.N. (Ed.), Value, Capital, and Growth: Papers in Honour of Sir John

Hicks. Edinburgh University Press, Edinburgh, pp. 485–504]. I then derive an analytical

consumption rule which captures stochastic precautionary saving motive and generates stationary

wealth accumulation. Finally, I provide a complete characterization for the equilibrium cross-

sectional distribution of wealth and income in closed form by developing a recursive formulation for

the moments of the distribution of wealth and income. Using this recursive formulation, I show that

income persistence and the degree of wealth mean reversion are the main determinants of wealth-

income correlation and relative dispersions of wealth to income, such as skewness and kurtosis ratios

between wealth and income.
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1. Introduction

Empirically, labor income and financial wealth are cross-sectionally positively skewed
and fattailed. Furthermore, wealth is even more skewed and fat-tailed than income. For
example, the 1992 Survey of Consumer Finance reports that the top 1% of U.S.
households make 15% of total income, but hold 30% of total wealth. Building on Bewley
(1986), Aiyagari (1994) and Huggett (1993) provide a framework to analyze the cross-
sectional wealth distribution in an equilibrium setting, based on agents’ inter-temporal
optimal consumption-saving decisions. These incomplete-markets models, often referred
to as Bewley models, have a large number of ex ante identical, but ex post heterogeneous
infinitely lived agents who trade a single risk-free asset to partially smooth their
consumption over time against stochastic uninsurable labor income shocks. Both goods
and asset markets clear. The different realizations of income shocks for different agents
imply that the cross-sectional asset holdings and income levels are different for agents.
While realizations are different, the cross-sectional distribution of wealth and income
remains stable over time. The Bewley model has become the workhorse to understand the
equilibrium cross-sectional wealth distribution. Quadrini and Rı́os-Rull (1997) summarize
both dynastic (infinite horizon) and life-cycle versions of these Bewley models up to late
1990s. Recently, significant progress has been made on generalizing these quantitative
Bewley-style models by incorporating more realistic features in order to better explain the
highly skewed and fat-tailed empirical wealth distribution. Cagetti and De Nardi (2005b)
provide a comprehensive and up-to-date summary of this literature including both the key
empirical facts and the performance of various economic models.

In order to characterize the equilibrium wealth distribution, I first construct and then
explicitly solve an incomplete-markets consumption-saving model. I follow Uzawa (1968),
Lucas and Stokey (1984), and Obstfeld (1990) to assume that the agent whose past
consumption is higher has a larger discount rate for his future consumption. This is a
convenient and also intuitive way to link the past consumption path with current
consumption via inter-temporal dependence. A higher discount rate for the agent when he
is richer helps to deliver a stationary wealth process. These are precisely the insights of
Uzawa (1968), Epstein (1983), and Obstfeld (1990) in their work on endogenous
discounting and growth in deterministic settings. I extend their analysis to a stochastic
setting under incomplete markets. The second key assumption is that the agent has
constant absolute risk aversion (CARA) utility, following precautionary saving models
such as Caballero (1990), Kimball and Mankiw (1989), Merton (1971) and Wang (2003).
These modeling choices are partly motivated by analytical tractability. Zeldes (1989) noted
in his abstract ‘‘no one has derived closed-form solutions for consumption with stochastic
labor income and constant relative risk aversion utility.’’ Schroder and Skiadas (2003,
2005) analyze the agent’s demand problem with non-tradeable income for a broad class of
recursive utilities defined in terms of a translation-invariance property. The latter implies
exponentially discounted exponential utility in the additive case, but also includes Uzawa
utility used here.

Unlike typical CARA-utility-based, incomplete-markets consumption models such as
Caballero (1991), the newly proposed model generates a stochastic precautionary savings
demand. This feature comes from the conditional heteroskedasticity of the income process,
which has rich implications. For example, the process implies that a higher level of income
implies a more volatile stream of future incomes (in levels). Therefore, his precautionary
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saving is larger when his income level is higher. Equivalently stated, the agent consumes
less out of his human wealth, the present discounted value of future labor incomes, than
out of his financial wealth.1 Moreover, the model allows for large and unexpected changes
in income. I model these movements by embedding jumps into the affine processes.2 Note
that the stochastic precautionary savings demand is necessary to generate predictions such
as excess sensitivity and excess smoothness, which are consistent with empirical evidence
documented in Flavin (1981) and Campbell and Deaton (1989). The stochastic
precautionary savings demand is also predicted in constant-relative-risk-averse (CRRA)
utility-based models such as Deaton (1991) and Carroll (1997). There have been significant
progresses in recent years on the econometric estimations of these dynamic consumption
models. For example, in an important paper, Gourinchas and Parker (2002) estimate a
dynamic stochastic model of households’ consumption and expenditure over the life cycle.
To sum up, the agent’s decision problem has the following three key features: (i) an

inter-temporally dependent preference with endogenous discounting; (ii) a CARA utility-
based precautionary saving model and (iii) a conditionally heteroskedastic income process
which allows for skewness, kurtosis and large discrete movements (jumps) due to
unexpected shocks. The proposed model generates a realistic buffer-stock saving behavior
with stochastic precautionary savings demand in an analytically tractable way.
Using the explicitly solved consumption-saving rule, I develop an analytical model of

equilibrium wealth distribution. Like Aiyagari (1994) and Huggett (1993), my model has
dynastic (infinitely lived) agents whose saving behavior may be described by buffer-stock
models. My model also generates the key equilibrium restriction of dynastic Bewley models
(e.g. Aiyagari, 1994; Huggett, 1993): the cross-sectional distribution of wealth and income
is equal to the long-run stationary distribution of income and wealth for a representative
infinitely lived agent. Unlike the numerical methods used in papers such as Aiyagari (1994)
and Huggett (1993), I solve for the equilibrium wealth distribution by developing a closed-
form recursive formulation for the moments of the cross-sectional stationary distribution
of wealth and income. The analytical tractability comes from (i) the linear buffer-stock
saving rule and (ii) the affine income process. More importantly, my model provides
additional economic insights on some determinants of the wealth distribution in dynastic
Bewley models. For example, since the individual agent’s wealth is proportional to a
weighted sum of his past incomes, ‘‘averaging’’ makes the cross-sectional (standardized)
wealth3 smoother than the cross-sectional (standardized) income, ceteris paribus.
However, for riskier income process (a higher degree of conditional heteroskedasticity),
the agent may have a stronger precautionary motive, which tends to make wealth more
dispersed than income. The analytical tractability of the model also allows me to show that
income persistence and the degree of wealth mean reversion are the main determinants of
1See Friedman (1957) for his conjecture on this property of the consumption rule. See Zeldes (1989) for an

illustration of this property of the consumption rule using numerical solutions and utility with constant relative

risk aversion. See Wang (2006) for an analytical model with CARA utility, which supports this property of the

consumption rule.
2Affine processes are widely used in financial economics. See Vasicek (1977), Cox et al. (1985) and Dai and

Singleton (2000) for applications in term structure. See Duffie et al. (2000) for affine processes and the transform

analysis.
3Standardized wealth is a linear transformation of the cross-sectional wealth: taking cross-sectional wealth and

subtracting its mean, and finally dividing by its standard deviation gives ‘‘standardized’’ wealth.
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wealth-income correlation and relative dispersions of wealth to income, such as skewness
and kurtosis ratios between wealth and income.

Unfortunately, buffer-stock saving models which are at the core of dynastic Bewley
models have difficulties in explaining the saving behavior of the rich. Dynan et al. (2004)
find that the rich people (under various definitions) save a larger fraction of their income
than the poor, inconsistent with insights based on buffer-stock models. Moreover, buffer-
stock dynastic equilibrium models cannot generate enough wealth concentration at the
right tail of the distribution. These dynastic models place a stringent equilibrium restriction
that the cross-sectional distribution must equal a representative dynasty’s long-run
stationary distribution. In order to ensure a stationary wealth distribution in dynastic
buffer-stock-saving-based models, the wealth-rich need to de-cumulate his wealth at a
sufficiently high rate to ensure that wealth process mean reverts.4

Aiming to improve the quantitative performance of dynastic Bewley models, Quadrini
(2000) introduces (endogenous) entrepreneurship, and allows for (i) capital market
imperfections; (ii) (additional) uninsurable entrepreneurial risk; and (iii) costly external
financing. These features provide additional incentives for entrepreneurs to save.5 Quadrini
(2000) delivers cross-sectional wealth distributions for both entrepreneurs and workers.
The economy-wide cross-sectional wealth distribution is a weighted average of those for
entrepreneurs and workers. This heterogeneity between entrepreneurs and workers allows
room for more concentrated wealth in the economy because the entrepreneurs and workers
may have different saving behavior. The key restriction in dynastic Bewley models, the
cross-sectional distribution is equal to the long-run stationary distribution for any
representative agent, is no longer required. For example, in his model, entrepreneurs are
richer on average than workers due to the three features he introduced.6 However,
compared to data, Quadrini (2000) still falls short of generating enough asset holdings by
the very richest households.

Both baseline and extended dynastic models ignore the life-cycle dimension of the
savings decision. Building on the life-cycle wealth distribution model of Huggett (1996), De
Nardi (2004) shows that adding voluntary bequests and inter-generational transmission of
human capital help to generate a more skewed and fat-tailed wealth distribution relative to
the income distribution. Bequests are a luxury good in her model and thus intuitively, the
rich leave more to their children. Moreover, the inter-generational human capital link
generates a greater degree of heterogeneity across households and hence induces even more
persistent wealth dynamics.

The third class of wealth distribution models contains both dynastic and life-cycle
features. Castañeda et al. (2003) show that a very risky income process for the richest may
generate sufficient wealth dispersion in a life-cycle model with dynastic households. The
key intuition is that the rich continue to save at a very high rate due to extremely large
4For example, the marginal propensity to consume out of wealth when the dynasty is rich has to be higher than

the interest rate in these models. Otherwise, wealth is not stationary.
5Here, entrepreneurship is endogenous. We shall broadly interpret entrepreneurs as both the current ones and

those households who plan to take on entrepreneurial activities in the (near) future.
6Krusell and Smith (1998) extend the dynastic models to allow for the dynasty’s discount rate to follow a

Markov chain process. The stochastic discount rate generates heterogeneity in the dynasty’s saving rates over time

and hence enough concentration for the wealth distribution. Krusell and Smith (1998) also make a methodological

contribution by extending the analysis of wealth distribution to allow for aggregate fluctuations. Miao (2006)

provides an existence proof of the Bewley model with both aggregate and idiosyncratic shocks.
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uninsurable income shocks. Households may thus accumulate wealth at a very high rate,
even when they are rich. Households have different marginal propensities to save during
their retirement and working stages. The economy-wide cross-sectional wealth distribution
in Castañeda et al. (2003) is a weighted average of the wealth distribution for workers and
that for retirees. Given the strong precautionary saving motive (even by the rich worker)
and the heterogeneity between workers and retirees, the cross-sectional wealth distribution
may thus be more concentrated than those in dynastic Bewley models such as Aiyagari
(1994) and Huggett (1993).
In an ambitious and comprehensive paper, Cagetti and De Nardi (2005a) introduce a

key friction, imperfect enforcement in the credit markets, into a quantitative life-cycle
model with inter-generational altruism, by building on Quadrini (2000). While
entrepreneurs have higher expected rates of return from their investment opportunities,
entrepreneurs also have stronger incentives to save in order to mitigate the credit
constraints/collateral requirements. Moreover, the ingredient of voluntary bequests also
helps to enhance the dispersion of wealth, similar to the intuition in De Nardi (2004).
Compared with Quadrini (2000), Cagetti and De Nardi (2005a) obtain a better fit for the
richest by endogenizing the firm size distribution. Their model matches well the wealth
distributions for both entrepreneurs and non-entrepreneurs. The heterogeneity (workers
versus entrepreneurs) in addition to the higher shadow value of saving for entrepreneurs
(due to credit market frictions) generate a large concentration of wealth in the hands of the
richest.
Finally, my paper also relates to Benhabib and Bisin (2006). While both papers study the

wealth distribution, the focuses and modeling methods of the two papers are rather
different. Benhabib and Bisin (2006) study the effects of redistributive fiscal policies on the
wealth distribution. I analyze the dispersion of cross-sectional wealth relative to the
dispersion of cross-sectional income in a self-insurance setting. Unlike Benhabib and Bisin
(2006) which ignores labor income, I use the affine jump diffusion process to model
stochastic income, derive the optimal consumption rule under incomplete markets, and
then characterize the endogenous joint distribution of income and wealth. While Benhabib
and Bisin (2006) allow for bequests in an overlapping generations model of Blanchard
(1985) and Yaari (1965), my paper is based on infinitely lived agents. Finally, unlike
Benhabib and Bisin (2006) which study both transitions and the steady state, this paper
focuses on the stationary cross-sectional equilibrium distribution of income and wealth.
The remainder of the paper is organized as follows. Section 2 describes the setup of the

individual agent’s optimal consumption problem. Section 3 solves for the optimal
consumption and saving rules explicitly. Section 4 computes the joint distribution of
income and wealth in closed form and discusses the model-implied properties of the joint
distribution. Section 5 concludes. Appendices contain technical details.

2. An income fluctuation problem

An individual agent solves a version of the canonical inter-temporal self-insurance
problem.7 He lives forever and receives uninsurable labor income, governed by an
exogenously specified stochastic process. For technical convenience, I cast the model in
7Leland (1968) is a pioneering study of precautionary saving models in static settings. Ljungqvist and Sargent

(2004) Chapter 16 provide an introduction to this class of models.
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continuous time. He can borrow or lend at a constant risk-free interest rate that is
determined in equilibrium. Sections 2.1 and 2.2 introduce the stochastic income process
and the agent’s inter-temporal preference, respectively.

2.1. Income process

Empirically, the conditional variance of changes in income increases with the level of
income. That is, the labor-income process is conditionally heteroskedastic. Furthermore,
income is subject to unexpected large shocks, such as promotions, demotions, and
unemployment.8 These events often happen at low frequencies, but the potential
quantitative movements of income may be significant. A natural way to treat these events
is with ‘‘jumps.’’ Once in a while, with some probability, the agent receives a large
‘‘surprise’’ movement in his income. Moreover, labor income is empirically positively
skewed, fat-tailed, and bounded from below.

Motivated by these considerations, I model income using the affine jump-diffusion
process by generalizing the income process introduced in Wang (2006). An affine process
allows for a monotonic relationship between the conditional variance of changes in labor
income and the level of income parsimoniously. This class of stochastic processes is quite
flexible for capturing a variety of empirical regularities such as conditional hetero-
skedasticity, skewness, and kurtosis. In addition, the affine process may capture large and
unexpected movements in income by allowing the income process to jump by a random
amount at a random time.

A frequently adopted income model postulates that the logarithm of income, rather than
the level of income, is a conditionally homoskedastic Markov process.9 This logarithmic
model also implies that the conditional variance of the level of income increases in the level
of income.10 However, the conditionally homoskedastic logarithmic income process does
not capture the large and unexpected movements in income, as affine (jump-diffusion)
models do. Affine processes are also more convenient to work with, because they allow for
closed-form optimal consumption rules as shown in Section 3.11 Another widely used
income process is the autoregressive moving-average (ARMA) process, because of its
analytical tractability. Unlike the ARMA process, the affine process is conditionally
heteroskedastic, and hence is able to capture empirical regularities, such as positive
skewness and excess kurtosis. Moreover, the autoregressive income process is a special case
of an affine process, with conditionally homoskedastic income shocks.

Suppose that the income process y is given by the following stochastic differential
equation (SDE):

dyt ¼ ða� kytÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 þ l1yt

p
dW t þ dZt; tX0; y0 given, (1)

where W is a standard Brownian motion on the real line R, and Z is a pure jump process.
For each realized jump, the size of the jump is drawn from a fixed probability distribution n
on R. The intensity at which the jump occurs, lðyÞ, is stochastic and depends upon the
8See Jacobson et al. (1993) for empirical evidence.
9See MaCurdy (1982) and Deaton (1991), for example.
10If the percentage change of income is conditionally heteroskedastic, then the total change of income must be

conditionally heteroskedastic.
11There exists no closed-form consumption rule for conditionally homoskedastic logarithmic income process in

any precautionary saving model.



ARTICLE IN PRESS
N. Wang / Journal of Monetary Economics 54 (2007) 1882–19041888
underlying income. I further assume that the jump intensity is affine in the level of income,
in that

lðyÞ ¼ l0 þ l1y, (2)

for non-negative coefficients l0 and l1. That is, the model allows the probability of jumps
to be time-varying and to depend on the level of income.12

Let dj denote the jth moment of the jump size with respect to the jump probability

measure n, in that dj ¼
R
R

zj dnðzÞ, for jX1. The Laplace transform zð�Þ of the jump

distribution n is defined by zðkÞ �
R
R
ekz dnðzÞ; for any k such that the integral exists. When

the expected jump size of income is not zero (d1a0), jumps lead to additional expected
changes of income over time, that is, the expected instantaneous rate of change of y is then
given by ða� kyþ ðl0 þ l1yÞd1Þ.
Following Friedman (1957) and Hall (1978), I define human wealth as follows:

Definition 1. Human wealth ht at time t is the expected present value of future labor
income, discounted at the risk-free interest rate r, given the agent’s information set Ft at
time t. That is,

ht ¼ Et

Z 1
t

e�rðs�tÞys ds

� �
, (3)

where Et denotes Ft-conditional expectation.

Eq. (3) does not take the riskiness of the income process into account. The interest rate r

is assumed to be strictly positive.13 In order to ensure that human wealth is finite, I also
assume that rþ ky40, where

ky ¼ k� l1d1. (4)

The parameter ky is the effective rate of mean reversion. The second term in (4)
incorporates the effect of the jump component on the degree of income persistence. If the
income process is given by (1), then human wealth is affine in current income y, in that

ht ¼
1

rþ ky

yt þ
ay

r

� �
, (5)

where ky is given in (4), and ay ¼ aþ l0d1. Note that ay is the constant component of the
drift function for income, and the second term l0d1 captures the effect due to jumps.

2.2. Agent’s preference

The standard preference assumption in the consumption-saving literature is time
additive separable utility. However, there is substantial amount of work that challenges the
12There are two cases to consider in terms of the parameter admissibility. If the Brownian innovations are

conditionally homoskedastic (l1 ¼ 0), then the jump intensity is restricted to be constant (l1 ¼ 0), in order to

ensure that the jump intensity lðyÞ is positive, for all possible values of income y. If the Brownian innovations are

conditionally heteroskedastic (l140), then l0l1 � l1l040 is necessary, and the distribution n supports only

positive jumps. Furthermore, al1 þ kl040 is required, in order for the instantaneous drift mð�Þ to be positive, at

y ¼ �l0=l1, the lower boundary.
13It is straightforward to provide conditions to support a positive interest rate in equilibrium as shown later in

Section 4.1.
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expected utility models. For example, Obstfeld (1990) stated that ‘‘mathematical
convenience, rather than innate plausibility, has always been the main rationale for
assuming time-additive preferences in economic modeling.’’ Koopmans (1960) and
Koopmans et al. (1964) initiated the modern work on generalizing the expected utility
to allow for non-time-additive, but rather inter-temporally dependent preferences. This
class of preferences is often dubbed as recursive preferences.

In this paper, I follow this literature on recursive preferences and assume that the agent’s
time rate of preference is not constant, and instead depends on the agent’s past cumulative
consumption. Indeed, the recursive preference has been used in many branches of
economics. Uzawa (1968) pioneered the use of this inter-temporally dependent discount
function in his work on growth. Epstein (1983) uses this recursive utility to study growth in
a stochastic setting. Lucas and Stokey (1984) analyze growth with heterogeneous
consumers whose preferences are inter-temporally dependent as in Uzawa (1968).
Bergman (1985) studies the inter-temporal capital asset pricing implications using this
recursive (non-time additive) preference. Obstfeld (1990) develops geometric methods to
analyze optimal consumption rules with such preferences. Obstfeld and Rogoff (1996)
provide a good introduction to this recursive preference in a deterministic discrete-time
setting.14 I extend the analysis of Obstfeld (1990) in the deterministic setting to the
stochastic setting where labor income shocks are uninsurable and hence markets are
incomplete. Weil (1993) derives closed-form solutions for the optimal consumption rule in
a precautionary saving model where the agent has recursive utility with constant elasticity
of substitution and CARA. Since the labor income process is conditionally homoskedastic,
the implied precautionary saving demand is constant in his model.

Formally, I suppose that the agent has the following preference:

UðcÞ ¼ E

Z 1
0

exp �

Z t

0

bðcuÞdu

� �
uðctÞdt

� �
. (6)

I assume a linear relationship for the instantaneous discounting function bð�Þ, in that

bðcÞ ¼ b0 þ bcc. (7)

When bc ¼ 0, then the agent’s utility becomes the standard time-additive separable utility.
I follow Obstfeld (1990) and Obstfeld and Rogoff (1996) and assume that the agent
becomes more impatient when his past consumption is higher. Because consumption
increases in wealth, ceteris paribus, Eq. (7) with a positive bc implies that the richer agent is
more impatient. I will show later that a positive bc helps to deliver a stationary wealth
distribution. Intuitively, a stronger incentive to consume for the richer agent narrows the
wealth dispersion over time and hence generates a stationary wealth distribution. If we
make the alternative assumption that the agent is more patient when his past consumption
is higher (bco0), then the agent’s marginal propensity to consume out of wealth is less
than the interest rate, as we will show later. As a result, the agent’s wealth process is then
no longer stationary. In an economy with infinitely lived agents, the cross-sectional wealth
distribution is then non-stationary. We rule this situation out by requiring bc40.

In order to derive an analytical consumption rule under an incomplete markets setting, I
follow Merton (1971), Kimball and Mankiw (1989), Caballero (1991) and Wang (2004) to
assume that the period utility function is CARA, in that uðcÞ ¼ �e�gc=g, with g40:
14See Supplement B to Chapter 2 from pp. 722 to 726.
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Although CARA utility lacks wealth effects, it still captures stochastic precautionary
saving demand, provided that we use conditionally heteroskedastic income process.
One key prediction of CRRA-utility-based self-insurance models such as those of

Huggett (1993) and Aiyagari (1994) is that the agent engages in buffer-stock saving in
equilibrium. Buffer-stock saving means that the agent aims at a target level of wealth. If his
wealth is above the target level, the agent dis-saves. If his wealth is below the target level,
he saves. In general, the CRRA utility model predicts that consumption rule is concave
(Carroll and Kimball, 1996). However, quantitatively, the consumption rule is
approximately linear, provided that the agent’s wealth level is not close to zero.15 The
other important prediction of the CRRA-utility-based consumption model is that the
agent has a stochastic precautionary savings demand (Carroll, 1997).
It is worth noting that our recursive utility with CARA specification also generates (i)

the buffer-stock saving behavior and (ii) the stochastic precautionary savings, the same
two key features mentioned above for CRRA utility-based models. An explicitly solved
optimal consumption rule substantially simplifies the analysis of the cross-sectional
distribution of income and wealth. I further exploit the analytical tractability of the explicit
consumption rule to derive higher-order moments of the distribution of wealth and
income. This recursive formulation completely characterizes the equilibrium distribution,
and moreover, provides additional insights on the determinants of the distribution of
income and wealth, as we will show later.
Assume that the agent can only invest in a risk-free asset, as in standard

consumption models. Let x denote the agent’s financial wealth. His wealth accumulation
is given by

dxt ¼ ðrxt þ yt � ctÞdt, (8)

with an initial wealth endowment x0: The agent’s optimization problem is to choose his
consumption process c to maximize his utility given in (6), subject to an exogenously
specified labor-income process y given in (1), the wealth accumulation (8), and the
transversality condition limt!1E½e

�rtjJðxt; ytÞj� ¼ 0.
3. Optimal consumption and saving

In this section, I first derive the consumption rule and discuss the intuition behind the
policy rule in Section 3.1. Then, I decompose the saving motives implied by the
consumption rule in Section 3.2, and uses the decomposition result to provide some
insights on the determinants of the saving rule.
3.1. Consumption rule

Let Jðx; yÞ denote the corresponding value function. By a standard argument, the value
function Jðx; yÞ is conjectured to solve the following Hamilton–Jacobi–Bellman (HJB)
equation:

0 ¼ sup
c̄
fuðc̄Þ � bðc̄ÞJðx; yÞ þDc̄Jðx; yÞg, (9)
15See Zeldes (1989) and Deaton (1991).
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where

Dc̄Jðx; yÞ ¼ ðrxþ y� c̄ÞJxðx; yÞ þ ða� kyÞJyðx; yÞ þ 1
2ðl0 þ l1yÞJyyðx; yÞ

þ ðl0 þ l1yÞE½Jðx; yþ qÞ � Jðx; yÞ�, ð10Þ

and where q has probability distribution n: The last term in (10) captures the effect of
jumps, and E is taken with respect to the jump distribution n:

The first-order condition (FOC) for the HJB equation is

u0ðc̄Þ ¼ e�gc̄ ¼ Jx þ bcJ. (11)

Unlike the FOC for an expected utility agent, the second term bcJ on the right side of (11)
captures the effect of endogenous discounting bð�Þ on the agent’s tradeoff. The agent who
discounts his future more when his past consumption is greater (bc40), has stronger
incentives to consume in order to keep the discount rate for his future consumption from
being too high, ceteris paribus. The FOC (11) states that the marginal utility of
consumption u0ðc̄Þ is less than the marginal value of saving Jx at the agent’s optimality.
(Note that the value function Jðx; yÞo0, because the felicity function in each period uðcÞ ¼

�e�gc=go0 for any consumption level.)
I conjecture that the value function Jðx; yÞ takes an exponential-affine form:

Jðx; yÞ ¼ �
1

go
exp½�goðxþ ayyþ a0Þ�, (12)

where o; ay, and a0 are constant coefficients to be determined. Using the standard guess-
and-verify procedure, I derive a linear consumption rule in closed form. The following
proposition reports the optimal consumption rule.16

Proposition 1. The optimal consumption rule is affine in financial wealth x and current labor

income y, in that, for all t,

c�t ¼ oðxt þ ayyt þ āÞ, (13)

where

o ¼ rþ kx, ð14Þ

kx ¼ bc=g, ð15Þ

ay ¼
ah

rþ ky

, ð16Þ

ā ¼
1

r

b0 � r

go
þ

ay

rþ ky

� l0Gð�Þ
� �

ah �
1

2
D0a

2
h

� �
, ð17Þ

0 ¼ � 1þ ð1þ l1Gð�ÞÞah þ
1
2
D1a2

h, ð18Þ

Gð�Þ ¼
1

rþ ky

d1 þ
1

�
ðzð��Þ � 1Þ

� �
, ð19Þ

� ¼ goay, ð20Þ

Di ¼
goli

ðrþ kyÞ
2

for i ¼ 0; 1. ð21Þ
16See the Appendix in a working paper version at http://www0.gsb.columbia.edu/faculty/nwang/ for a proof of

the optimal consumption rule.

http://www0.gsb.columbia.edu/faculty/nwang/
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Next, I show that the model predicts stochastic precautionary savings, a key feature of
incomplete-markets consumption models. The optimal consumption rule (13) may also be
expressed in terms of financial wealth x and human wealth h given in (5), in that

c�t ¼ oðxt þ ahht � b0Þ, (22)

where

b0 ¼
1

r

1

2
D0a2

h þ l0Gð�Þah �
b0 � r

go

� �
. (23)

For the purpose of future reference, I call ah, the ratio between the MPC out of human
wealth and that out of financial wealth, the MPC ratio. Eq. (18) implies that the MPC
ratio, ah is always less than one. This inequality holds strictly, when the conditional
variance of labor income depends directly on its level (l140 or l140). The intuition is that,
with an increase in income, ‘‘human’’ wealth has increased, but its volatility has also
increased (l140); therefore, the prudent agent (Kimball, 1990) increases his consumption
out of his ‘‘human’’ wealth less than proportionally. In particular, if the jump intensity is
constant (l1 ¼ 0), then (18) specializes to the following quadratic equation:

0 ¼
D1

2
a2

h þ ah � 1. (24)

In general, (24) has two roots, for conditionally heteroskedastic income. I discard the
negative root, since it implies a negative MPC out of current income y. The positive root
lies between zero and one, and is given by

ah ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2D1

p
þ 1

. (25)

That the MPC ratio, ah, is less than one implies that consumption responds less to a unit
increase in human wealth than a unit increase in financial wealth, because of the
precautionary motive.
I use the following metric to quantify the agent’s precautionary savings motive.

Definition 2. Let c� be the optimal consumption characterized by (22), given financial
wealth x and human wealth h. Let cp be the corresponding certainty-equivalence ðl0 ¼
l1 ¼ 0 ¼ l0 ¼ l1Þ consumption. Then, the precautionary savings premium is p � cp � c�:

The precautionary savings premium then is given by

pt ¼ o ð1� ahÞht þ
1

2r
D0a

2
h þ

l0
r
Gð�Þah

� �
¼

o
r
ðft þ xtÞ, (26)

where

ft ¼
1

2
ðD0 þ D1rhtÞa

2
h ¼

goa2
y

2
s2ðrhtÞ, ð27Þ

xt ¼ ðl0 þ l1rhtÞGð�Þah ¼ ahGðgoayÞlðrhtÞ. ð28Þ

The terms ft and xt capture the effects of the diffusion risk and the jump risk on the
precautionary savings demand, respectively (Note that they are proportional to the
conditional variance s2ð�Þ, and the jump intensity lð�Þ, respectively.). Recall our earlier
discussion on the effect of conditional heteroskedasticity of income (l140 or l140) on the



ARTICLE IN PRESS
N. Wang / Journal of Monetary Economics 54 (2007) 1882–1904 1893
MPC ratio ah. When the agent’s income is higher, his income risk is bigger. Hence, his
precautionary saving demand is higher. However, the precautionary saving does not
depend on the agent’s wealth level. That is, the precautionary saving demand is the same
for the wealth-rich and the wealth-poor in this model.

Next, I provide a saving decomposition analysis that allows us to better understand the
model’s implications on saving.

3.2. Saving decomposition

Let gðx; yÞ be the optimal saving rule, in that gðxt; ytÞ ¼ st ¼ dxt=dt. Substituting the
consumption rule (13) into wealth accumulation equation (8) gives

gðx; yÞ ¼ �kxxþ cyþ k0, (29)

where kx ¼ bc=g, and

c ¼ 1� oay ¼
rð1� ahÞ þ ky � kxah

rþ ky

, ð30Þ

k0 ¼ � oā. ð31Þ

Under the assumption that the agent’s subjective discount rate bðcÞ increases with his
consumption (kx40), the marginal propensity to save out of financial wealth, �kx is
negative. Intuitively, a higher kx makes the agent attach lower values to his future
consumption, and hence encourages him to dis-save out of his financial wealth at a higher
rate by consuming more now, ceteris paribus. Note that the rate kx at which he dis-saves
out of his financial wealth is independent of his labor income. Now consider the alternative
assumption: kxo0. Then, the MPS out of financial wealth is positive. In such a setting, the
agents’ incentive to save is stronger. While this certainly helps to generate a concentrated
wealth distribution in equilibrium, in dynastic model, it leads to non-stationarity.
However, in overlapping generation models with finitely lived agents, a negative kx may be
desirable in terms of generating a more concentrated wealth distribution than income
distribution. This to some extent is in line with the empirical observation that the rich save
more as documented by Dynan et al. (2004) and others.

For a general affine income process (1), the savings rate (29) may be decomposed into
the three components:

s�t ¼ pt þ f t � jt, (32)

where

f t ¼
kyyt � ay

rþ ky

, ð33Þ

jt ¼ kxðxt þ htÞ þ
b0 � r

gr
¼

b0 þ kxgrðxt þ htÞ � r

gr
¼

bðrðxt þ htÞÞ � r

gr
, ð34Þ

and bðcÞ ¼ b0 þ bcc is the stochastic discounting function given in (7). The first term pt is
the precautionary savings and is given in (26).

The second term f t captures the agent’s motive of smoothing consumption over time,
even in the absence of stochastic shocks. If the agent’s saving s�t ¼ f t, then his behavior is
completely characterized by the permanent-income hypothesis of Friedman (1957) and the
martingale consumption model of Hall (1978). Campbell (1987) dubbed this behavior
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‘‘savings for a rainy day.’’ This saving component exists in any forward-looking
consumption model. It is worth emphasizing that ‘‘savings for a rainy day’’ as defined
in Campbell (1987) and here is unrelated to precautionary savings and is purely driven by
the expected changes of income over time. Therefore, the key determinant of saving f t for
rainy days is the persistence of the income process. If kyp0, the agent’s income grows over
time in expectation, and hence he borrows against his future income (f to0). If ky40,
income is stationary, and then ‘‘savings for a rainy day’’ is

f t ¼
ky

rþ ky

ðyt � ȳÞ, (35)

where

ȳ ¼
ay

ky

¼
aþ l0d1
k� l1d1

(36)

is the long-run mean of income. Equivalently, and more intuitively, I may express (35),
using ‘‘human’’ wealth, as

f t ¼ yt � rht ¼ kyðht � h̄Þ, (37)

where the long-run mean h̄ of human wealth is simply equal to the perpetuity of long-run
mean ȳ of income, in that h̄ ¼ ȳ=r:When ht4h̄, the agent’s human wealth is higher than his
long-run mean h̄, and hence he rationally saves a portion ky of his human wealth in excess
of long-run mean h̄ in anticipation of future ‘‘rainy’’ days.
The last term jt captures the dissavings due to impatience. This part of the saving reflects

the agent’s inter-temporal motives of smoothing consumption, even when his income is
deterministic. Note that the effect of randomness of income on consumption is fully
absorbed into precautionary savings demand pt. As a result, the dissavings due to
impatience must be affine in ðxt þ htÞ, the sum of financial and human wealth. Unlike the
time-additive separable CARA utility, this term jt is stochastic and increases in the agent’s
‘‘total’’ wealth ðxt þ htÞ. With bc40, the agent’s dissaving increases with his ‘‘total’’ wealth
ðxt þ htÞ. This induces a mean reverting wealth process and hence stationary wealth
distribution. This term jt captures the intuition that richer agents are more impatient and
hence dis-save more.
Having derived and analyzed the optimal consumption and saving rules, I next study the

implications on the equilibrium cross-sectional distribution of wealth and income.

4. Equilibrium distribution of income and wealth

I provide a recursive and analytical approach to characterize the joint distribution of
wealth and income. First, I describe the equilibrium for the economy.17 Then, I solve the
cross-sectional distribution of wealth and income in closed form by using the equilibrium
restriction that (i) the cross-sectional distribution of wealth and income and (ii) the long-
run stationary distribution of individual’s wealth and income are the same. The
individual’s long-run stationary distribution may be solved from his joint wealth and
income evolution dynamics. I further show that the cross-sectional wealth is less skewed
17See Ljungqvist and Sargent (2004) for extensive textbook treatment on these Bewley-style equilibrium wealth

distribution models. The equilibrium description is related to Aiyagari (1994) and Huggett (1993).
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and less fat-tailed than the cross-sectional income in these models, due to buffer-stock
saving behavior.

4.1. Equilibrium

Consider a continuum of individual agents, whose preferences and income (endowment)
are introduced in Section 2 in an equilibrium setting. These agents are ex ante identical, but
ex post generally different in both asset holdings and income. Since we are interested in the
steady-state cross-sectional distribution, we choose the initial distribution of wealth and
income to be the steady-state one. We thus will have a stationary economy where the
individual agents’ wealth and income move over time, and the cross-sectional distribution
and aggregate quantities remain invariant at all times. The equilibrium environment is a
stationary pure-exchange economy with a fixed supply of a risk-free asset, which the agent
uses as the saving instrument. The equilibrium interest rate is determined by market
clearing. The insights delivered in this paper may be also obtained in a production
economy used in Aiyagari (1994) by introducing a neoclassical production function and
thus using capital as the saving instrument. Now turn to a formal description of
equilibrium.

Definition 3. A stationary equilibrium is an interest rate r, an optimal saving
rule gðx; yÞ, and a stationary cross-sectional distribution Fðx; yÞ of wealth and income
for which
�

1

sta

wit

we

of

ava
the saving rule gðx; yÞ is optimal from the individual agent’s perspective;

�
 the stationary distribution Fðx; yÞ is implied by the stationary distribution of income

and the optimal saving rule gðx; yÞ;

�
 the risk-free asset market clears at all time, in thatZ Z

Fðx; yÞgðx; yÞdxdy ¼ 0. (38)

Note that our economy is of pure-exchange. The initial aggregate endowment
of the risk-free asset is normalized to zero, as in Huggett (1993). This is without loss of
generality. An equilibrium production economy similar to Aiyagari (1994) may also be

constructed.18

Next, I sketch out the equilibrium implications on the saving rule (29). Specifically, I
show that the saving rule (29) implies that the precautionary saving demand is stochastic,
and the wealth process is stationary. Moreover, the saving rule captures the intuition that
wealth is a weighted average of past incomes.
8Alternatively, we may also support a net positive supply of assets in the economy. The economy will have the

tionary equilibrium, provided that the initial cross-sectional distribution of wealth endowment is consistent

h the steady-state cross-sectional distribution of wealth and income. One way to think about positive aggregate

alth in an exchange economy is to view these positive initial wealth endowments as the ownership endowment

a tree, which drops a continuous flow of dividend at a constant rate, which is the risk-free rate. Details are

ilable upon request.
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4.2. Stochastic precautionary saving and stationary wealth

In equilibrium, the aggregate saving (in flow terms) is zero. Substituting (29) into the
market equilibrium condition (38) gives

�kxx̄þ cȳþ k0 ¼ 0. (39)

The above equation thus defines the equilibrium interest rate.19 The agent’s saving rule (29)
(evaluated at the equilibrium interest rate implied by (39)) may be written as follows:

st ¼ �kxðxt � x̄Þ þ cðyt � ȳÞ, (40)

where x̄ is the average wealth and ȳ is the average income. Because the economy is
normalized with a unit measure of agents, aggregate quantities such as wealth and income
are the same as the corresponding average quantities. Because all agents are ex ante
identical in the model, x̄ may be naturally interpreted as the target wealth. Note that agents
discount future more when their wealth is higher (bc40). Hence, the wealth process is
stationary as seen from a negative marginal propensity to save (MPS) out of wealth
(kx40), consistent with the notion of buffer stock.20

The saving rule (40) has two intuitive features: (i) wealth serves as a buffer, fluctuating
around a finite ‘‘target’’ level x̄; (ii) the agent saves out of his current income if his income
is larger than the average (yt4ȳ), and otherwise dis-saves. These two key properties of the
saving rule are precisely captured by the two saving components: the precautionary saving
term pt and dissaving due to impatience term jt, respectively. The stochastic precautionary
saving pt reflects the conditional heteroskedasticity of the income process, which makes the
MPC ratio less than unity (aho1). Recall that richer agents have stronger demand for
dissaving due to a greater magnitude of impatience as seen from jt given in (34).
The linear equilibrium saving rule (40) substantially simplifies the analysis of the

dispersion of the agent’s endogenous wealth distribution relative to his stationary income
distribution. Eq. (40) implies that the associated stationary wealth process x satisfies21

xt � x̄ ¼ c
Z t

�1

e�kxðt�sÞðys � ȳÞds. (41)

Without loss of generality, we choose current time to be 0 and suppose that the agent’s
wealth distribution have reached steady state. We may then re-write (41) as follows (with
t ¼ 0 and u ¼ �s):

x0 � x̄ ¼
c
kx

Z 1
0

wtðuÞðy�u � ȳÞdu, (42)

where the weight wtðuÞ for ðy�u � ȳÞ is given by wtðuÞ ¼ kxe
�kxu and sums to unity, in thatR1

0 wtðuÞdu ¼ 1: Eq. (42) states that the deviation of long-run wealth from its mean,
ðx0 � x̄Þ is proportional to a weighted sum of ðy�u � ȳÞ, the deviation of his past income
19The equilibrium market clearing condition is analogous to that in standard Bewley models (Aiyagari, 1994).
20By contrast, if the agent’s impatience decreases in consumption (bco0), then the agent with a higher level of

consumption is more patient, and accumulates more assets. This implies that the wealth process is not stationary,

and suggests that wealth inequality widens up without bound over time in an infinite-horizon equilibrium model.
21Using the definition of saving st ¼ _xt, we apply integration by parts to the formula (40) and obtain

d½ekxtðxt � x̄Þ� ¼ cðyt � ȳÞekxtdt.

Integrating the above from �1 to current time t yields (41).
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y�u from its long-run mean ȳ. First, the weight wtðuÞ for the income deviation from its
long-run mean, ðy�u � ȳÞ decays exponentially in ‘‘time distance’’ u at the rate of kx. For
the agent whose discount rate increases more with his past consumption (a higher bc), the
agent dis-saves at a higher rate kx ¼ bc=g. As a result, a ‘‘stronger’’ averaging effect
induces a lower wealth dispersion, ceteris paribus. On the other hand, when the income
risk increases with the level of income (conditional heteroskedasticity), the agent’s
precautionary motive will induce the agent to save more out of income, ceteris paribus.
This suggests a higher MPS c out of income, which in turn implies a more dispersed wealth
distribution relative to income. This can been seen from (42) where wealth in excess of its
long-run mean, ðx0 � x̄Þ, is a constant multiple c=kx of

R1
0 wtðuÞðy�u � ȳÞdu, with the

multiple increasing in the MPS c. In Section 4.3, we will return to these two opposing
effects: (i) dispersion reduction of stationary wealth relative to stationary income due to
buffer stock saving ðkx40Þ and (ii) high precautionary saving induced by a risky
(conditionally heteroskedastic) income process.22

In order to deepen our insights, I next provide an analytical characterization for the
cross-sectional stationary distribution of wealth and income.

4.3. Cross-sectional distribution

Let ðX Y ÞT be the random vector that has the cross-sectional stationary distribution
Fðx; yÞ of wealth and income, and m ¼ ðmX mY Þ

0
¼ ðx̄ ȳÞ0 be the corresponding first

moment. Note that mX is equal to the target wealth x̄ and mY is equal to the long-run
income ȳ of a representative individual. Let Mi;j be the moment of the joint distribution of
income and wealth, defined below:

Mi;j � E½ðX � mX Þ
i
ðY � mY Þ

j
� for i; j ¼ 0; 1; . . . . (43)

Infinite-horizon and stationarity assumptions together imply that the stationary cross-
sectional distribution is the same as the individual’s steady-state distribution. Using this
equivalence, I compute the cross-sectional distribution of wealth and income, by working
with the dynamics of individual income and wealth. Let w and v denote de-meaned wealth
and de-meaned income, respectively, in that wt ¼ xt � mX , and vt ¼ yt � mY .

The joint dynamics of de-meaned wealth and de-meaned income (wt and vt) may be
written as

d
wt

vt

 !
¼

�kx c

0 �k

� �
wt

vt

 !
þ

0

ā

� �" #
dtþ

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̄0 þ l1vt

p !
dW t þ

0

1

� �
dZt,

(44)

where ā ¼ a� kmY , and l̄0 ¼ l0 þ l1mY . The de-meaned income process v jumps at a
stochastic intensity l̄0 þ l1v, where l̄0 ¼ l0 þ l1mY .

I show that the cross-moment Mi;j is a linear combination of lower-order moments Mi;k,
for 0pkpj � 1, and the cross-moment Mi�1;jþ1, in that

Mi;j ¼
1

Kij

P1ðjÞMi;j�1 þ P2ðjÞMi;j�2 þ
Xj

n¼3

PnðjÞMi;j�n þ icMi�1;jþ1

 !
, (45)
22I am grateful to the referee for suggesting this line of discussions.



ARTICLE IN PRESS
N. Wang / Journal of Monetary Economics 54 (2007) 1882–19041898
where

Kij ¼ ikx þ jky, ð46Þ

P1ðjÞ ¼ jðāþ l̄0d1Þ þ
j

2

 !
ðl1 þ l1d2Þ ¼

j

2

 !
ðl1 þ l1d2Þ, ð47Þ

P2ðjÞ ¼
j

2

 !
ðl̄0 þ l̄0d2Þ þ

j

3

 !
l1d3, ð48Þ

PnðjÞ ¼
j

n

 !
l̄0dn þ

j

nþ 1

 !
l1dnþ1; 3pnpj, ð49Þ

and ky ¼ k� l1d1. Eq. (47) follows āþ l̄0d1 ¼ ay � kymY ¼ 0, using the steady-state
stationarity condition mY ¼ ay=ky. The parameter Kij may be viewed as the rate of mean
reversion for fwi

tv
j
tg. It is equal to the sum of income and wealth mean reversion rates,

multiplied by their corresponding power.23

Since (45) also applies to Mi�1;jþ1 and Mi;k, it is straightforward to conclude that Mi;j

may be written as a linear combination of the cross-sectional income moments M0;k, for
0pkpi þ j. This result is intuitive and useful. It states that the cross-moment Mi;j whose
total order is i þ j is given by a weighted sum of income moments up to the order ði þ jÞ. As
a special case of this result ðj ¼ 0Þ, the wealth moment of order i is only related to the
income moments up to order i, but does not depend on any income moments higher than
order i.
Having developed the general recursive formulation of moments for the joint

distribution, I now analyze some specific implications of the model.

Corollary 1. The wealth moments are related to the moments of the joint wealth and income

as follows:

Mi;0 ¼
c
kx

Mi�1;1, ð50Þ

Mi;1 ¼
ic

ikx þ ky

Mi�1;2. ð51Þ

An immediate implication of the above two equations is

Mi;0 ¼
ði � 1Þc2

kx½ði � 1Þkx þ ky�
Mi�2;2; iX2. (52)

Corollary 1 imposes a set of linear testable restrictions between the stationary moment
Mi;0 of wealth and the cross-moment Mi�1;1, for any iX2. Using Corollary 1, I show that
the mean-reversion rates of income and wealth (kx and k), and the MPS c out of income
determine the correlation coefficient r and the variance ratio s2X=s

2
Y between wealth and

income.
23See the Appendix in the working paper version at http://www0.gsb.columbia.edu/faculty/nwang/ for the

complete characterization of the cross-moments Mi;j defined in (43) for any non-negative integers i and j.

http://www0.gsb.columbia.edu/faculty/nwang/


ARTICLE IN PRESS
N. Wang / Journal of Monetary Economics 54 (2007) 1882–1904 1899
Corollary 2. The variance ratio s2X=s
2
Y and the correlation coefficient r between income and

wealth are given by

s2X
s2Y
¼

c2

kxðkx þ kyÞ
, ð53Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx

kx þ ky

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ Z

s
, ð54Þ

respectively, where

Z ¼ ky=kx. (55)

The marginal propensity c to save out of income is in general positive. This implies a
positive correlation between income and wealth: r40. Eq. (54) implies that the correlation
coefficient r decreases with Z. A more persistent (lower ky) income process implies that current
income is more correlated with the past income. Since wealth is accumulated out of past
income, this suggests a higher correlation between current income and wealth, ceteris paribus.

The variance ratio s2X=s
2
Y is a natural measure of cross-sectional wealth dispersion

relative to cross-sectional income. Clearly, the MPS c out of income plays a crucial role in
determining this variance ratio. When income shocks are more conditionally hetero-
skedastic (a higher l1 or l1), the MPS c is higher. The greater incentive to accumulate
wealth will in turn make wealth more volatile than income, giving rise to a higher variance
ratio s2X=s

2
Y . However, the variance ratio does not capture higher-order effects such as

relative skewness and relative fat-tails of the wealth distribution relative to the income
distribution. One way to capture these results is to use the following metric:

Definition 4. A measure of relative wealth-to-income inequality is

Ji �
E½ðX � mX Þ=sX �

i

E½ðY � mY Þ=sY �
i
¼

Mi;0=si
X

M0;i=si
Y

. (56)

Trivially by construction, J2 ¼ 1: The coefficients J3 and J4 are the wealth-to-income
skewness and wealth-to-income kurtosis ratios, respectively. These relative dispersion
measures have controlled for the difference between the variance of wealth s2X and the
variance of income s2Y , because these measures are based on ‘‘standardized’’ wealth, ðX �
mX Þ=sX and ‘‘standardized’’ income ðY � mY Þ=sY , where ‘‘standardized’’ random variables
refer to those with zero mean and unity variance.

Using the variance ratio (53), we may write ‘‘standardized’’ stationary wealth as follows:

x0 � mX

sX

¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ Z

p Z 1
0

wtðuÞ
y�u � mY

sY

� �
du; ð57Þ

where Z ¼ ky=kx. Eq. (57) implies that the MPS c does not directly affect the distribution
of ‘‘standardized’’ stationary wealth. This is because a higher MPS c out of income
increases both the variance and higher order moments for stationary wealth in such a way
that it does not affect the moments for the ‘‘standardized’’ wealth directly. Eq. (57) states
that the standardized wealth is proportional to a weighted average of past ‘‘standardized’’
incomes, with a multiple larger than unity. On one hand, the multiple

ffiffiffiffiffiffiffiffiffiffiffi
1þ Z
p

being larger
than unity indicates that the ‘‘standardized’’ wealth is more dispersed than the weighted
average of past ‘‘standardized’’ income, ceteris paribus. Moreover, a higher degree of mean
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reversion for income (a higher ky and hence a higher Z ¼ ky=kx) implies a larger multiple.
On the other hand, averaging past ‘‘standardized’’ incomes that are mean reverting further
reduces dispersion for wealth. Therefore, the moments for the standardized wealth may be
either larger or smaller than the (corresponding) moments for the standardized income,
depending on whether the ‘‘averaging’’ effect is stronger than the ‘‘multiple’’ effect or not.
The net effect of mean reversion on the relative dispersion of wealth to income is
indeterminate in general.
I next present a few example economies that provide explicit solutions to the skewness

and kurtosis moments, using the general recursive formulation (45) for the moments of the
joint distribution. I show that stationary cross-sectional (standardized) wealth is less
skewed and less fat-tailed than stationary cross-sectional (standardized) income because
the ‘‘averaging’’ effect turns out to be stronger than the ‘‘multiple’’ effect in the example
economies studied below.

4.4. A Gaussian model of income

If the income process (1) is conditionally homoskedastic without jumps, namely, an
Ornstein–Uhlenbeck process, then (44) is simplified to a first-order SDE, in that

d
wt

vt

 !
¼
�kx c

0 �k

� �
wt

vt

 !
dtþ

0

s0

 !
dW t, (58)

where ā ¼ 0 by equilibrium restriction. Note that the MPS c out of income is given by
c ¼ ðk� kxÞ=ðrþ kÞ. Because the bi-variate process of income and wealth is conditionally
homoskedastic and Gaussian, the stationary distribution Fðx; yÞ of wealth and income is
bi-variate normal.24 The joint normality implies that both the marginal distribution of
wealth and that of income are Gaussian. Corollary 2 gives the variance ratio and
correlation between wealth and income, which then completely characterize the joint
income–wealth distribution.
Obviously, this example provides a counter-factual prediction on the cross-sectional

joint distribution, as neither cross-sectional wealth nor income is normally distributed
empirically. However, it gives a good benchmark against which we may think about the
determinants of the skewness and fat-tails of the wealth distribution.

4.5. A conditionally homoskedastic jump-diffusion model of income

One simple way to incorporate skewness and kurtosis into income is to generalize an
Ornstein–Uhlenbeck income process as in (58) by adding a conditionally homoskedastic
jump component. That gives a special case of (1) with l1 ¼ l1 ¼ 0:
We may show that the skewness and excess kurtosis ratios are given by

SX

SY

¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ZÞ3

q
ð2Zþ 1ÞðZþ 2Þ

p1, ð59Þ

KX

KY

¼
3ð1þ ZÞ

ð1þ 3ZÞð3þ ZÞ
p1, ð60Þ
24See Karatzas and Shreve (1991), or Appendix D in Duffie (2001).
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respectively.25 Therefore, J3 ¼ SX=SYp1 and J4 ¼ ðKX þ 3Þ=ðKY þ 3Þp1, for all Z40.
This states that cross-sectionally, wealth is less skewed and less fat-tailed than income, in
this self-insurance-based equilibrium model. As we noted earlier, the MPS c out of income
does not matter for either the skewness ratio J3 or the kurtosis ratio J4. This is because the
MPS c does not matter for the distribution of ‘‘standardized’’ stationary wealth.

This jump model implies that c ¼ ðk� kxÞ=ðrþ kÞ, and thus predicts a constant
precautionary savings demand. A positively skewed jump distribution n implies a positively
skewed income distribution, which endogenously generates a positively skewed wealth
distribution. Empirically, both income and wealth are positively skewed. This model
captures the intuition that a skewed income distribution may lead to a skewed wealth
distribution.
4.6. A conditionally heteroskedastic model of income

Although Section 4.5 generates a model of skewed and fat-tailed wealth distribution, the
associated optimal consumption rule predicts a constant precautionary savings demand.
However, in general, precautionary saving is stochastic and depends on the level of wealth
and income. Next, consider a model that generates stochastic precautionary saving by
using a conditionally heteroskedastic income process, a special case of (1), in that

dyt ¼ kðy� ytÞdtþ s
ffiffiffiffi
yt

p
dW t. (61)

Since the conditional variance of changes in income is proportional to the level of
income, the precautionary savings demand induces a lower MPC out of human
wealth than out of financial wealth.26 The stationary distribution for the income process
(61) is a Gamma distribution. It can be shown that the skewness and kurtosis ratios are
given by

SX

SY

¼
2
ffiffiffiffiffiffiffiffiffiffiffi
1þ Z
p

2þ Z
p1, ð62Þ

KX

KY

¼
5Zþ 6

ð3þ ZÞð2þ ZÞ
p1, ð63Þ

respectively.27 Therefore, J3 ¼ SX=SYp1 and J4 ¼ ðKX þ 3Þ=ðKY þ 3Þp1. This again
confirms our intuition that cross-sectionally, wealth is less skewed and less fat-tailed than
income.

In this section, I have provided a complete characterization for the equilibrium
cross-sectional distribution of wealth and income by developing a recursive for-
mulation for the moments of the joint distribution of wealth and income. Using the
recursive formulation, I have illustrated that cross-sectional wealth is less skewed and
less fat-tailed than cross-sectional income by working out the details for several model
economies.
25See the Appendix in the working paper version at http://www0.gsb.columbia.edu/faculty/nwang/ for details of

a derivation.
26We impose the parametric restriction 2kyXs2 to ensure that the boundary of zero income is never visited in

finite time, and therefore, income always stays positive. See Feller (1951) and Cox et al. (1985).
27See the Appendix in the working paper version at http://www0.gsb.columbia.edu/faculty/nwang/ for the

details of a derivation.

http://www0.gsb.columbia.edu/faculty/nwang/
http://www0.gsb.columbia.edu/faculty/nwang/
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5. Conclusions

This paper develops an incomplete markets consumption-saving model and then derives
the equilibrium cross-sectional distribution of wealth and income in closed form. It first
proposes a general income process, known as an affine (jump diffusion) process, which
allows for both conditional heteroskedasticity of income changes and jumps in income.
Second, this paper derives an explicit buffer-stock saving rule for agents with inter-
temporally dependent preferences as in Uzawa (1968) and Obstfeld (1990). The
consumption model has the desirable property of stochastic precautionary savings.
Third, this paper provides an analytical solution for the stationary distribution of wealth

and income in a heterogeneous agent (Bewley-style) economy, by exploiting the
analytically tractable but also rich ‘‘affine’’ structure of the model. The analytical feature
of the model allows us to show that the individual agent’s wealth is a weighted average of
past incomes. In equilibrium, the individual’s long-run steady-state distribution is equal to
the cross-sectional distribution. The impatience (increasing with past consumption) helps
to generate a cross-sectional distribution for (standardized) wealth that is smoother than
the cross-sectional distribution for (standardized) income. While income volatility
naturally feeds into the higher order moments of wealth, the persistence of income shocks
and the mean reversion of wealth (induced by the impatience assumption) are the main
determinants of cross-sectional wealth–income correlation and the relative dispersion of
‘‘standardized’’ wealth to ‘‘standardized’’ income, such as the relative skewness and the
relative kurtosis (fat-tails) of the cross-sectional wealth to the cross-sectional income. I
develop these new insights and results on wealth distribution by providing an analytical
recursive formulation for the moments of the joint distribution of income and wealth. This
recursive formulation of the moments completely characterizes the joint distribution of
wealth and income. The analytical approach developed here provides a complementary
perspective to the existing literature towards the understanding of equilibrium wealth
distribution.
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